
Fast and Accurate Routing Demand Estimation
for Efficient Routability-driven Placement

Peter Spindler and Frank M. Johannes
Institute for Electronic Design Automation, Technische Universitaet Muenchen, Munich, Germany

Abstract— This paper presents a fast and accurate routing demand
estimation called RUDY and its efficient integration in a force-directed
quadratic placer to optimize placements for routability.

RUDY is based on a Rectangular Uniform wire DensitY per net and
accurately models the routing demand of a circuit as determined by the
wire distribution after final routing. Unlike published routing demand
estimation, RUDY depends neither on a bin structure nor on a certain
routing model to estimate the behavior of a router. Therefore RUDY is
independent of the router.

Our fast and robust force-directed quadratic placer is based on a
generic demand-and-supply model and is guided by the routing demand
estimation RUDY to optimize placements for routability. This yields a
placer which simultaneously reduces the routing demand in congested
regions and increases the routing supply there. Therefore our placer
fully utilizes the potential to optimize the routability. This results in the
best published routed wirelength of the IBMv2 benchmark suite until
now. In detail, our approach outperforms mPL, ROOSTER, and APlace
by 9%, 8%, and 5%, respectively. Compared by the CPU times, which
ROOSTER needs to place this benchmark, our routability optimization
placer is eight times faster.

1. Introduction
Physical design produces the geometrical data for the fabrication

of a VLSI circuit based on the netlist of the circuit. Traditionally, this
process is partitioned into two steps: placement and routing. In order
to place routable circuits, these two steps have to be combined by
estimating the routability during placement. Since the next generation
VLSI circuits will have tens of millions modules, (i) fast and accurate
techniques are needed to estimate the routing demand in placement
and (ii) efficient methods are needed to optimize routability in
placement.

Different solutions for both problems (i) and (ii) appeared in the
last few years:

(i) Estimation of the Routing Demand
All published methods to estimate the routing demand divide the chip
area into bins and estimate the routing demand in each bin.

a) Routing model
A common technique to estimate the routing demand is to use a
certain routing model, which provides possible routes for each net.
The number of possible routes crossing the border of a bin reflects its
routing demand. The authors of [1] present a simple routing model
which just uses the border of the bounding box of a net as possible
routes. Since the results in [2] show that this simple model does not
correlate with the behavior of a router, a more accurate routing model
is proposed in [3], which breaks down multi-pin nets into two-pin
connections and models two-pin connections by routes with different
number of bends. This probabilistic routing model is improved in [4],
and [5] by adjusting its result to the result of a router. The authors of
[6] state that one- and two-bend routes between a two-pin connection
are enough.

b) Pin density
The estimation technique based on a routing model has problems if a
net does not pass the border of a bin. Therefore [7] and [8] improve
the estimation of routing demand by utilizing the number of pins
within a bin.

c) Rent’s Rule
A method to estimate the routing demand without a routing model
is proposed in [9], [10], and [11] by applying Rent’s rule.

d) Distribution of number of nets per bin
Another technique to estimate the routing demand is the analysis of

the distribution of the number of nets per bin [12].
(ii) Routability optimization in placement
Unroutable circuits have congested regions where the routing demand
of the nets is higher than the supply by the routing layers. Hence
there exist two main approaches to optimize placement for routability.
The direct approach reduces routing demand in congested regions by
moving those modules which are connected to the nets causing the
overflow in the routing demand. The indirect approach is based on the
fact that the lowest routing layer is usually blocked by the modules.
Thus the indirect approach increases the routing supply in congested
regions by reducing the module density there.

The direct approach is often used as a post-process to tune
an already placed circuit for routability. A post-process utilizing
Simulated Annealing is described in [1], [11], and [13]. A flow-based
method is presented in [2], and [14]. Linear programming is used in
[15].

The indirect approach to optimize routability is mostly used during
placement. In [7] and [16], a quadratic placer is described which
inflates the modules in congested regions. The authors of [17] present
a quadratic placer which reduces module density in congested regions
by growing these regions. In [18], a min-cut placer is shown, which
allocates white space, i.e. reduces module density, during top-down
placement in congested regions.

State-of-the-art placers with routability optimization
mPL [19] is a multilevel analytical placer based on non-linear
optimization and estimates the routing demand based on a two-pin
connection routing model developed in [20]. Routability is achieved
in global placement by moving certain modules to reduce the routing
demand. In final placement, a white space allocation (WSA) method
is used based on recursively partitioning the placement area and shift-
ing the cut lines according to the routing demand. Thus mPL utilizes
the direct approach during placement and the indirect approach after
placement.

ROOSTER [21] as a feature of Capo 10 is a min-cut placer. It
models nets by Rectilinear Steiner Minimal Trees [22], estimates
the routing demand by a probabilistic routing model [6] and utilizes
the white space allocation (WSA) method of [19] during top-down
placement and in final placement. Therefore ROOSTER applies the
indirect approach to optimize routability.

