
An Efficient Polynomial Multiplier in GF(2m) and its Application to ECC Designs

Steffen Peter and Peter Langendörfer
IHP GmbH, Frankfurt(Oder), Germany

{peter,langendoerfer}@ihp-microelectronics.com

Abstract

In this paper we discuss approaches that allow to con-
struct efficient polynomial multiplication units. Such mul-
tipliers are the most important components of ECC hard-
ware accelerators. The proposed hRAIK multiplication im-
proves energy consumption, the longest path, and required
silicon area compared to state of the art approaches. We use
such a core multiplier to construct an efficient sequential
polynomial multiplier based on the known iterative Karat-
suba method. Finally, we exploit the beneficial properties
of the design to build an ECC accelerator. The design for
GF(2233) requires about 1.4 mm2 cell area in a .25µm tech-
nology and needs 80 µsec for an EC point multiplication.

1 Introduction

Mobile devices are becoming more and more powerful
with respect to processing power and memory. On one hand
this means their capabilities to run cipher algorithms are
increasing, on the other hand this means more and more
sensitive data is stored and exchanged using these devices.
Thus, cryptographic means are more needed than ever be-
fore. But, battery power is still a limiting factor. So, due
to its features, i.e. relatively short keys and relatively low
calculation cost compared to RSA, elliptic curve cryptogra-
phy (ECC) is becoming the de facto standard for public key
cryptography on mobile devices. But, we are convinced that
processing time and power consumption are still not conve-
nient if all operations are executed in software.
The most important component of an ECC design is the
polynomial multiplication unit. Classic multiplication al-
gorithms have a complexity O(m2). This means, double
bit length leads to quadruple complexity. For bit lengths of
many hundred bits this is very crucial. In this paper we dis-
cuss and analyze existing algorithms with less complexity.
Based on this evaluation we propose the hRAIK approach
that promises practical improvements.
Finally, we apply such a multiplication unit in an ECC ac-

celerator design. We have realized a co-processor for the
EC B-233 recommended by NIST[13]. The parameters of
our design show very promising properties regarding time,
area, and energy consumption. It needs less than 80 µsec to
calculate an EC point multiplication, and requires less than
1.4 mm2 in a .25 µm technology. The design can be used as
a blueprint for efficient designs for other elliptic curves.

The rest of this paper is structured as follows. We first
introduce the classic algorithms for the polynomial multi-
plication and discuss several improvements. In Section 3
we propose our hRAIK approach and practically evaluate
its properties in comparison to known methods. In Section
4 a combination of the proposed combinatorial multiplier
and the IKM approach is evaluated to construct an efficient
serial multiplication unit. These units are finally applied in
a full ECC accelerator design that is discussed in Section 5.
A short summary concludes the paper.

2 Polynomial Multiplication in GF(2m)

2.1 Classic polynomial multiplication

The classic polynomial multiplication (CPM) in GF(2m)
is a straightforward translation of the classic school mul-
tiplication algorithm. Considering a multiplication of two
polynomials A(x) and B(x), each of degree m, one obtains
the product C(x) of the degree 2m− 1. The coefficients of
C(x), c0...c2m−2, are determined by:

ck =

{ ∑k
i=0 aibk−i; for k = 0..m− 1∑2m−2

i=k ak−i+(m−1)bi−(m−1); for k = m..2m− 2

The estimation of the product out for the two m bit inputs
needs m2 multiplications and (m− 1)2 additions.

2.2 Karatsuba multiplication

In 1962 Karatsuba and Ofman introduced an approach
that decreases the complexity of the multiplication [5].
Originally developed to reduce the complexity of decimal
multiplications the classic Karatsuba multiplication (CKM)
can be easily adapted to polynomial multiplications in

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



Figure 1: Schematic comparison of classic polynomial method (a) and
Karatsuba multiplication (b). CPM requires four partial multiplications
and three accumulations while Karatsuba needs three different partial mul-
tiplications and four accumulation operations.

