Microarchitecture Floorplanning for Sub-threshold Leakage Reduction *

Hushrav D. Mogal and Kia Bazargan
University of Minnesota, Twin Cities
Minneapolis, MN 55414
{mhush,kia} @umn.edu

Abstract

Lateral heat conduction between modules affects the tempera-
ture profile of a floorplan, affecting the leakage power of individ-
ual blocks which increasingly is becoming a larger fraction of the
overall power consumption with scaling of fabrication technolo-
gies. By modeling temperature dependent leakage power within
a microarchitecture-aware floorplanning process, we propose a
method that reduces sub-threshold leakage power. To that end,
two leakage models are used: a transient formulation independent
of any leakage power model and a simpler formulation derived
from an empirical leakage power model, both showing good fi-
delity to detailed transient simulations. Our algorithm can reduce
subthreshold leakage by upto 15% with a minor degradation in
performance, compared to a floorplanning process that does not
model leakage. We also show the importance of modeling whites-
pace during floorplanning and its impact on leakage savings.

1. Introduction and motivation

With scaling of technologies, leakage power takes up increas-
ing fractions of the total power of a design [2]. As is predicted
by the ITRS [13], this trend is further exacerbated in sub-100nm
technologies due to increased device densities leading to a larger
number of leaky devices and hence greater power densities. Expo-
nential interdependence of subthreshold leakage on temperature
can further cause problems like thermal runaway. These factors
not only challenge circuit designers of mobile applications but also
increase packaging costs.

Microarchitecture floorplanning has gained increased impor-
tance over the last few years due to its ability to exploit lateral con-
duction to reduce on-chip temperatures of the core blocks. In [12]
the authors present HotFloorplan, a floorplanning tool to reduce
the maximum on-chip temperature. This is done by modeling the
chip as a network of thermal resistors using HotSpot [9], comput-
ing the steady state temperature of each block of the floorplan dur-
ing the simulated annealing based floorplanning process and in-
corporating the maximum temperature of the floorplan in the cost
function formulation. The authors in [8] perform a similar compu-
tation but instead of detailed thermal models use power densities
as a measure of the temperature of the block. Although reduc-
ing maximum on-chip temperature does play an important role in
reducing packaging costs, it does not directly tackle the problem
of leakage reduction. This is because a larger module having a

*This work was partly supported by a grant from DARPA under con-
tract number N66001-04-8909

978-3-9810801-2-4/DATEQ07 © 2007 EDAA

lower temperature than a smaller module having a higher temper-
ature may dissipate more leakage power. This is very possible
in current day microprocessors which employ large caches to im-
prove performance. Also, the phenomenon of thermal runaway
cannot be addressed directly using such a cost formulation. The
authors in [16] explore different architectures via floorplanning to
achieve a given performance objective with certain thermal con-
straints. In [5] the authors present a clustered microarchitecture
wherein instruction scheduling is applied to control the average
temperature of the chip thereby also targeting leakage reduction.
Although all these works use temperature in their floorplanning
objective, they do not employ accurate models of subthreshold
leakage dependence on temperature which could pose a serious
limitation given the importance of leakage power dissipation in
future technologies.

This work attempts to reduce the subthreshold leakage power
(hereby referred to as leakage) considering its exponential depen-
dence on temperature by microarchitecture floorplanning. Our
main contribution is in deriving a formulation for capturing the rise
in leakage power of a given floorplan thereby obviating the need
to perform time consuming transient simulations during the floor-
planning process. Our leakage formulation is independent of any
model used to describe leakage power dissipation in a transistor.
We call this the transient model. A simpler formulation depen-
dent on the leakage power model is also explored and is shown to
have good fidelity with detailed simulations for a given floorplan.
This is called the simple model. Lastly, we model whitespace in
the floorplan to analyze its impact on reducing leakage power.

The rest of this paper is organized as follows. In Section 2
we explain the overall flow of our leakage reduction methodol-
ogy briefly describing the tools used for thermal simulation and
give the transistor leakage model used for accurate computation
of leakage power. Section 3 details our leakage aware floorplan-
ner deriving the transient formulation for leakage power, a simpler
model dependent formulation and the whitespace modeling algo-
rithm. Section 4 provides the experimentation results followed by
the conclusion in Section 5.