APlace [23] is a multilevel analytical placer based on non-linear
optimization and estimates the routing demand by a probabilistic
routing model [4]. Routability is optimized during placement by
decreasing module density in congested areas, i.e. by the indirect
approach.

Our estimation of the routing demand based on RUDY, as presented
in this paper, is characterized by the following enhancements to other
estimation techniques:
• RUDY is defined per net by a Rectangular Uniform wire DensitY.
• RUDY models the wire distribution over the chip area.
• RUDY depends neither on a bin structure nor on a certain routing

model.
• RUDY estimates the real routing demand very accurately.
• RUDY needs very low CPU time.

The following properties distinguish our routability-driven place-
ment approach from other approaches:
• Simultaneous application of the direct and indirect technique to

optimize routability, i.e. our placer concurrently reduces the routing

978-3-9810801-2-4/DATE07 © 2007 EDAA

demand as well as it increases the routing supply in congested
regions.

• Convenient and efficient implementation of routability as a
demand-and-supply model in a fast and robust force-directed
quadratic placer.
The rest of the paper is organized as follows: section 2 describes the

routing demand estimation based on RUDY. In section 3 we explain
our force-directed quadratic placer based on a generic demand-and-
supply model. Our routability-driven placement approach together
with some general statements about routability optimization during
placement is described in section 4. Experimental results are provided
in section 5, followed by the conclusion in section 6.

2. Estimation of the Routing Demand
The most common approach to estimate the routing demand is

to utilize a routing model which provides possible routes of a net.
Figure 1(a) shows different routes of a six-pin net if a Rectilinear
Steiner Minimal Tree (RSMT) is used as a routing model. Since
all of these routes have the same minimal length, it is difficult to
predict which one a router will use. Moreover a router will use a
totally different route if one net interferes with another net. Therefore
the estimation of the routing demand based on a routing model
depends highly on how good the actual router is modeled. In addition,
published approaches to estimate the routing demand are based on a
bin structure and therefore have to cope with local uncertainty which
arises if a net does not cross a bin border.

(a) Six possible rectilinear Steiner
minimal trees

wn

density dn:

(xn, yn) Wire length Ln

hn

Uniform wire

Wire width p

dn =
Ln·p

wn·hn

dn =
Wire area

Net area

(b) RUDY of the net n

Fig. 1. Six-pin net: (a) six possible rectilinear Steiner minimal trees and (b)
our estimation of the routing demand by RUDY (Rectangular Uniform wire
DensitY)

To solve these problems of traditional estimation approaches, we
present RUDY. RUDY stands for Rectangular Uniform wire DensitY
and is based on two assumptions: (1) All routers will try hard to route
each net within the rectangle enclosing all its pins. (2) Since there
are thousands and even millions of nets in a modern VLSI circuit,
the enclosing rectangle of one net is small compared to the chip’s
dimension and the routing demand of one net is marginal compared
to the routing demand of the circuit. Thus it is not necessary for a
single net to predict its routing demand accurately within its enclosing
rectangle.

In detail, the RUDY is defined per net n = 1, 2, 3, ..., N by a
uniform wire density dn within the enclosing rectangle of net n.
This wire density dn is the ratio of the wire area WAn and the net
area NAn:

dn =
WAn

NAn
(1)

The RUDY of one single six-pin net n is displayed in figure 1(b).
The enclosing rectangle of the net n is characterized by the lower

left corner (xn, yn), the width wn and the height hn. Thus the net
area NAn is defined by NAn = wn · hn.

The wire area WAn is calculated by the wire length Ln times the
wire width p: WAn = Ln · p. The wire width p is defined by the
average wire-to-wire pitch p̄ and number of routing layers l: p = p̄

l
.

The wire length Ln is the estimated routed wire length of the net
and can be calculated for example by the Half Perimeter Wirelength
(HPWL) or by the length of the Rectilinear Steiner Minimal Tree

(RSMT). Using the above mentioned definition of the enclosing
rectangle of the net n, the HPWL of the net n is wn + hn. Based
on the observation in section 4 (see also figure 3) that the HPWL
correlates to the routed wirelength as good as the RSMT length does,
but that the HPWL is determined much faster [22], we will use the
HPWL as the estimation for the routed wirelength Ln.