GF (2m). For a polynomial multiplication of A(x) · B(x)
where

A(x) = (am−1, am−2, ..., a1, a0)2 = A0 + A1 · xm/2

A0 = (am−1, am−2, ..., am/2)2 and A1 = (am/2−1, ..., a1, a0)2

and corresponding B(x), one obtains

(A0 + A1 · x
m
2 )(B0 + B1 · x

m
2 ) =

A0B0 + [(A0 + A1)(B0 + B1) + A0B0 + A1B1]x
m
2 + A1B1 · xm

Figure 1 shows a comparison of CPM and CKM. CPM
needs the accumulation of four partial m/2-bit multiplica-
tions, while CKM requires the addition of five terms. But
since two terms are duplicates, only three partial multipli-
cations are required. Hence, CKM substitutes additions for
multiplications. We know that additions in contrast to multi-
plications are cheap operations with linear complexity. This
is why CKM is an improvement concerning complexity.
The significant benefit of the method becomes apparent by
applying it recursively (i.e. the Karatsuba method is applied
to compute the partial products) which reduces the bit com-
plexity of a multiplication to O(mlg23) ≈ O(m1.58).

2.3 Iterative Karatsuba multiplication

The iterative Karatsuba multiplication (IKM), as it was
introduced in [1], is a serialized variant of the CKM. It
splits the operands into segments like the CKM, but the
partial multiplications are proceed iteratively. Instead of
one monolith recursive multiplication function, IKM per-
forms several smaller multiplications that are successively
accumulated to the final result. It was also revealed that
calculating the segments of the result separately can reduce
the number of XOR operations. Consider, the input words
of the length m are split into four segments each. Then
the product consists of eight segments of same size m/4:
a3a2a1a0 · b3b2b1b0 = c7c6c5c4c3c2c1c0

For the beginning, this segmentation in four pieces is
nothing else than CKM in the second recursion level. As
for CKM, one can expect nine partial multiplication and 40
partial additions. However, the number of additions can be
reduced by a smart accumulation process. For this purpose,
we unrolled all operations as depicted in Table 1. The first
column is the partial multiplication. Since the products

Table 1: Accumulation table of the IKM [1]
Partial multiplication Accumulations

[a0 · b0][0] ⊕⊕⊕⊕
[a0 · b0][1] ⊕⊕⊕⊕
[a1 · b1][0] ⊕⊕⊕⊕
[a1 · b1][1] ⊕⊕⊕⊕
[a2 · b2][0] ⊕⊕⊕⊕
[a2 · b2][1] ⊕⊕⊕⊕
[a3 · b3][0] ⊕⊕⊕⊕
[a3 · b3][1] ⊕⊕⊕⊕

[(a0 ⊕ a1) · (b0 ⊕ b1)][0] ⊕ ⊕
[(a0 ⊕ a1) · (b0 ⊕ b1)][1] ⊕ ⊕
[(a0 ⊕ a2) · (b0 ⊕ b2)][0] ⊕⊕
[(a0 ⊕ a2) · (b0 ⊕ b2)][1] ⊕⊕
[(a1 ⊕ a3) · (b1 ⊕ b3)][0] ⊕⊕
[(a1 ⊕ a3) · (b1 ⊕ b3)][1] ⊕⊕
[(a2 ⊕ a3) · (b2 ⊕ b3)][0] ⊕ ⊕
[(a2 ⊕ a3) · (b2 ⊕ b3)][1] ⊕ ⊕

[(a0 ⊕ a1 ⊕ a2 ⊕ a3) · (b0 ⊕ b1 ⊕ b2 ⊕ b3)][0] ⊕
[(a0 ⊕ a1 ⊕ a2 ⊕ a3) · (b0 ⊕ b1 ⊕ b2 ⊕ b3)][1] ⊕

c7c6c5c4c3c2c1c0

have the double size, each product is written twice: once
for the lower ([0]) and once for the higher part ([1]). The
right column shows for which segments of c the partial
results are accumulated. For example
c1 = a0 ·b0[0]⊕a0 ·b0[1]⊕a1 ·b1[0]⊕(a0⊕a1)·(b0⊕b1)[0].

The accumulation Table 1 shows 52 additions. These are
12 operations more than needed for CKM. The reason for
the discrepancy is that due to the unrolling, some additions
are executed twice. But it opens the possibility of reducing
the number of XOR operations by reusing terms of already
accumulated partial products. For example, the term a0 ·
b0[1]⊕ a1 · b1[0]⊕ a1 · b1[1] can not only be used for c1 but
for c2 and c3 as well. reusing previous partial results in [1]
a chain of additions was presented that reduces the number
of additions to 39.