2. The flow of our method

Our floorplanning framework revolves around the non-slicing
floorplanner Parquet [1]. The overall flow of our methodology is
shown in Figure 1 with a brief description given below.

Thermal profiling using detailed instruction level simulations to
obtain average dynamic and leakage power numbers for the
different microarchitecture blocks.

PTScalar - (a) Get avg. block Dyn. power
(b) Transient simulations for avg. block
leakage power.

Statistical DoE - Compute factor weights
for architectural busses.

Build HotSpot block thermal model.
Compute Leakage cost with our leakage
formulation and profiled power numbers.

Find floorplan bus latencies. Performance
cost computed with profiled factor weights.

Transient simulations for leakage power.

Figure 1. Overall flow of our leakage reduction and
evaluation methodology.

Architectural profiling with statistical Design of Experiments
(DoE) to reduce the number of simulations and gauge the im-
pact of microarchitectural busses on performance [11]. We
compute factor weights for each critical microarchitecture
bus.

Floorplanning using Parquet to include leakage and performance
costs. The input to our floorplanner consists of the profiled
average powers and factor weights computed above. Tem-
perature is computed using the block model in HotSpot. The
leakage is computed according to two formulations

- Leakage power model independent transient formu-
lation: This captures the interdependence of leakage
on temperature without performing expensive transient
simulations during the floorplanning phase.

- Leakage power model dependent simple formulation:
This is derived from the transient formulation and de-
pends on the leakage power model used.

Evaluation of the optimized floorplan using detailed instruction
level transient simulations and the HotSpot grid model to
compute the leakage power.

The following sections elaborate on each of these steps in the over-
all flow.

2.1. Architecture profiling and thermal
modeling

We run our leakage reduction formulation on a microarchitec-
ture based on the Alpha 21264 design scaled down to 130nm.The
configuration details for each block of the microarchitecture are
shown in Table 1. Only the core blocks are floorplanned and the
L2 cache is wrapped around the core so as to obtain a square die
of side 15.9mm.

Prior to floorplanning, we compute the average dynamic power
consumption of each block using the PTScalar framework de-
scribed in [10]. The idea is similar to WATTCH [3] wherein during

Block Name

Description

Register Update Unit(RUU) size

16 Instructions

Load Store Queue(LSQ) size

8 Instructions

Fetch queue size

4 Instructions

Issue width

4 Instructions / cycle

Decode width

4 Instructions / cycle

Commit width

4 Instructions / cycle

Integer ALU (IALU)

3 adder and 1 multiplier unit

Floating point ALU (FPALU)

1 adder and 1 multiplier unit

Branch predictor

Combined, Bimodal with 2K entries and 2
level with 1K entries and 8-bit history

Instruction TLB (ITLB)

64 entry fully associative with 30 cycle
miss penalty

Data TLB (DTB)

128 entry fully associative with 30 cycle
miss penalty

Branch Target Buffer

512 entries and 4-way associative

L1 Data cache

16KB, 4-way set-associative, with 32B
blocks and 1 cycle latency

L1 Instruction cache

16KB, direct mapped, with 32B blocks and
1 cycle latency

L2 cache

256KB, 4-way set-associative, with 64B

blocks and 6 cycle latency

Table 1. Microarchitecture configuration

each simulation cycle the number of accesses to every block in the
microarchitecture is monitored to compute its activity, which is
then used to calculate its dynamic power.

‘We conduct profiling runs for a set of 10 Spec2000 [14] bench-
marks consisting of 5 integer (bzip2, gcc, gzip, crafty, twolf) and 5
floating point benchmarks (mesa, art, mgrid, swim, equake). The
benchmarks are run for 500 million instructions after an initial ar-
chitectural warm up period of a 100 million instructions in order
to avoid any cold start effects. We also allow an additional thermal
warmup of 200 million instructions before monitoring any temper-
ature dependent statistics. The main purpose of these simulations
is to arrive at floorplan (i.e. temperature) independent average
powers dissipated by each of the blocks assuming the instruction
mix covers a wide range of applications.