To calculate the estimation of the routing demand based on the
RUDY, a rectangle function R(x, y; xll, yll, w, h) is needed, which
is defined in the x-y-plane and has the parameters lower left corner
(xll, yll), the width w, and the height h:

R(x, y; xll, yll, w, h) =

1 if 0 ≤ x − xll ≤ w ∧ 0 ≤ y − yll ≤ h

0 else
(2)

The estimation of the routing demand Ddem
rout(x, y) of N nets using

RUDY is the superposition of the rectangle functions of all nets,
weighted by the wire density dn of each net:

RUDY: Ddem
rout (x, y) =

NX
n=1

dn ·R(x, y; xn, yn, wn, hn) (3)

To compare RUDY with another routing demand estimation ap-
proach, we used the utility “CongestionMaps Plotter” of the UMICH
package [24]. This utility is an implementation of the common routing
demand estimation approach of Westra et al. [6], which breaks down
multi-pin nets into two-pin connections and models the possibles
routes between two-pin connections by one- and two-bend routes. To
evaluate the quality of RUDY and the quality of Westras’ approach,
we calculated the error between both estimations and the real routing
demand. The real routing demand is defined by the wire distribution
after final routing with Cadence WarpRoute. The estimation error was
determined by overlaying the estimated and the real routing demand
by a fine grid, computing the wire usage in every bin and subtracting
the estimated wire usage from the real wire usage in every bin. Table
1 shows the comparison between RUDY and Westras’ approach.
Since the standard deviation σRUDY and σWestra of the estimation errors
of both approaches are almost the same, RUDY estimates the real
routing demand as good as the estimation approach of Westra et
al. This demonstrates that it is not necessary to predict the route
of each single net as done by Westras’ approach but it is sufficient
to model the routing demand of each net by a Rectangular Uniform
wire DensitY, i.e. RUDY. Therefore the above mentioned assumptions
(1) and (2) of RUDY are justified by experiments. Moreover table
1 shows that RUDY is almost 11× faster than the estimation by
Westras’ approach.

Figures 2(a) and (c) show the estimation of the routing demand by
RUDY of two circuits of the IBMv2 benchmark suite [25]. The real
routing demand of these circuits are displayed in figures 2(b) and (d).
Comparing the figures of RUDY with the figures of the real routing
demand demonstrates that the regions with high routing demand (dark
color) and the regions with low routing demand (light color) are well
predicted by RUDY.

In summary, RUDY is a novel, very efficient, and accurate esti-
mation of the routing demand, which depends neither on a certain
routing model nor on a bin structure. Moreover RUDY is a generic
estimation method for the routing demand, which can be integrated
in a placer, as described in section 4, as well as it can be integrated
in a router to drive routing by congestion similar to the approach
described in [26].

3. Force-directed Quadratic Placement
We use the force-directed quadratic placer as described in [27]

because it is fast, robust and can be extended in a convenient way to
optimize circuits for routability.

Quadratic placers in general are based on the representation of the
circuit’s netlist by a binary graph B(M, E), with the set of edges E
connecting pairs of modules in set M. The Euclidean length of each
edge e ∈ E is weighted, squared and added up to the cost function

RUDY Westra et al. [6]
Circuit # Nets σRUDY CPU [s] σWestra CPU [s]

ibm01e/h 11.753 0.23 0.05 0.23 0.46
ibm02e/h 18.429 0.29 0.08 0.24 0.83
ibm07e/h 44.394 0.18 0.15 0.18 1.84
ibm08e/h 47.944 0.18 0.20 0.17 2.18
ibm09e/h 50.393 0.19 0.19 0.20 2.03
ibm10e/h 64.227 0.19 0.29 0.19 2.86
ibm11e/h 67.016 0.19 0.24 0.19 2.59
ibm12e/h 68.376 0.19 0.29 0.18 3.25

Average 1.00 1.00 0.97 10.66

Table 1. Routing demand estimation by RUDY and by the approach of
Westra et al. [6]. σRUDY and σWestra represent the standard deviation of the

estimation error of RUDY and of Westras’ approach, respectively. All
results are based on circuits of the IBMv2 benchmark suite [25]. Please note

that this benchmark suite has no circuits ibm03e/h-ibm06e/h. The CPU
times were determined on a Pentium 4 running at 3.2 GHz.

(a) ibm01e: Estimation by RUDY (b) ibm01e: Real Routing Demand

(c) ibm12h: Estimation by RUDY (d) ibm12h: Real Routing Demand

Fig. 2. Estimated routing demand by RUDY (a) and (c), the real routing
demand (b) and (d), based on the wire distribution after final routing. White
represents low demand, black represents high demand. The circuits ibm01e
and ibm12h are from the IBMv2 benchmark.

Γ of quadratic placement. Thus the cost function Γ reflects the total
net length in a quadratic metric. Collecting the positions (xm, ym),
m = 1, 2, 3, ..., M of the M movable modules in vectors x and y
gives the matrix-vector notation of the cost function Γ [28]:

Γ =
1

2
xTCxx + xTdx +

1

2
yTCyy + yTdy + const (4)

A net model is applied in quadratic placement in order to represent
the nets of a circuit by just two-pin connections. Traditionally the
clique net model is used, which represents a net by all its possible
two-pin connections. In contrast, we use the BoundingBox net model
of [27], which uses just those two-pin connections of a net, which
are joined to the bounds of the net’s box, i.e. to the bounds of the
rectangle enclosing the net’s pins. The BoundingBox net model has
the major advantage that it expresses the total HPWL accurately in
the cost function Γ of quadratic placement.