Table 2: This improved operation sequence reduces the number of XOR
operation for the accumulation in IKM to 24.
Step Partial product Sequence

1 pr = a0 · b0 c0 = pr[0]
c1 = pr[0]⊕ pr[1]

2 pr = a3 · b3 c7 = pr[1]
c6 = pr[0]⊕ pr[1]

3 pr = a1 · b1 c1 = c1 ⊕ pr[0]
c5 = pr[1]

4 pr = a2 · b2 c5 = c5 ⊕ pr[0]
c6 = c6 ⊕ pr[1]

5 pr = (a0 ⊕ a1) · (b0 ⊕ b1) c2 = c1 ⊕ c5 ⊕ pr[1]
c1 = c1 ⊕ pr[0]
c5 = c5 ⊕ c6

6 pr = (a2 ⊕ a3) · (b2 ⊕ b3) c5 = c5 ⊕ pr[0]
c6 = c6 ⊕ pr[1]

7 pr = (a1 ⊕ a3) · (b1 ⊕ b3) c3 = c1 ⊕ c5
c4 = pr[1]⊕ c2 ⊕ c0
c5 = c5 ⊕ pr[1]
temp = pr[0]

8 pr = (a0 ⊕ a2) · (b0 ⊕ b2) temp = temp⊕ pr[1]
c2 = c2 ⊕ pr[0]
c3 = c3 ⊕ temp⊕ c7 ⊕ pr[0]
c4 = c4 ⊕ temp⊕ c6

9 pr = ((a0 ⊕ a1)⊕ (a2 ⊕ a3))· c3 = c3 ⊕ pr[0]
((b0 ⊕ b1)⊕ (b2 ⊕ b3)) c4 = c4 ⊕ pr[1]

2



Table 3: Number of one bit XOR operations for different factor bit lengths
and with different multiplication methods

#XOR #AND
m CPM CKM RAIK CPM Kara

4 9 24 23 16 9
16 225 360 332 256 81
64 3969 3864 3521 4096 729

128 16129 12100 10959 16384 2187
256 65025 37320 33854 65536 6561

Improvements of the IKM Based on the IKM approach
we improved the accumulation chain in order to minimize
the number of required additions. Trying new sequences,
a chain could be found that requires only 24 additions for
the accumulation process. The corresponding sequence is
depicted in Table 2. Together with the ten unchanged addi-
tions required for the factor determination, 34 additions are
needed. It is an improvement of six additions compared to
the CKM, that corresponds to a decrease of 15%. The num-
ber of partial multiplications is not affected.
Like CKM the improved IKM can be applied recur-
sively. Consider that the partial multiplications are also
performed by ’Recursively Applied Iterative Karatsuba’
(RAIK), where again the additions are saved. That approach
can improve both software and hardware designs. An exem-
plary software implementation of a 256 bit multiplication
on a 16 bit sensor node (e.g. TI MSP430) saves six 64 bit
XORs, and 54 16 bit XOR operations.

3 Efficient combinatorial multiplier design

In this section we evaluate the implications of the RAIK
approach for practical combinatorial hardware multiplica-
tion designs. An ASIC implementation of RAIK means that
the nine partial multiplications (see Tab. 2) are performed in
parallel. The partial products are aggregated in an XOR net-
work corresponding to the accumulation sequence. Each of
the nine partial multiplication units is a RAIK unit as well.
In order to enumerate the particular benefit of such a de-
sign, we determine the numbers of required bit operations,
and time delay.

In [14] the bit complexities of CKM were determined.
Their results together with the complexities for the CPM
and RAIK are shown in Table 3. RAIK requires the same
number of AND operations as CKM, while the XOR op-
erations are about 10% less. We determined the numbers
using the iterative formula based on the operation sequence
in Table 2:

#XORsi =9 ·#XORsi−2 + 34 · 2i − 11 (1)

The 11 saved 1-bit XOR operations come from the fact that
in GF(2m) the multiplicative product of two n bit values is
2n− 1 bit and not 2n bit. Thus, 11 times one bit is saved.

