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Abstract

Weaknesses have recently been found in the widely used
cryptographic hash functions SHA-1 and MD5. A poten-
tial alternative for these algorithms is the Whirlpool hash
function, which has been standardized by ISO/IEC and
evaluated in the European research project NESSIE. In
this paper we present a Whirlpool hashing hardware core
suited for devices in which low cost is desired. The core
constitutes of a novel 8-bit architecture that allows com-
pact realizations of the algorithm. In the Xilinx Virtex-II
Pro XC2VP40 FPGA, our implementation consumes 376
slices and achieves the throughput of 81.5 Mbit/s. The re-
source utilization of our design is one fourth of the smallest
Whirlpool implementation presented to date.

1 Introduction

Cryptographic hash algorithms belong to the basic prim-
itives that are employed in numerous cryptographic applica-
tions [7]. They are widely used e.g. in message authentica-
tion, digital signature, and key derivation schemes. A hash
algorithm takes in an arbitrary-length data input and com-
presses it into a fixed-size output value called hash. Com-
pared to the hash algorithms of other fields, the required
properties for cryptographic hash algorithms are that they
are one-way functions and collision resistant [7].

Traditionally, SHA-1 [11] and MD5 [10] have been the
most utilized algorithms. However, researches have re-
cently found weaknesses in both of them [12, 13]. This has
raised a need for new designs. One of the potential alterna-
tives for replacing the traditional choices is a hash algorithm
called Whirlpool [1]. In 2003, it was selected as a part of the
New European Schemes for Signatures, Integrity and En-
cryption (NESSIE) portfolio of cryptographic primitives as
result of a research project within the Information Societies
Technology (IST) Programme of the European Commis-
sion [8]. Furthermore, the ISO/IEC standard 10118-3 [4] on

dedicated hash functions contains the Whirlpool algorithm.
Cryptographic algorithms are utilized for security ser-

vices in various environments in which low cost and low
power consumption are key requirements. Examples of
such technologies are wireless local and personal area net-
works, sensor networks, and smart cards. In these environ-
ments security procedures are often among the tasks requir-
ing most of the overall processing capacity. Hence, it is
beneficial to implement cryptographic algorithms in hard-
ware as significantly higher performance and lower power
consumption can be achieved compared to software. For
continuing the evaluation of new hash algorithms, in this pa-
per we present a compact hardware design of the Whirlpool
algorithm for low cost devices.

According to the authors’ knowledge, three publications
for the hardware implementation of Whirlpool have previ-
ously been published. Kitsos et al. [5] and McLoone et
al. [6] present straightforward designs that utilize a full-
width (512-bit) data paths for maximizing the throughput
at the expense of hardware resource consumption. In or-
der to reduce the amount of resources, Pramstaller et al. [9]
decrease the data path width to 64 bits. In our design, we
further decrease the data path width to eight bits for achiev-
ing even lower resource consumption while still providing
reasonable throughput. Compared to the previous designs,
our design is well-suited for low cost devices due to its
significantly smaller size. Similarly to the references, we
implement our design on Field Programmable Gate Arrays
(FPGA) for enabling direct comparison of results.

The rest of the paper is organized as follows. Section 2
overviews the Whirlpool algorithm. Our 8-bit hardware ar-
chitecture is presented in Section 3. The implementation re-
sults and comparisons are presented in Section 4. Section 5
concludes the paper.

2 Whirlpool Algorithm

The Whirlpool algorithm [1], shown in Fig. 1, is based
on a dedicated block cipher W that operates on 512-bit
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data blocks (ni) using a 512-bit key (Hi−1). Initially, the
key input (H0) is a string of zeroes. The hash function is
constructed from a compression function using the Merkle-
Damgård method [7]. The compression function has been
built from the internal block cipher with the Miyaguchi-
Preneel construction [7]. Before the message is subjected
to hashing operation, a specific padding is appended to the
message [1].

The block cipher W is composed of ten identical rounds
of transformations. All basic operations are performed on
8-bit bytes and each byte is interpreted as a polynomial in
the Galois Field GF(28). The cipher operates on a 512-bit
hash state using a chained 512-bit key state, derived from
the data input and the key input respectively. The states are
internally viewed as 8-by-8 matrices of bytes.

The data path and the key schedule of W and the
sequences of the round transformations are illustrated in
Fig. 1. The notations used in this paper are consistent with
the Whirlpool specification [1]. The operations are per-
formed in the data path as well as in the key schedule during
a round are defined as follows:

• The non-linear layer γ is a byte substitution operation.
The substitute values for the bytes of the state are de-
rived from the substitution box (S-box) S [1] individ-
ually:

γ(a) = b ⇐⇒ bij = S[aij ], 0 ≤ i, j ≤ 7.