To obtain the module positions with minimal total net length, Γ
is differentiated with respect to x and to y and set to zero, which
yields two linear equations for x- and y-direction. The linear equation
in x-direction is:

Cxx + dx = 0 (5)

The y-direction is formulated accordingly and therefore not given
separately in the following.

The two-pin connections between the modules can be interpreted
as elastic springs. Thus (5) is the net force Fnet

x = Cxx + dx,
which attracts the modules resulting in a lot of overlap between

the modules. To reduce the overlap and to spread the modules over
the chip area, force-directed quadratic placement utilizes additional
forces. Our approach utilizes two additional forces [27]: a hold force
Fhold

x and a move force Fmove
x . Furthermore, the modules are spread

iteratively over the chip area. This means that the modules are moved
from the old position x′ to the new position x in each iteration by
the change in the module positions of ∆x = x−x′. The hold force
Fhold

x is defined by Fhold
x = − (Cxx

′ + dx). The move force Fmove
x is

determined by the distribution D(x, y) representing for example the
distribution of the modules on the chip area. Based on this distribution
D(x, y), a potential Φ is calculated by Poisson’s equation:

�Φ(x, y) = −D(x, y) (6)

It can be stated that the potential Φ is high in regions where the
distribution D(x, y) is high and vice versa. Hence the derivative of
the potential Φ can be used for the move force Fmove

x to move the
modules away from high density regions towards low density regions
and thereby reduce the module overlaps.

To calculate the move force Fmove
x the derivative of the potential

Φ is determined at each module position:

Φx =

„
∂

∂x
Φ

˛̨̨
(x′

1,y′
1)

,
∂

∂x
Φ

˛̨̨
(x′

2,y′
2)

, ...,
∂

∂x
Φ

˛̨̨
(x′

M
,y′

M
)

«T

(7)

Then target points x̊ are calculated for each module by x̊ = x′−Φx.
Each module is connected to its target point by a two-pin connection
with weight ẘm, m = 1, 2, 3, ..., M . These weights ẘm can be used
to control the placement process. Altogether, the move force Fmove

x

is calculated by Fmove
x = C̊x (x − x̊). The matrix C̊x is a diagonal

matrix with the weights ẘm of the target point connections as the
entries C̊x = diag(ẘm).

The sum of the net force Fnet
x and the two additional forces Fhold

x

and Fmove
x gives the total force Fx = Fnet

x +Fhold
x +Fmove

x . Setting this
total force to zero yields the following linear system of equations:“

Cx + C̊x

”
∆x + C̊xΦx = 0 (8)

Solving (8) for ∆x gives the new module positions in the current
iteration and can be done numerically by the conjugate-gradient
method.

As mentioned above, the move force Fmove
x is determined by the

distribution D(x, y). This distribution reflects a generic demand-and-
supply system:

D(x, y) = Ddem(x, y) − Dsup(x, y) (9)

If the demand-and-supply is balanced, i.e. the integral over the
distribution is zero

∞Z
−∞

∞Z
−∞

D(x, y) dx dy = 0 (10)

and the demand can be moved by our force-directed quadratic placer,
we can prove that in each iteration the demand is more adapted to the
supply. Thus our placement algorithm converges to a state where the
demand is completely adapted to the supply at each position (x, y):
Ddem(x, y) = Dsup(x, y) for all (x, y).

To spread the modules on the chip with our placement approach,
the distribution D(x, y) has to represent the demand of the modules
and the supply for the modules. The demand Ddem

mod(x, y) of the
modules is the area needed by the modules. Using the rectangle
function R in Eq. (2) and the information that module m has the
center position (xm, ym), width wm, and height hm, the demand
Ddem

mod(x, y) is calculated for the M movable and F fixed modules
by:

Ddem
mod(x, y) =

M+FX
m=1

R

„
x, y; xm − wm

2
, ym − hm

2
, wm, hm

«
(11)

The supply Dsup
mod(x, y) for the modules is the area which the chip

provides for the modules. If the chip has the lower left corner
(xChip, yChip), the width wChip, and the height hChip, the supply
Dsup

mod(x, y) is:

Dsup
mod(x, y) = R(x, y; xChip, yChip, wChip, hChip) (12)

Using this supply, the modules will be spread all over the whole
chip. To reduce the net length in chips with low module utilization
umod, it is better to spread the modules considering an upper limit
dmod,up > umod for the module density. This can be implemented by
setting the module supply Ddem

mod(x, y) to dmod,up in regions where there
is a module demand and to zero elsewhere.

The distribution Dmod(x, y) of the modules is the module demand
minus the module supply:

Dmod(x, y) = Ddem
mod(x, y) − αmod · Dsup

mod(x, y) (13)

The factor αmod is to fulfill (10) if D(x, y) = Dmod(x, y), i.e. to
normalize the supply to the demand.