We use HotSpot [9] for thermal modeling in our overall flow.
HotSpot uses the well known duality between thermal power dis-
sipation and current flow in an electrical network by constructing
an RC model of resistors and capacitors. The equation governing
heat dissipation in a thermal system is given by

CL4+GT = P 1)

where G and C' are the thermal conductance and capacitance ma-
trices respectively, T is the temperature vector and P is the power
vector giving the temperature and power at each node in the ther-
mal RC' network respectively. Transient simulations for leakage
power computation are performed by integrating Equation (1) over
fixed size intervals using HotSpot. The leakage numbers are used
as weighting constants when computing the leakage penalty using
the simple model because different types of blocks (for instance
logic vs memory) having the same area and temperature consume
different amounts of leakage power.

During floorplanning each block is represented by a node in
the RC network. This is referred to as the block model in [12] and
is used for its computatational efficiency inside the floorplanning
optimization loop.

Once we obtain an optimized floorplan the evaluation phase
consists of running detailed simulations on all 10 benchmarks for
500 million instructions after an architectural warmup of 100 mil-
lion instructions and a thermal warmup of 200 million instructions.
Similar to the profiling phase, we use HotSpot’s grid model [12]
for better accuracy at the cost of increased runtime.

‘ IntReg ‘

‘ FPReg

Figure 2. Busses modeled for performance evaluation.
The fetch unit is considered part of IL1.

2.2. Performance modeling

One measure of performance during floorplanning is the widely
used half perimeter wirelength metric (HPWL). However, as
pointed out in [12] and [11], since this metric lacks the notion of
criticality of a wire, floorplans with smaller total wirelength may
have a worse performance than those with larger HWPL.

As leakage reduction tends to create whitespace between
blocks in a floorplan, which in turn hurts performance, we wire-
pipeline long busses to avoid large performance penalties in the
microarchitecture. Towards this goal the authors in [6] consider
both the architectural and physical design spaces in their floor-
planning tool to devise an optimal floorplan meeting the input
constraints. The work in [11] uses a statistical Design of Ex-
periments (DOE) approach so as to avoid running a prohibitively
large number of experiments to gauge the impact of each microar-
chitecture bus on performance. We use the weights in [11] (also
called factors) obtained using the DOE approach for critical busses
in the floorplan to evaluate their impact on performance. Briefly,
the authors use a 2 level, resolution III fractional factorial design
wherein busses are assigned latencies from 0 to their maximum
value. The SimpleScalar simulator [4] is modified to incorporate
the additional latencies on the wires and a set of experiments' per-
formed to determine the weights of the busses. For our purposes
we consider the 17 critical busses as shown in Figure 2. Multiple
factor interactions are ignored in our work since they are negligi-
ble compared to single factor interactions. The main assumption
made here is that these factors affect the system response mono-
tonically. The wirelength term during floorplanning is computed
as the sum of weighted latencies, i.e. HPW Lw = Y " w; - i,
where w; is the factor weight and [; is the latency of bus . The
latency of a particular wire is determined based on the microarchi-
tecture frequency of operation fed to the floorplanner. Although
the main thrust of this work is not in modeling performance we
intend to show savings in leakage through floorplanning with a
tolerable loss in performance.

3. Floorplanning details

Floorplanning is performed using Parquet v4.0 [1], a simulated
annealing based floorplanner, in fixed-outline mode with a given
bound on the total whitespace. The individual blocks can have
aspect ratios between 1 and 3 whereas the overall microarchitec-
ture core aspect ratio is provided as an input to the floorplanner.

lgiven N factors, the number of experiments run is the nearest highest
power of 2, i.e. for 17 factors we run 32 experiments

We have added two temperature-specific moves to the annealing
move-set, presented in Section 3.2. The following annealing cost
function is used
C = a- A+pB-HPWLw
= +y-Lp+(1-a-f-19) AR ¢))

where A is the summation of the excess width and height of the
floorplan, AR is the aspect ratio, H PW Ly is the weighted sum
of bus latencies as given in Section 2.2 and Lp is a term to capture
the leakage power dependence on temperature. Section 3.1 shows
how Lp is calculated. The coefficients o, 3 and y are used to
weight each of the cost terms.