• During the cyclical permutation π, each column of the
state is operated independently. The column j is cycli-
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Figure 1. The data path of the Whirlpool algo-
rithm.

cally shifted downwards by j positions:

π(a) = b ⇐⇒
bij = a(i−j) mod 8,j , 0 ≤ i, j ≤ 7. (1)

• The diffusion layer θ transformation is a linear map-
ping that can be expressed as a matrix multiplication
with a constant matrix in GF(28):

θ(a) = b ⇐⇒ b = a · C, where

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01x 01x 04x 01x 08x 05x 02x 09x

09x 01x 01x 04x 01x 08x 05x 02x

02x 09x 01x 01x 04x 01x 08x 05x

05x 02x 09x 01x 01x 04x 01x 08x

08x 05x 02x 09x 01x 01x 04x 01x

01x 08x 05x 02x 09x 01x 01x 04x

04x 01x 08x 05x 02x 09x 01x 01x

01x 04x 01x 08x 05x 02x 09x 01x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The notation used in the elements of C denote polyno-
mials in GF(28) [1]. The reduction polynomial for the
matrix multiplications is

x8 + x4 + x3 + x2 + 1.

• The key addition σ[k] is a bitwise addition (XOR) of a
key matrix k with the state:

σ[k] = b ⇐⇒ bij = aij ⊕ kij , 0 ≤ i, j ≤ 7.

The key schedule expands the initial 512-bit cipher key
into a sequence of 11 round keys K0,K1, . . . K10, i.e. key
states. Before the transformations of the first round, the in-
put message block ni is XORed with the first round key K0,
which equals to the input Hi−1. In the key addition phase
of the key schedule, an iteration-round-dependent constant
matrix cr is XORed to the key state. The constant for the
round r is defined as:

cr
0j ≡ S[8(r − 1) + j], 0 ≤ j ≤ 7,
cr
ij ≡ 0, 1 ≤ i ≤ 7, 0 ≤ j ≤ 7.

3 Whirlpool Hashing Core Architecture

Whirlpool has especially been designed to be executed
on 8-bit and 64-bit processors since the basic operations are
performed on 8-bit bytes and the longest data dependency in
one round of the algorithm is within a 64-bit block. Hence,
an attractive choice of the data path width for the hardware
implementation is a multiple of 8 or 64 bits. In this work
we chose to design a 8-bit data path in order to minimize
the hardware area. The mathematical structure of the in-
ternal block cipher W is almost identical with the structure



of the Advanced Encryption Standard (AES) algorithm [2].
Therefore, many of the design choices adopted in compact
AES implementations can also be used here.

The high-level architecture of our Whirlpool core is de-
picted in Fig. 2. All the connections in the figure are eight
bits wide. The architecture consists of two separate data
paths, one for the hash state and the other one for the key
state. Each data path contains a 64×8-bit Dual-Port RAM
(DPRAM) (x-RAM and K-RAM), a S-box γ, a diffusion
unit θ, and a XOR gate for the key addition σ[k]. As the
storages for the states and the cyclical permutation transfor-
mation π are combined into the DPRAMs, the order of γ
and π is reversed. The third 64×8-bit DPRAM, H-RAM,
is used for storing the partial hash result Hi. The usage of
DPRAMs allows reading the next byte while writing a pre-
viously processed byte, which increases performance. One
additional S-box is used for generating the cr bytes. The
data paths iterate the round operations ten times.

The operation of the core can be divided into three steps:

1. Data loading: The 64 bytes of the data block are
loaded from the input n_i byte by byte. At the begin-
ning of the loading, H-RAM contains the result of the
previous ten rounds of operation Hi−1. For the first
data block, the output of H-RAM is masked to zero.
During the loading, the multiplexers m1, m2, and m3

are controlled so that Hi−1 ⊕ ni is loaded to H-RAM
and x-RAM, and Hi−1 to K-RAM.

2. Data processing: The round function is iterated ten
times for both the hash state and the key state in par-
allel. For each round, the states are processed one row
at a time. The rows are read from x-RAM and K-
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Figure 2. The high-level data path architec-
ture of the Whirlpool hash core.

RAM byte by byte. Processing a row takes 16 clock
cycles, from which eight cycles are used for reading
of the operands and the other eight cycles for writ-
ing the result. During the first nine rounds, the mul-
tiplexers m2 and m3 are controlled so that the re-
sults of each round are written back to x-RAM and
K-RAM. During the last round of the block cipher op-
eration, m1 is set so that the final result of the round
(W [Hi−1](ni)) is XORred with contents of H-RAM
(Hi−1 ⊕ ni) and written back to H-RAM. Therefore,
at the end of the last round the contents of the H-RAM
is Hi = W [Hi−1](ni)⊕Hi−1 ⊕ ni. At this point, the
contents of x-RAM and K-RAM are no longer needed.