Although our quadratic placer can produce placements without
module overlap, it is stopped at an iteration where there is only some
small module overlap, because it cannot arrange the modules on the
chip’s rows. Thus our final placer removes the remaining module
overlap and arranges the modules on the chip’s rows. This is done
by placing each module at the next best place according to a certain
cost function. In routability-driven placement we take the movement
as the cost function, to change the placement as little as possible
by the final placer. The final placer is quite fast and the CPU times
presented in the result section 5 include the CPU time of the final
placer.

4. Routability Driven Placement
A placed circuit can sometimes not be routable because there are

regions on the chip where the demand of the routing is higher than
the supply for routing. This problem can be solved if the modules
are placed in a way that the routing demand is adapted to the routing
supply.

Our placement approach provides a convenient solution by moving
the modules based on a routing distribution Drout(x, y), which reflects
the routing demand Ddem

rout(x, y) and routing supply Dsup
mod(x, y). An

accurate and fast estimation of the routing demand Ddem
rout (x, y) by

RUDY in Eq. (3) is presented in section 2. The routing supply is the
area of the chip:

Dsup
rout(x, y) = R(x, y;xChip, yChip, wChip, hChip) (14)

Preplaced macros, which block some or all routing layers, can be
excluded from the routing supply by subtracting them using the
rectangle function R.

The routing distribution Drout(x, y) is the routing demand minus
the routing supply:

Drout(x, y) = Ddem
rout (x, y) − αrout · Dsup

rout(x, y) (15)

The factor αrout is to fulfill (10) if D(x, y) = Drout(x, y), i.e. to
normalize the supply to the demand.

If the distribution D(x, y) reflects just the routing distribution
Drout(x, y), then the modules might not be spread over the chip
because their module distribution Dmod(x, y) is not taken into account
during placement. Thus only a combination of both distributions
Drout(x, y) and Dmod(x, y) will produce routable chips with the
modules spread over the chip:

D(x, y) = wrout · Drout(x, y) + (1 − wrout) · Dmod(x, y) (16)

The routing weight wrout in the distribution (16) reflects the
importance of routability in our placement approach: with wrout = 0
routability is not considered at all and with wrout = 1 just routability
is considered. Figure 3 is based on the circuit ibm01e of the IBMv2
benchmark suite and shows the impact of the routing weight wrout

to the routed wirelength, to the net length measured in HPWL
and RSMT, and to the standard deviation of the routing demand
distribution. This standard deviation was determined by overlaying
the routing demand after final routing by a fine grid, computing the
wire usage in every bin and calculating the standard deviation of
these wire usages.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 50

 60

 70

 80

 90

 100

R
ou

te
d

w
ir

el
en

gt
h,

R
SM

T
 L

en
gt

h,
 a

nd
 H

PW
L

 in
 m

St
d.

 D
ev

ia
tio

n
of

 th
e

R
ou

tin
g

D
em

an
d

in
 %

wrout

Routed
Wirelength

RSMT
Length

HPWL

Std. Deviation of the
Routing Demand

Fig. 3. Impact of the routing weight wrout to the routed wirelength, to the net
length measured by HPWL and by Rectilinear Minimal Steiner Tree (RSMT)
length and to the standard deviation of the routing demand distribution. Results
are based on circuit ibm01e of the IBMv2 benchmark suite.

Some general statements about routability optimization in place-
ment can be derived from the figure 3:
1) With increasing routing weight, the peaks in the routing demand

distribution are reduced, represented in the decrease in the
standard deviation of the routing demand distribution.
This is because the fraction of the routing distribution in the total
distribution increases and thus our placer tries harder to adapt the
routing demand to the routing supply. Since the routing supply is
constant over the chip area, the placer evens the routing demand
distribution, resulting in a decreasing standard deviation of the
routing demand distribution.

2) With increasing routing weight, the net length measured in HPWL
and RSMT increases.
If the routing weight is zero, routability is not considered and
the modules are at their optimal places for the lowest net length
measured in HPWL or RSMT. But with increasing routing weight,
routability is considered more and the modules are moved away
from their optimal positions, which increases the HPWL and
RSMT length.

3) There is a trade-off between an evenly distributed routing demand
and a low net length.
This trade-off can be controlled by the routing weight wrout and
results in an optimal routing weight w∗

rout, at which the routed
wirelength is minimal. The optimal routing weight w∗

rout depends
somewhat on the circuit and is w∗

rout = 0.32 in figure 3.

4) The Rectilinear Steiner Minimal Tree (RSMT) length does not
predict exactly the routed wirelength.
Since routing and the RSMT are based on horizontal and vertical
connections, the length of the RSMT is a good prediction of
the routed wirelength. But there exists an inherent prediction
error because of two main reasons: (i) In routing, a pin can be
connected within an area called pin site. Since the RSMT is based
on connecting points and not areas, the RSMT does not respect
the pin sites but models the pins by points. This yields an intrinsic
prediction error by the RSMT. (ii) There are always some detours
necessary in routing a net because the enclosing rectangles of
the nets overlap, i.e. the nets interfere with each other. But the
detours increase the routed wirelength and are not respected in
constructing the RSMT.