3.1. Transient formulation independent of
leakage power model

As mentioned previously, each block in the floorplan is mod-
eled as a node in the thermal network given by Equation (1). Ide-
ally, the power dissipated at any node in the network is a constant.
However, considering leakage power, the total power dissipated at
any node is now a function of the temperature 7". One method
of solving this system is to assume a constant power P; at time ¢
for a given time step At, integrate Equation (1) over that interval
and compute the temperature 7" + AT at the new time ¢ + At.
This can then be used to update the power at time step P;4+a¢+ and
we repeat the process till convergence is achieved. Performing
such a transient analysis is highly time consuming at each step of
floorplanning and is only done during thermal profiling and leak-
age evaluation as described in Section 2.1. We avoid such expen-
sive iterative computations with an approximation to the leakage
power.

Rewriting Equation (1) with the temperature dependence of
power gives
ar — Cc'PT)-C'GT 3)

dt

In the above equation P(T') is the power dissipated at tempera-
ture 7. Writing the finite difference approximation for the above
equation for time At we obtain

AT 1 —1
Ar = O PMm)-CcTGn
=>T, = T+ (CT'PM)-CT'GT) AL %)

where T; and T are the block temperatures at times ¢ and ¢ + At
respectively. Expanding P(7T') in terms of its first order Taylor
series assuming a small increment in temperature AT we get

P(T +AT) = P(T)+%~AT
S PT) = PM)+5 | (B-T) ©®
T

Combining Equations (4) and (5) and writing them in matrix form
we obtain

P(Tz) = P(T1)+J

ct {P(Tl) —GTl] At (6)

T

where J| is the jacobian of power P wrt temperature 7' evalu-

T
ated at 7. Let 11 be the temperature attained with blocks dissi-
pating their average dynamic power Pp.

GTh = Pp
ie. i = RPp)

where R = G~ ! is the transfer thermal resistance matrix [15].
Also let Pr,(T1) = P(T1) — Pp be the leakage power dissipated
at 1. Using this in Equation (6) we obtain

Pp(Ty) — PL(Th) -1 _
—— = J TlC’ P(Th)-GTh
APr, 1
=0 J TlC Pr(Th) (®)

Equation (8) gives us the “temperature dependent” increase in
leakage power over time At given the average dynamic power dis-
sipation Pp. We use this as the formulation for leakage power,
Lp, in Equation (2). The formulation is unable to capture a
highly non-linear rise in leakage power e.g., with temperatures
high enough to facilitate thermal runaway. However, given the
large time constants of thermal power dissipation compared to the
frequency of operation of the chip, we can reasonably assume a
linear increment in leakage power. Since we try to minimize Equa-
tion (8) during floorplanning, this also reduces the temperature of
the blocks helping to avoid thermal runaway. Equation (8) gives us
the increment in power which could be used in rejecting floorplans
with thermal runaway. Performing transient simulations would re-
quire an additional runtime overhead of O(n - N?) where n is
the number of iterations to converge and N is the total number of
blocks in the floorplan.

3.2. Heuristic moves

We perform two additional kinds of moves in addition to those
provided by Parquet described below.

1. Temperature Move: We randomly choose among the top 5
hottest and coolest blocks in the floorplan and swap them.

2. Power Move: Consider the transfer thermal resistance ma-
trix in Equation (7). Element R;; corresponds to the increase
in temperature of block ¢ for a unit change in power of block
j,ie. R;; - P; gives us the influence of block j on block ¢,
where P; is the power dissipated by block j. We randomly
choose a block 7 among the top 5 most leaky blocks and place
it next to the block exerting the least influence on block ¢, i.e.
the block with the minimum R;; - P; value.

3.3. Simple formulation dependent on leak-
age power model

The subthreshold leakage power model for a particular mi-
croarchitecture block is given below [10]

PuT) = AT?e () ©)

where Pp,(T) is the leakage power dissipated at temperature T', A
is proportional to the area of the block, V4 is the supply voltage
magnitude and « and (3 are empirical constants whose values de-
pend on whether the block is a functional unit such as IALU or a
memory unit such as a cache. Using the transient formulation we
recompute Equation (8) as

a Viaa+8

AAPtL — C—1A2T2672(%

) [2T + aVaq + 6]

(10)
The thermal capacitance of a block is directly proportional to its
area. Expanding the exponential in its Taylor series and observing

© ()

Figure 3. Execution of sweepline on a toy example.
Disjoint dotted lines are whitespace intervals showing
the advance of the sweep-line at event points. A, B, C
are blocks and 1-8 are whitespaces filled in. Two event
points between (c) and (d) are not shown.