Table 4: Required total AND and XOR operations and XORs in longest
path for CPM, hCKM and hRAIK. hCKM and hRAIK need the same num-
ber of ANDs. The actual longest path has an additional AND gate.

#AND #XOR DELAY (#TXOR)
m CPM h*K* CPM hCKM hRAIK CPM hCKM hRAIK

4 16 16 9 9 9 2 2 2
16 256 144 225 225 206 4 10 8
64 4096 1296 3969 2649 2497 6 18 15

128 16384 3888 16129 8455 7505 7 22 18
256 65536 11664 65025 26385 24649 8 26 21

3.1 Hybrid multiplication

Also in [8] the bit complexities of CKM were deter-
mined. But there the recursive operations were not per-
formed until the polynomial operands collapse into single
coefficients. Instead, the recursion is truncated, preferable
at bit size n = 4, and the small partial multiplication is per-
formed by CPM. Corresponding to Table 3 the hybrid CKM
(hCKM) substitutes 24 XORs and 9 ANDs for 9 XORs and
16 ANDs for every 4 bit leaf multiplication, i.e. it requires
7 ANDs more but saves 15 XORs. Please remember that
for example the 64 bit Karatsuba multiplication (both CKM
and RAIK) applies 81 4 bit partial multiplications (or pre-
cisely (m/n)log23). The same approach can be applied to
the RAIK. The hybrid RAIK (hRAIK) needs also 7 ANDs
more and saves 14 XORs for every 4 bit leaf.

Table 4 provides a comparison of hCKM and hRAIK
concerning the number of operations and the longest path.
The numbers for hCKM were taken from [8] while the num-
bers for hRAIK can be determined either by applying the
iterative Equ. 1 with adapted initial values, or directly by:

#ANDs =
(m

n

)log23

n2 (2)

#XORs =9 ∗#XORsi−2 + 34 ∗ 2i − 11 (3)

Delay =TAND + TXOR

(
log2n + 3 · log2

m

n

)
(4)

The hRAIK approach requires the same number of AND
gates as hCKM but the XOR gates are still reduced by
about 10%. The space improvement does not lead to a time
penalty, but can even cut the longest path a bit. In compar-
ision to CPM the path is still more than the double, but it
needs more than four times the space.

3.2 Practical evaluation

To confirm the results in practice we implemented 64,
128, and 256 bit versions of hCKM and hRAIK for a
0.25µm CMOS technology and measured the area and the
timing. The results are shown in Table 5. We also estimated
the power consumption for one multiplication based on the
Synopsys Primepower tool[12]. The practical measure-
ments approve the theoretical assumptions very well. Our

3



Figure 2: Configurable structure for the accumulation of partial products in the IKM process with embedded reduction operation. This design allows only
to store four registers (c0 to c3) in flip-flops instead of eight.

hRAIK implementation is smaller and faster than hCKM.
The benefit becomes more evident with longer operands. In
particular the improvements of the power consumption is
remarkable. With less time, less area and less power con-
sumption the hRAIK approach results in a very favorable
combinatorial multiplication design.

4 Sequential Polynomial Multiplier

Even with the hRAIK method combinatorial multiplier
with long bit sizes are still quite slow and not as small as it is
desirable for mobile devicess or even wireless sensor nodes.
Common approaches use smaller combinatorial multiplica-
tion units and serialize the multiplication.

Actually the original iterative Karatsuba multiplier
(IKM) approach was presented as solution for this purpose.
It uses smaller combinatorial multiplication blocks, and ap-
plies them repeatedly following the Karatsuba method in
order to perform a larger polynomial multiplication. The
IKM design for a 233 bit multiplication unit presented in
[1] is the starting point for the investigation concerning im-
proved IKM design. It consists of three main parts:The se-
lection logic selects and combines the factors of the partial
multiplication (left column of Tab. 2), the partial multiplier
performs the partial multiplication within one clock cycle,
and the accumulation logic computes the final product by
accumulating the partial products. The number of clock cy-
cles depends on the size of the segmentation. For our 233
bit ECC design we are considering IKM configurations with

Table 5: Area and timing of combinatorial multipliers in 0.25µm CMOS

CPM hCKM hRAIK
m [mm2] [ns] [nWs] [mm2] [ns] [nWs] [mm2] [ns] [nWs]
64 0.477 3.3 3.36 0.176 6.2 0.84 0.170 6.0 0.78

128 2.070 3.9 18.64 0.555 7.9 3.52 0.537 7.6 3.31
256 9.000 4.6 105.1 1.714 9.8 14.01 1.636 9.1 12.51

128, 64, and 32 bit partial combinatorial multiplier. These
designs require 3, 9, and 27 clock cycles respectively.