5) The HPWL is an efficient estimation of the routed wirelength
As there is always a prediction error of the routed wirelength
by the RSMT length (see statement (4)) and the HPWL is
approximately proportional to the RSMT length [1], the HPWL
correlates to the routed wirelength as good as the RSMT length
does. But the HPWL is determined much faster than the RSMT
length [22]. Therefore the HPWL is an efficient estimation of the
routed wirelength.

Statement (1) expresses that our placer utilizes the direct approach
to optimize placement for routability.

But also the indirect approach is used to optimize routability by
increasing the routing supply in congested regions. This can be
explained by rewriting the total distribution (16) as new demand-and-
supply system for the modules (Please note that we omitted (x, y)
for brevity):

D = D̂dem
mod − D̂sup

mod (17)

D̂dem
mod = (1 − wrout)·Ddem

mod (18)

D̂sup
mod = (1 − wrout)·αmod ·Dsup

mod| {z }
a

−wrout ·
“
Ddem

rout − αrout ·Dsup
rout

”
| {z }

b

(19)

Eq. (19) shows that the new module supply D̂sup
mod is reduced in

congested regions: If the routing demand Ddem
rout is higher than the

normalized routing supply αrout ·Dsup
rout, then b is greater than zero.

Thus the new module supply D̂sup
mod is lower than a, i.e. it is reduced.

Since our placer adapts the demand to the supply, a reduced module
supply in congested regions yields a lower module demand/density
there. Therefore more free space is available in the lowest routing
layer usually blocked by the modules. Finally this results in more
routing supply in congested regions.

The utilization of the indirect approach to optimize routability by
our placer is demonstrated in figure 4: in congested regions, i.e. in
regions with high routing demand (black areas in (b) and (d)), the
module density is low (white area in (a) and (c)).

5. Experimental Results
To validate and demonstrate the efficiency of RUDY and its

integration in our placer, we placed and routed the IBMv2 benchmark
suite [25] on an AMD Athlon Opteron 248 machine running at 2.2
GHz and using one of the two available CPU cores. The routing was
done with Cadence WarpRoute 2.3.32.

Please note that all circuits of the IBMv2 benchmark suite have
no fixed pad, which is critical for quadratic placement since no
traditional initial placement can be computed. Hall [28] presents a
solution by computing the initial placement by the eigenvectors of
the system matrix Cx. We use a different approach by introducing
pseudo fixed pads, but this method is not the topic of this paper and
will be submitted in future.

Table 2 summarizes the CPU times of placement and routing,
routed wirelengths and via counts using our approach. This table
also presents the routed wirelengths and via counts of ROOSTER,
mPL and APlace as published in [21]. All results have no routing
violations, except ibm01e and ibm01h placed by APlace.

Measuring quality by the routed wirelength, our approach to
optimize routability in placement is 7.64%, 9.00%, and 5.39% better
than ROOSTER, mPL, and APlace, respectively. In via count, our
approach is only 0.72% worse than ROOSTER but 4.73% and 5.55%
better than mPL and APlace.

The authors of [21] present only the CPU times of ROOSTER
when placing some circuits of the IBMv2 benchmark. With the
SPEC CPU2000 benchmark [29] to scale their CPU times on our
machine configuration reveals that our approach is 8.4 times faster
than ROOSTER.

All of our results are based on using the HPWL as an efficient
estimation for routed wirelength. If the RSMT length is used as an
estimation for the routed wirelength, then the CPU time of placement

increases by 18% and the real routed wirelength is improved by only
0.04%. If routability is not considered, our placer finishes the IBMv2
benchmark suite in 0.5% shorter CPU time (compared to the CPU
time of HPWL as an estimation for routed wirelength), but produces
some unroutable circuits and the routed wirelength is increased by
around 2.8%. Thus routability optimization based on RUDY, HPWL,
and the implementation in our placer is very fast and efficient.

Placing the circuits ibm01e and ibm12h of the IBMv2 benchmark
suite by our approach and routing each placement gives the module
and wire distributions as displayed in figure 4(a) and (b), respectively
(c) and (d). The wire distribution reflects the real routing demand
determined after final routing. The comparison between the module
distribution and the wire distribution, i.e the comparison between
figure 4(a) and (b) for ibm01e and the comparison between figure
4(c) and (d) for ibm12h, shows that the module density is low (light
color) in regions with high routing demand (dark color). Based on the
fact that a low module density means that more free space is available
in the lowest routing layer, this comparison demonstrates that our
placer efficiently utilizes the indirect approach to optimize routability
by increasing the routing supply in regions with high routing demand.