the dominant term gives us a cubic polynomial in 7". We therefore
use the cubic formulation shown below

Lp = kAT? (11)
where k is a proportionality constant obtained using the average
leakage power dissipation of the blocks during their profiling runs.
Intuitively the model makes sense since larger blocks (i.e. more
leaky transistors) with higher temperature dissipate more leakage
power. The proportionality constant accounts for the fact that
different types of blocks having the same area dissipate differ-
ent amounts of leakage power at the same temperature. Equa-
tion (11) offers the advantage that it is simple to calculate com-
pared to (8) which incurs an additional overhead in computing the
leakage powers and the jacobian for each block at temperature 7.
Note that term 7" is calculated using HotSpot and does indeed con-
sider the interaction between neighboring modules.

3.4. Whitespace modeling

Parquet uses a non-slicing sequence pair representation to per-
form the floorplanning. Since whitespaces influence the tempera-
ture distribution of the chip, they need to be accounted for during
the floorplanning process. In [8] which also uses Parquet, the au-
thors increase the area of certain blocks to fill the whitespace. It
is not clear to us as to how this could be done in a non-slicing
floorplan. Although our work does not directly exploit the avail-
able whitespace during fixed die floorplanning, we need to model
whitespace for the annealer engine to evaluate the temperature dis-
tribution (leakage cost) of the floorplan accurately. For this pur-
pose we model whitespaces as additional blocks in the floorplan
with zero power dissipation. Our algorithm for computing whites-
paces is based on the sweepline paradigm using a balanced inter-
val tree [7] and takes as input the blocks in the floorplan, their total
number and the width W and height H of the floorplan.

Figure 3 shows the sweepline execution on a small example.
Event point 1 creates whitespace block 1 and two new whites-
pace intervals above and below block B(Figure 3(a)). Event
point 2 creates a new whitespace interval to the right of block
A(Figure 3(b)). At event point 3 we find overlaps creating whites-
pace blocks 2 and 3 and two new whitespace intervals, one above
block C' and the other between blocks B and C(Figure 3(c)). The
runtime complexity of our algorithm is O(NlogN 4+ K) where N

1.35

1.25 1
1.15 A

1.05

0.95 1 —— Actual Leakage
0.85 1 -#- Transient Formulation
Estimated Formulation

0.75

1 2 3 4 5
Figure 4. Normalized fidelity plots for eqn. (8) ‘tran-
sient’, eqn. (11) ‘estimated’ and accurate transient simu-
lations ‘accurate’. Floorplans are numbered in increas-
ing value of ‘accurate’ leakage for better visualization.

is the number of blocks in the floorplan and K is the number of
whitespace blocks (which is at most linear in N).

4. Results

We ran our experiments on an Intel® 3.2 GHz CPU with 2GB
RAM. To evaluate the leakage power of each floorplan, detailed
instruction level transient simulations were performed for all 10
benchmarks for 500 million instructions after architectural and
thermal warmups of 100 million and 200 million instructions re-
spectively. Each run of Parquet chooses the best among 10 gener-
ated floorplans.

4.1. Fidelity of our formulation

To compute the fidelity of our leakage cost function used by
the floorplanner in evaluating different floorplans in terms of their
overall leakage cost, we generate a set of 5 floorplans (optimized
with different leakage weights) and compute their leakage accord-
ing to Equations (8) and (11). We only chose to compare with
accurate leakage power simulations of benchmark bzip2 due to its
higher average chip temperature and leakage power compared to
the other benchmarks. We call the leakage obtained through these
formulations the transient, estimated and actual leakage respec-
tively. Figure 4 shows normalized plots of the three formulations
with respect to the leakage of floorplan 1 for each formulation. As
can be seen, all three curves track each other well with the tran-
sient formulation having high sensitivity to floorplans with differ-
ent leakage. Moreover, the plot also shows that we can use our
simple estimation method with low computational complexity and
yet achieve similar results compared to the transient formulation.

4.2. Leakage savings

Figure 5 compares the gains in leakage of two floorplans, one
with (transient case) and the other without (base case) leakage op-
timization. We compare their leakage and performance (in terms
of CPI) for each of the 10 benchmarks.