3. Data unloading: After processing the last message
block, the hash can be read from H-RAM. The 64 bytes
of the result are read from the port H_i a byte at a time.

Excluding the data unloading, a block of data is pro-
cessed in 64 + 10 × 8 × 16 = 1344 clock cycles. The
required message padding must be added outside the hard-
ware core. The following subsections describe the design
of the subcomponents.

3.1 Cyclical Permutation

Since the states are stored in memories, the permutation
π can be performed with addressing logic. The data ele-
ments of the states remain at the same memory locations
during the round operations but the addressing sequence
differs from round to round. After the bytes of a row are
processed, they are written back to the same memory loca-
tions. The 64-entry DPRAMs are organized so that the three
most significant bits of a memory address indicate the row
of a state matrix and the three least significant bits indicate
the column.

Initially, before the first round, the bytes of the state s
are organized so that the element sij is located in the mem-
ory location [i, j] (the notation [i, j] refers to the memory
location 8i + j). It can be seen from (1) that during the first
round of operation the jth element of the row i must be read
from the location

[(i − j) mod 8, j].

Similarly, since the bytes are stored back in the same loca-
tions, the read address for the second round is

[((i − j) mod 8 − j) mod 8, j] = [(i − 2j) mod 8, j].

This can be generalized for the round r, for which the ad-
dress location for the jth element of the row i is

[(i − rj) mod 8, j].

The addressing logic satisfying this is implemented with
three 3-bit counters i, j, and r and a small amount of com-
binatorial logic.



3.2 Substitution Box

The non-linear layer transformation γ makes use of the
S-box S that has 256 8-bit entries. It can directly be im-
plemented as combinatorial logic or ROM. However, due to
the internal structure of S, it can also be constructed from
16-entry mini-boxes E, E−1, and R as shown in Fig. 3. The
contents of the boxes are given in [1].

Each mini-box can be implemented by using only four
4-input Look-Up-Tables (LUT), which typically are the ba-
sic building blocks of FPGA devices. Since each XOR
gate consumes one 4-input LUT, the total resource con-
sumption for a mini-box-based S-box is 32 4-input LUTs.
On the contrary, an FPGA experiment of ours showed that
a direct 256 entry LUT-based S-box implementation con-
sumes 208 4-input LUTs or 2048 memory bits when im-
plemented with combinational logic or ROM blocks, re-
spectively. Therefore, the mini-box-based approach was se-
lected for this work. In addition, to increase the maximum
clock frequency, the S-box was pipelined into two stages.

3.3 Diffusion Unit

The constant polynomial coefficients of C in the diffu-
sion layer transformation θ have been chosen so that they
contain as few terms as possible. The needed basic opera-
tion for the matrix multiplication is a finite field multiplica-
tion in GF(28) with the polynomial 02x, shown in Fig. 4(a).
The multiplications by 04x and 08x can be calculated by
successively applying the multiplication with 02x, since
04x · d = 02x · 02x · d and 08x · d = 02x · 04x · d. Similarly,
the multiplications with 05x and 09x can be performed by
using previously computed values and one addition (which
is simply an XOR operation), since 05x · d = 04x · d ⊕ d

E

R

E-1

E E-1

Figure 3. Structure of the Whirlpool S-box us-
ing five mini-boxes [1]. All connections are
one bit wide.
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Figure 4. (a) Bit level schematic for comput-
ing b = 02x·a using the reduction polynomial
x8 +x4 +x3 +x2 +1. The parameters ai and
bi denote single bits. (b) Byte level schematic
for computing 09x · d, 08x · d, 05x · d, 04x · d,
and 02x · d.

and 09x · d = 08x · d ⊕ d. The complete circuit that com-
putes all the required multiplications for a state byte, shown
in Fig. 4(b), requires 25 XOR gates in total.

The diffusion unit presented in Fig. 5 processes one row
of the state in 16 clock cycles. The multiplier unit ex-
ploits the circulant property of the multiplicand matrix in
the same way as [3] in the implementation of the AES al-
gorithm. Data are fed to the unit’s input (d_in) byte by byte
and the intermediate results are maintained in the eight reg-
isters. During the first eight cycles of the operation, the
multiplication operation is performed by adding and cycli-
cally shifting the intermediate results in the unit. During the

D D D D D D D D

04x 08x 05x 02x 09x

d_out

d_in

en

Figure 5. Diffusion layer multiplier unit. 02x,
04x, 05x, 08x, and 09x denote field multipli-
cations with polynomials x, x2, x2 + 1, x3,
and x3 + 1, respectively. All connections are
eight bits wide.



last eight cycles, the input is masked to zero with the control
signal en and the row is read byte by byte from the output
(d_out).