For the hardware-IKM described in [1], the selection and
accumulation blocks of the multiplier become large with
higher segmentation. This is due to a complicated data path
that indeed reduces the number of total executed XOR op-
erations, but leads to an irregular data path structure. We
solved the issue by implementing a data path that does not
reduce the number of operations but has a much more regu-
lar structure and thus requires less silicon area.

In the accumulation of the four segment IKM, as shown
in Table 1, seven different positions are possible. The po-
sitions can be represented by a seven bit command word
which is generated by a small controller block. The value
of this command word depends on the current clock cycle of
the multiplication. The data path is organized as shown in
Figure 2. If a command bit is set, the partial product is for-
warded to the corresponding XOR operation, otherwise the
XOR operation is performed with zeros what results in no
change at the relative position. Because of the overlapping
XOR operations it is necessary to perform this process in
two stages. The intermediate result after the first stage is not
stored but is forwarded directly to the second stage. The re-
sult of the second stage is stored in registers, and used again
in the next iteration. An additional benefit of this method is
that the longest path is only one AND and two XORs.
The selection process is done in the same way. Small con-
trol words determine the XOR operations that have do be

Table 6: Area consumption in mm2 of selection and accumulation tasks
for 233 bit IKM compared to the original method.

Selection Accumulation Summation Original
sel. + acc. method

2 segment 0.05 0.08 0.13 0.15
4 segment 0.05 0.09 0.14 0.39
8 segment 0.06 0.10 0.16 0.59

4



Table 7: GF(2m)-multipliers tailored for B-163, B-233, B-571

Size Segments Size Cycles Area Power Energy
[bit] core mul [mm2] [mW] [nWs]

163 2 96 3 0.79 47.9 4.31
163 4 48 9 0.45 31.6 8.53
163 8 24 27 0.35 18.5 14.99
233 2 128 3 1.17 64.5 5.80
233 4 64 9 0.62 42.9 11.58
233 8 32 27 0.44 22.8 18.47
571 2 320 3 4.35 277.6 25.0
571 4 160 9 2.10 141.8 38.3
571 8 80 27 1.31 82.9 67.14

executed. The results for the new selection and accumula-
tion approach are listed in Table 6 and are compared to the
original method. The results clearly show that the influence
of the number of segments on area consumption is no longer
that significant.

Tailored ECC core multiplier With intention to apply
the multiplier in a particular ECC design, we made a further
modification of the accumulation logic: we integrated the
reduction inside the multiplier. The reduction must be
performed to transform the long product to an equivalent
m bit element inside the field GF(2m). It corresponds
to the modulo operation in prime fields. Traditionally,
the reduction is performed after the multiplication is
finished, i.e. after the nine partial multiplication steps were
performed. Instead, we perform a reduction after every
iteration step. Thus, the partial results c4, c5, c6, and c7,
shown in Figure 2, do not need to be stored. In case of a
256 bit multiplier it saves 255 flip-flops. For the 233 bit
B-233 curve with four-segment multiplier, which requires
nine clock cycles for the polynomial multiplication in
GF(2233) the silicon area is 0.62mm2 measured for the
0.25 µm CMOS technology.

5 ECC design

An application for large polynomial multiplier is ECC.
In this section we describe a simple ECC hardware accel-
erator design that applies the multiplier introduced in the
previous sections. Figure 3 depicts the block diagram of
the exemplary 233 bit ECC hardware accelerator. The ALU
combines the functionalities of addition, squaring and al-
lows bit manipulations. The ALU operations are performed
within one clock cycle. The ALU requires 0.08mm2 silicon
area in 0.25µm CMOS technology.
The multiplier is one of the sequential IKMs, described in
the previous section. Depending on the configuration it re-
quires 3, 9, or 27 clock cycles. Corresponding to the speed
the needed area is affected. It is not only the largest unit but
also the most utilized one. The duty time is more than 90%.