To put the improvement achieved by our approach into perspective,
the module and wire distributions of the same circuits as in figure 4
but placed by ROOSTER is displayed in figure 5. The comparison
between figure 5(a) and (b) and between figure 5(b) and (c) shows
no high correlation between module density and routing demand.

6. Conclusion
This paper presented RUDY, which estimates fast and accurately

the routing demand of a circuit independently of a certain bin
structure or a routing model. The demand-and-supply system of a fast
and robust force-directed quadratic placer was extended in this paper
in a convenient manner by RUDY to reflect not only the distribution
of the modules but also the distribution of the enclosing rectangles of
the nets. As our placer is guided by the demand-and-supply system,
our approach to optimize placements for routability can be interpreted
in a way that we place simultaneously the modules and the nets on
the chip. This yields the best published routed wirelengths of the
IBMv2 benchmark suite.

7. Acknowledgments
The authors thank the reviewers for their useful suggestions, I.

Markov and J. A. Roy for providing the UMICH packages “Con-
gestionMaps Plotter” and “ROOSTER”, and U. Schlichtmann for his
continuous support.

References
[1] Chih liang Eric Cheng. RISA: Accurate and efficient placement routability

modeling. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 690–695, 1994.

[2] Maogang Wang, Xiaojian Yang, and Majid Sarrafzadeh. Congestion minimization
during placement. IEEE Transactions on Computer-Aided Design of Circuits and
Systems, 19(10):1140–1148, oct 2000.

[3] Jinan Lou, Shankar Krishnamoorthy, and Henry S. Sheng. Estimating routing
congestion using probablistic analysis. IEEE Transactions on Computer-Aided
Design of Circuits and Systems, 21(1):32–41, January 2002.

[4] Andrew B. Kahng and Xu Xu. Accurate pseudo-constructive wirelength and
congestion estimation. In International Workshop on System Level Interconnect
Prediction, pages 61–68, 2003.

[5] Mehdi Saedi, Morteza Saheb Zamani, and Ali Jahanian. Prediction and reduction of
routing congestion. In ACM/SIGDA International Symposium on Physical Design
(ISPD), pages 72–77, 2006.

[6] Jurjen Westra, Chris Bartels, and Patrick Groeneveld. Probabilistic congestion
prediction. In ACM/SIGDA International Symposium on Physical Design (ISPD),
pages 204–290, 2004.

[7] Ulrich Brenner and Andre Rohe. An effective congestion driven placement
framework. In ACM/SIGDA International Symposium on Physical Design (ISPD),
pages 6–11, 2002.

[8] Ke Zhong and Shantanu Dutt. Algorithms for simultaneous satisfaction of multiple
constraints and objective optimization in a placement flow with application to con-
gestion control. In ACM/IEEE Design Automation Conference (DAC), volume 39,
pages 854–859, 2002.

[9] Xiaojian Yang, Ryan Kastner, and Majid Sarrafzadeh. Congestion estimation during
top-down placement. In ACM/SIGDA International Symposium on Physical Design
(ISPD), pages 164–169, 2001.

Our approach ROOSTER mPL APlace
CPU [s] CPU [s] rWL # Vias rWL # Vias rWL # Vias rWL # ViasCircuit Place. Rout. [m] [m] [m] [m]

ibm01e 34 266 0.679 120400 0.718 122873 0.718 123064 0.790∗ 158646
ibm01h 33 297 0.680 121757 0.725 124063 0.691 213162 0.732∗ 161717
ibm02e 67 325 1.850 254002 2.000 256155 1.821 250527 1.846 254713
ibm02h 68 427 1.988 266209 1.978 262022 1.897 260455 1.973 268259
ibm07e 176 566 3.601 474725 3.953 470104 4.129 492947 3.975 500574
ibm07h 183 665 3.630 488318 4.091 489067 4.240 516929 4.141 518089
ibm08e 223 682 4.041 569646 4.231 559010 4.372 579926 3.960 595528
ibm08h 220 710 3.961 575041 4.240 577879 4.280 599467 3.960 595528
ibm09e 216 504 2.901 488778 3.200 473605 3.319 488697 3.095 502455
ibm09h 211 524 2.916 490270 3.205 480961 3.454 502742 3.102 512764
ibm10e 307 905 5.808 770378 6.420 755673 6.553 777389 6.178 782942
ibm10h 314 932 5.783 773344 6.544 781897 6.474 799544 6.169 801605
ibm11e 301 685 4.405 635610 4.746 613437 4.917 633640 4.755 648044
ibm11h 308 676 4.401 636152 4.716 625654 4.912 660985 4.818 677455
ibm12e 341 1377 8.432 932513 9.333 930397 10.185 995921 8.599 921454
ibm12h 345 1386 8.469 950607 9.282 942551 9.724 976993 8.814 961296

Average: 1.000 1.000 1.076 0.993 1.090 1.047 1.054 1.055
Our Improvement† 7.64% -0.72% 9.00% 4.73% 5.39% 5.55%

Table 2. Results of our approach: CPU times of placement and routing, routed wirelength (rWL) and number of vias (# Vias). Results of ROOSTER (as a
feature of Capo 10), mPL and APlace in routed wirelength and number of vias. ∗means there are some routing violations. †A value greater than zero

represents that our approach is better. All results are based on circuits of the IBMv2 benchmark suite.