4 Results and Comparison

The Whirlpool core was described in VHDL and synthe-
sized to two different target FPGAs, Altera Stratix EP1S40
and Xilinx Virtex-II Pro XC2VP40. The reference imple-
mentations have used Xilinx FPGAs. The basic config-
urable block in Altera Stratix FPGAs is a Logic Element
(LE), which includes a 4-input LUT and a register. On
the contrary, the basic block in Xilinx Virtex-II FPGAs is
a slice, which includes two 4-input LUTs and two regis-
ters. In both the technologies, the basic blocks contain ad-
ditional logic e.g. for carry propagation and register by-
passing. Both the FPGA technologies provide dedicated
memory blocks of different capacities (block RAM) for im-
plementing a variety of memory functions. The LUTs of
Virtex-II can also function as small single-port or dual-port
memories (distributed RAM).

Table 1 lists the resource utilization, the maximum clock
frequency, and the maximum throughput for our implemen-
tations and the references. In the Altera FPGA, K-RAM,
x-RAM, and H-RAM were mapped to dedicated memory
blocks whereas in the Xilinx FPGA slices were used as dis-
tributed RAM.

Of the reference implementations, Kitsos et al. [5]
present two different implementation approaches. The first
one contains one iterative 512-bit data path that interleaves
the operations performed to the hash state and the key state.

The data path is first utilized for the full key schedule and
the computed round keys are stored in a RAM. The total cy-
cle count for hashing a 512-bit block of data is 20 clock cy-
cles. The other implementation contains two separate 512-
bit data paths. The round key calculation is performed on-
the-fly in parallel with the hash state computations. The
resource consumption is therefore higher than in the first
implementation but the cycle count is halved, resulting in
higher throughput.

McLoone et al. [6] report results for two different 512-
bit-wide architectures. The first one equals to the second
implementation of Kitsos et al. [5] but implements the S-
box as a large LUT instead of the mini-box approach. The
required S-boxes are implemented in dedicated memory
blocks. In the second architecture, the iteration loop is
unrolled so that two rounds are performed per clock cy-
cle. This approach considerably increases the resource con-
sumption, yet implying only a modest increase in through-
put.

The 64-bit Whirlpool implementation of Pramstaller et
al. [9] interleaves the on-the-fly round key generation and
the hash state computations. The S-box has been imple-
mented using the mini-box approach. The cycle count for
hashing a 512-bit block is 176.

Table 1 shows that the resource utilization of our design
is significantly lower than that of the reference designs at
the expense of lower throughput. Our maximum clock rate
is considerably higher than in the reference implementa-
tions, which is due to the pipeline registers in the S-box that
shorten the critical path. It can be seen that the throughput
per used logic block is superior in the 512-bit implemen-
tations compared to the 64-bit and 8-bit implementations.

Table 1. Implementation results and comparison.
Design FPGA Data Logic Memory Cycles/ Max. Throughput

device width blocks blocks block freq. [Mbit/s]
[bits] [MHz]

This Altera Stratix 8 443 LEs 3 M512s 1344 169 64.3
work EP1S40 (1.5 Kbits)

Xilinx Virtex-II 8 376 slices - 1344 214 81.5
Pro XC2VP40

Pramstaller Xilinx Virtex-II 64 1456 slices - 176 131 382
et al. [9] Pro XC2VP40
Kitsos et al. Xilinx Virtex-E 512 3751 slices - 20 93 2380
[5] V1000E

Xilinx Virtex-E 512 5585 slices - 10 87.5 4480
XCV1000E

McLoone Xilinx Virtex-4 512 4956 slices 68 BRAMs 10 94.6 4790
et al. [6] XC4VLX100 (1224 Kbits)

Xilinx Virtex-4 512 13210 slices - 5 47.8 4896
XC4VLX100



This is not surprising as a full-data-width implementation
can take full advantage of the parallelism in the Whirlpool
algorithm whereas 64-bit and 8-bit implementations have to
use extra effort (i.e. more control logic and multiplexers) to
time share the effective computational resources. The same
effect can be seen e.g. in AES implementations utilizing
different data path widths [3].

5 Conclusion

In this paper we presented the design and implementa-
tion of a Whirlpool hardware core for low cost devices. The
architecture was based on a 8-bit data path in order to min-
imize the hardware resource consumption. As a result, we
achieved considerably lower hardware area compared to the
reference implementations. Due to the lower utilization of
parallelism, our throughput was also lower. However, we
believe that our approach is well suited for environments in
which low power consumption and low cost are the key de-
sign goals. A possible enhancement to increase the through-
put of the core is to parallelize the memory accesses be-
tween consecutive rows (i.e. by simultaneously reading a
new row and writing the previous row). This modification
would almost double the throughput while only requiring
modifications to the control logic and two extra 64-bit reg-
isters to temporarily store the result of the previous row.
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