Figure 3: ECC 233 block diagram. Polynomial multiplier (MUL) and
ALU (adding, squaring and word modification) are the ’working horses’
of the chip. The controller block controls the bus access. The design has
eight 233 bit registers (one can be accessed over an external bus).

The control unit manages the bus access and the operations.
It is the place where the ECC algorithms are executed. In
our design the elliptic curve point multiplication (ECPM)
is performed by the Lopez-Dahab algorithm [6]. For the
required expensive field inversion we use the Itoh-Tsuji ap-
proach [4]. The control unit also manages the access of the
eight 233 bit registers. One of these registers can addition-
ally be written from the external bus. In our design this is
an 32 bit AMBA bus.

Results and Comparison: We implemented, synthe-
sized, and measured three exemplary designs (233 2, 233 4,
233 8) with field multiplication units of different speed. Ta-
ble 8 shows the parameters for required area and maximum
clock speed for the 0.25µm CMOS technology. Addition-
ally, for each design the power consumption and required
time for a complete ECPM were determined.

Table 9 shows the comparison of previous hardware
implementations of accelerators for EC scalar multiplica-
tion. Due to different hardware configurations and different
amount of functionality, the numbers cannot be compared
directly. For example, the design presented in [10] supports
not only ECs based on GF(2m) but also curves on prime
fields GF (p). This renders this ASIC design to the most
configurable EC co-processor. The hardware proposed in
[3] also supports not only one curve but all ECs based on
binary extension fields GF (2m) up to a size of m = 256.
Both designs achieve flexibility at the cost of large area and
poor performance compared to our implementation. The
design described in [7] is a very area efficient implementa-
tion of an EC, based on GF (2167). It does not reach the

Table 8: Results for an 233 ECPM on accelerator designs after synthesiz-
ing using different embedded polynomial multipliers.

Mul Size Needed Time Energy
Setup [mm2] clk cycles [ms] [µWs]
233 8 0.90 26999 0.81 25.1
233 4 1.02 9251 0.24 12.8
233 2 1.36 5344 0.18 10.6

5



Table 9: Comparison of GF (2m) ECPM hardware designs.

Ref Field Platform Time Size
our GF(2163) 0.25 µm ASIC 0.08 1.0mm2, 35Kgates
our GF(2163) Xilinx XC2VP70 0.11 5598 LUTs
[10] GF(2163) 0.13µm ASIC 0.19 117.5 Kgates
[3] GF(2163) Xilinx XCV2000E 0.14 19508 LUTs
[7] GF(2167) Xilinx XCV400E 0.21 3002 LUTs
[9] GF(2191) Xilinx XCV3200E 0.06 ≈30000 LUTs

[11] GF(2163) Xilinx XCV2000E 0.05 25763 LUTs
[15] GF(2191) 0.35 µm ASIC 6.21 1.31mm2

[2] GF(2233) 0.13 µm ASIC 6.68 71 Kgates

speed of our design but it is very small. With a LUT num-
ber of 3002, it requires about half of the area of our design
on the FPGA. From our knowledge the fastest ECC design
was reported in [11]. It requires merely 50 µs for a 163
bit ECPM, i.e. it is 40% faster than our design, but with
its 25000 LUTs it is about five times larger than our imple-
mentation. In contrast, the ASIC design presented in [15]
is a very small design. The ASIC manufactured in a 0.35
µm technology has a size of 1.31mm2 and supports two
fields, but requires more than 6 ms for an ECPM. The en-
ergy consumption reported for this design is 213µWs for
an ECPM in GF (2191), i.e. it is about the tenfold of our
design. Another design that reports the power consumption
is commercially offered on [2]. With this design a 233 bit
ECPM requires 6 ms and a total energy of 140µWs for the
50 MHz design, manufactured as 0.13 µm ASIC.
The comparison clearly indicates that our approach outper-
forms all other designs if area and processing time are taken
into account. From our knowledge it is the most energy ef-
ficient that has been reported.