(a) ibm01e, Module Distribution (b) ibm01e, Wire Distribution (c) ibm12h, Module Distribution (d) ibm12h, Wire Distribution

Fig. 4. Our approach: module and wire distributions of the circuits ibm01e and ibm12h. White means low density, black means high density.

(a) ibm01e, Module Distribution (b) ibm01e, Wire Distribution (c) ibm12h, Module Distribution (d) ibm12h, Wire Distribution

Fig. 5. ROOSTER: module and wire distributions of the circuits ibm01e and ibm12h. White means low density, black means high density.

[10] Xiaojian Yang, Ryan Kastner, and Majid Sarrafzadeh. Congestion estimation during
top-down placement. IEEE Transactions on Computer-Aided Design of Circuits and
Systems, 21(1):72–80, January 2002.

[11] Bo Hu and Malgorzata Marek-Sadowska. Congestion minimization during place-
ment without estimation. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 739–745, 2002.

[12] Maogang Wang, Xiaojian Yang, Kenneth Eguro, and Majid Sarrafzadeh. Multi-
center congestion estimation and minimization during placement. In ACM/SIGDA
International Symposium on Physical Design (ISPD), pages 147–152, 2000.

[13] Maogang Wang and Majid Sarrafzadeh. On the behaviour of congestion mini-
mization during placement. In ACM/SIGDA International Symposium on Physical
Design (ISPD), pages 145–150, 1999.

[14] Maogang Wang and Majid Sarrafzadeh. Modeling and minimization of routing
congestion. In IEEE/ACM Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 185–290, 2000.

[15] Zhuoyuan Li, Weimin Wu, and Xianlong Hong. Congestion driven incremental
placement algorithm for standard cell layout. In IEEE/ACM Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 723–728, 2003.

[16] Wenting Hou, Hong Yu, Xianlong Hong, Yici Cai, Weimin Wu, Jun Gu, and
William H. Kao. A new congestion-driven placement algorithm based on cell
inflation. In Asia and South Pacific Design Automation Conference, pages 605–
608, 2001.

[17] Phiroze N. Parakh, Richard B. Brown, and Karem A. Sakallah. Congestion driven
quadratic placement. In ACM/IEEE Design Automation Conference (DAC), pages
275–278, 1998.

[18] Xiaojian Yang, Bo-Kyung Choi, and Majid Sarrafzadeh. Routability-driven white
space allocation for fixed-die standard-cell placement. IEEE Transactions on
Computer-Aided Design of Circuits and Systems, 22(4):410–419, April 2003.

[19] Chen Li, Min Xie, Cheng-Kok Koh, Jason Cong, and Patrick H. Madden.

Routability-driven placement and white space allocation. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pages 394–401, 2004.

[20] Chin-Chih Chang, Jason Cong, Zhigang David Pan, and Xin Yuan. Physical
hierarchy generation with routing congestion control. In ACM/SIGDA International
Symposium on Physical Design (ISPD), pages 36–41, 2002.

[21] Jarrod A. Roy, James F. Lu, and Igor L. Markov. Seeing the forest and the
trees: Steiner wirelength optimization in placement. In ACM/SIGDA International
Symposium on Physical Design (ISPD), pages 78–85, 2006.

[22] Chris Chu. FLUTE: Fast lookup table based wirelength estimation technique. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
696–701, 2004.

[23] Qinke Wang Andrew B. Kahng. Implementation and extensibility of an analytic
placer. IEEE Transactions on Computer-Aided Design of Circuits and Systems,
24(05):734–747, May 2005.

[24] Ucla/umich physical design tools. http://vlsicad.eecs.umich.edu/BK/
PDtools.

[25] Xiaojian Yang, Bo-Kyung Choi, and Majid Sarrafzadeh. Routability-driven white
space allocation for fixed-die standard-cell placement. In ACM/SIGDA International
Symposium on Physical Design (ISPD), pages 42–49, 2002.

[26] Raia T. Hadsell and Patrick H. Madden. Improved global routing through
congestion estimation. In ACM/IEEE Design Automation Conference (DAC), pages
28–31, 2003.

[27] Peter Spindler and Frank M. Johannes. Fast and robust quadratic placement
based on an accurate linear net model. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2006.

[28] K. M. Hall. An r-dimensional quadratic placement algorithm. Management Science,
17(3):219–229, November 1970.

[29] Standard Performance Evaluation Corporation. SPEC CPU 2000. http://www.
spec.org/cpu2000.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