From the figure we observe that leakage optimization results in
15% savings on an average with a performance penalty of under
5%. Both floorplans (i.e. with and without leakage consideration)
were constrained to have a maximum whitespace of 10%. We
also observe from the figure that optimizing the floorplan with the
simple formulation from Equation (11) (called the estimate case)
results in similar leakage savings.

105 O Normalized Base Case M Transient O Estimate [CPI
14
0.95
0.9
0.85
0.8 1
0.75 T T
& ¢ R oS S e NI &
‘0"'& B Qy o‘é &e & > &éé‘ %q\\ o‘?&

Figure 5. Normalized graphs of the leakage power and
CPI in comparison with a floorplan optimized without
leakage called Base Case. Y-axis begins at 0.75.

1.05

[Base Case M Leakage [0 Temperature

14
0.95
0.9 1
0.85
0.8 q
0.75 +

&S TGS

Figure 6. Normalized graphs of leakage power with
maximum temperature and transient formulation as ob-
jective functions compared to a base floorplan without
leakage optimization. Y-axis begins at 0.75.

4.3. Maximum temperature reduction

Similar to [12] and [8], most works on thermal-aware floor-
planning aim at minimizing the maximum temperature of the
floorplan. As mentioned previously, the same cannot be applied
to the case of leakage minimization since large blocks like the
data caches although have a lower temperature could have more
leakage due to their larger area. This could be the result of, for
instance, placing high temperature modules next to the large leaky
modules. Figure 6 compares the leakage savings when the ther-
mal objective function is to reduce the maximum chip temperature
as opposed to our leakage objective in Equation (8). The figure
shows that temperature reduction results in floorplans with an av-
erage leakage about 4% more than the case with leakage optimiza-
tion. We believe this difference will increase for lower technology
nodes, which we will investigate in our future work. Additionally,
as discussed in Section 3.1, we have no way of detecting ther-
mal runaway in the floorplan with such an objective function. It
must be noted that we observed similar reductions in peak tem-
perature of these two formulations compared to the floorplan op-
timized only for performance, indicating that our formulation in
Equation (8) is effective in reducing peak chip temperature.

4.4. Whitespace considerations

We perform floorplanning with 10% and 15% whitespace(WS)
and compute the leakage using transient simulations. Figure 7
shows the results. It also shows the impact of not modeling whites-
pace (No WS Modeling) during floorplanning. Negligible differ-
ences are observed in leakage savings of floorplans with 10% and

105 770 100 WS Modeling B 15% WS Modeling ONo WS Modeling
1

0.95 A

0.9 A

0.85 -

0.8

075 HoMLL KWL ERT I8 | C W F LG |
@&ﬂ’ $ ¢8 0_\&6 @o\g‘ 6&%“’ N &Q‘é@ %4;»‘: 0\:{$

Figure 7. Normalized graphs showing the impact of
WS on leakage reduction. Bar 1, 2 and 3 are leakge with
10%, 15% and no WS modeling during floorplan opti-
mization. Y-axis begins at 0.75.

Floorplan | Leakage L2 cache | Whitespace | Runtime
scheme Modeled partitioned | modeled (secs)
A No No No 0.24

B Yes No No 19

C Yes Yes No 235

D Yes Yes Yes 520

Table 2. Runtimes for different floorplanning
schemes

15% whitespace. Moreover, modeling whitespace (as blocks with
zero dynamic power dissipation) has little impact on the overall
leakage savings. We believe the primary reason for such behavior
is because the simulations were performed with an ambient tem-
perature of 40°C' which is an optimistic estimate of the temper-
ature inside a CPU tower. Our simulations resulted in maximum
block temperatures of about a 100°C'. Due to its exponential de-
pendence, small differences in temperature at higher temperature
ranges result in larger changes in leakage power than large dif-
ferences in temperature at lower temperature ranges. This also
points to the important fact that increased whitespace in the floor-
plan yields diminishing leakage power savings when the average
chip temperature is not very high.