6 Conclusions

In this paper we have presented an ECC hardware de-
sign, that accelerates the ECPM for specific elliptic curves.
the which we applied to B-233. The parameters of our de-
sign are very promising. Our design requires only 1.4mm2

cell area in a 0.25 µm technology and the calculation of a
point multiplication takes less than 80 µs.

The performance comparison clearly indicates that our
approach outperforms most reported designs if area and
processing time are taken into account. The good perfor-
mance results from the very efficient core multiplier. It
still requires nearly the half of the silicon area, is the per-
formance bottleneck regarding clock cycles and clock fre-
quency. However, this confirms that every improvement of
the multiplier is a substantial contribution for the improve-
ment of the whole EC hardware accelerator. Our hRAIK
multiplication approach that has been proposed in this pa-
per is such a contribution. It improves time, area, and power
consumption of the polynomial multiplication and is there-
fore the cornerstone of the achieved ECC performance.

Acknowledgment

This work was partially funded by the German Ministry
of Education and Research under grant 01AK060B and in
part by EU under contract 26820.

References

[1] Z. Dyka and P. Langendoerfer. Area efficient hardware im-
plementation of elliptic curve cryptography by iteratively
applying karatsuba’s method. In DATE, pages 70–75, 2005.

[2] Elliptic semiconductor. CLP-22 Elliptic Curve
Point Multiplier Core, 2006. Available from
http://www.ellipticsemi.com/CLP-22 60102.pdf.

[3] N. Gura, S. Shantz, H. Eberle, D. Finchelstein, S. Gupta,
V. Gupta, and D. Stebila. An end-to-end systems approach
to elliptic curve cryptography. In CHES ’02: Proceedings of
the Second International Workshop on Cryptographic Hard-
ware and Embedded Systems, 2002.

[4] T. Itoh and S. Tsujii. A fast algorithm for computing multi-
plicative inverses in GF (2m) using normal bases. Inf. Com-
put., 78(3):171–177, 1988.

[5] A. Karatsuba and Y. Ofman. Multiplication of multi-
digit numbers on automata. Doklady Akademii nauk SSSR,
145:293–294, 1962.

[6] J. López and R. Dahab. Fast multiplication on elliptic curves
over GF(2m) without precomputation. In CHES ’99: Pro-
ceedings of the First International Workshop on Crypto-
graphic Hardware and Embedded Systems, 1999.

[7] G. Orlando and C. Paar. A high performance reconfigurable
elliptic curve processor for GF (2m). In CHES ’00: Pro-
ceedings of the Second International Workshop on Crypto-
graphic Hardware and Embedded Systems, 2000.

[8] F. Rodriguez-Henriquez and C. Koc. On fully parallel
karatsuba multipliers for gf(2m). In Proceedings of Inter-
national Conference on Computer Science and Technology
CST, 2003.

[9] N. A. Saqib, F. Rodrı́guez-Henrı́quez, and A. Dı́az-Pérez.
A parallel architecture for fast computation of elliptic curve
scalar multiplication over GF (2m). In IPDPS, 2004.

[10] A. Satoh and K. Takano. A scalable dual-field elliptic curve
cryptographic processor. IEEE Trans. Comput., 52(4):449–
460, 2003.

[11] C. Shu, K. Gaj, and T. A. El-Ghazawi. Low latency elliptic
curve cryptography accelerators for nist curves over binary
fields. In Proceedings of the 2005 IEEE International Con-
ference on Field-Programmable Technology, FPT 2005.

[12] Synopsys Inc. PrimePower: Full-Chip Dy-
namic Power Analysis for Multimillion-Gate De-
signs, 2005. Available from Synopsys website
http://www.synopsys.com/products/power/primepower ds.pdf.

[13] F. U.S. Department of Commerce/NIST. Digital Signature
Standard (DSS), FIPS PUB 186-2, Jan. 27, 2000.

[14] A. Weimerskirch and C. Paar. Generalizations of the karat-
suba algorithm for polynomial multiplication.

[15] J. Wolkerstorfer. Is elliptic-curve cryptography suitable to
secure rfid tags? In Workshop on RFID and Light-Weight
Crypto, 7 2005.

6


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