4.5. Runtimes

Table 2 lists the runtimes of various schemes employed in
the floorplanning process. Scheme A only models performance.
Scheme B models leakage of the various blocks in the floorplan
using Equation (8) but no consideration is given to whitespaces.
Schemes C and D also model leakage but unlike B they partition
the surrounding L2 cache into smaller blocks for better thermal
modeling accuracy. Scheme D additionally includes whitespace
modeling. As observed in Section 4.4 the difference between C
and D in terms of leakage is negligible. Comparing B and C' we
found that partitioning the L2 cache into smaller blocks does not
impact the overall results but runtime increases considerably due
to the increased overhead of thermal modeling and leakage com-
putations. However, considering the fact that L2 leakage increases
with future technology nodes, schemes that improve its thermal
modeling will be essential to accurate leakage cost computation.

5. Conclusions and future work

This paper presents new formulations for subthreshold leakage
power reduction enabled via floorplanning. Our results show an

improvement on average of 15% compared to the case when no
leakage power optimization is performed, with a tolerable loss in
performance. We show that our leakage formulation has good fi-
delity with transient simulations justifying its use during the floor-
planning phase. We also show the effect of increasing whitespace
in the floorplan. As future work, we would like to explore floor-
planning with different microarchitectures and smaller technology
nodes where leakage power dissipated is a larger fraction of the
system dynamic power.

6. Acknowledgements

We would like to acknowledge Vidyasagar Nookala [11] in pro-
viding us with factor weights used in performance estimation.

References

[1] S. Adya and I. Markov. Fixed-outline floorplanning: enabling hier-
archical design. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 11(6):1120-1135, Dec 2003.
[2] S. Borkar. Design challenges of technology scaling. Micro, IEEE,

19(4):23-29, Jul-Aug 1999.)

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA '00:
Proceedings of the 27th annual international symposium on Com-
puter architecture, pages 83-94, New York, NY, USA, 2000. ACM

Press.
[4] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0.

SIGARCH Comput. Archit. News, 25(3):13-25, 1997.
P. Chaparro, J. Gonzalez, and A. Gonzalez. Thermal-aware clustered

microarchitectures. In ICCD ’04: Proceedings of the IEEE Interna-
tional Conference on Computer Design (ICCD’04), pages 48-53,

Washington, DC, USA, 2004. IEEE Comé)uter Society.
[6] J.Cong, A. Jagannathan, G. Reinman, and M. Romesis. Microarchi-

tecture evaluation with physical planning. In DAC "03: Proceedings
of the 40th conference on Design automation, pages 32-35, New

York, NY, USA, 2003. ACM Press.
[7]1 T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.

The MIT Press, Cambridge, MA, 1989.
[8] Y. Han, 1. Koren, and C. A. Moritz. Temperature aware floor-

planning. In Second Workshop on Temperature-Aware Computer

Systems(TACS-2), 2005.
[91 W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan,

K. Skadron, and M. Stan. Hotspot: a compact thermal modeling
methodology for early-stage vlsi design. Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, 14(5):501-513, May

2006.
[10] W. Liao, L. He, Lepak, and K.M. Temperature and supply voltage

aware performance and power modeling at microarchitecture level.
Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 24(7):1042—1053, July 2005.
[11] V. Nookala, Y. Chen, D. J. Lilja, and S. S. Sapatnekar.

Microarchitecture-aware floorplanning using a statistical design of
experiments approach. In DAC "05: Proceedings of the 42nd annual
conference on Design automation, pages 579-584, New York, NY,

USA, 2005. ACM Press.
[12] K. Sankaranarayanan, S. Velusamy, M. Stan, and K. Skadron. A

case for thermal-aware floorplanning at the microarchitectural level.

The Journal of Instruction-Level Parallelism, 7, Oct 2005.
[13] SIA. International Technology Roadmap for Semiconductors, 2001.
[14] SPEC. Standard Performance Evaluation Corporation CPU2000

Benchmarks.
[15] C.-H. Tsai and S.-M. S. Kang. Standard cell placement for even

on-chip thermal distribution. In ISPD ’99: Proceedings of the 1999
international symposium on Physical design, pages 179-184, New

York, NY, USA, 1999. ACM Press.
[16] Y.-W. Wu, C.-L. Yang, P-H. Yuh, and Y.-W. Chang. Joint explo-

ration of architectural and physical design spaces with thermal con-
sideration. In ISLPED ’05: Proceedings of the 2005 international
symposium on Low power electronics and design, pages 123-126,
New York, NY, USA, 2005. ACM Press.

[5

—

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

