
A Future of Customizable Processors:
Are We There Yet?

Laura Pozzi
Faculty of Informatics
University of Lugano

CH-6900 Lugano, Switzerland

Pierre G. Paulin
Advanced System Technology

STMicroelectronics Inc.
Canada

Abstract

Customizable processors are being used increasingly of-
ten in SoC designs. During the past few years, they have
proven to be a good way to solve the conflicting flexibil-
ity and performance requirements of embedded systems de-
sign. While their usefulness has been demonstrated in a
wide range of products, a few challenges remain to be ad-
dressed: 1) Is extending a standard core template the right
way to customization, or is it preferable to design a fully
customized core from scratch? 2) Is the automation offered
by current toolchains, in particular generation of complex
instructions and their reuse, enough for what users would
like to see? 3) And when we look at the future with the in-
creasing use of multi-processor SoCs, do we see a sea of
identical customized processors, or a heterogeneous mix?
We comment and elaborate here on these challenges and
open questions.

1. Introduction

Customizable processors have emerged in the past few
years as one of the most promising components for SoC de-
sign. They have been demonstrated as an efficient solution
to the stringent blend of constraints that are characteristic of
embedded processor design.

So much so, that there have been articles identifying
them as the one and only solution to the rise and fall of
“classical” microprocessors [6]. By offering a mix of pro-
grammability and customizability, obtained by extending—
or designing from scratch—simple RISC processors with
custom units, customizable processors have the potential
to simultaneously meet short times to market, high per-
formance, and low power consumption. Among the best
known examples of extensible processors are Tensilica [4]
and ARC [2], and some levels of customizability have
also been added on traditional well-established architec-

tures (e.g., MIPS CorExtend [3] or PowerPC APUs [7]).
Products have also emerged on the market to acceler-
ate customized processor design from scratch, e.g. from
CoWare[1].

2. Challenges and Open Questions

Whether the use of customizable processors will become
a dominating paradigm in the near future depends on a few
challenges and open questions. Some of these will be out-
lined here.

2.1. Customized Instructions Reuse

Even though customizable processors currently come
with sophisticated toolchains, increase in automation still
remains one of the important challenges. Some users are
reluctant to invest precious time on manual optimizations,
and request more ease of programming. As an example, the
selection of custom instruction set extensions is not an easy
task when left completely to the user. A few algorithms
have been proposed in research in order to automatically
identify extensions, making it more and more possible to
select large, frequent snippets of code as highly customized
instructions, at the push of a button. Commercial tools such
as Tensilica’s Xpress also exist for this purpose. On the
one hand, the increased power of these algorithms improves
custom processors performance.

On the other hand, the custom instructions that some
of these algorithms can identify might be so complex that
reusability becomes unlikely or very difficult: obviously,
the more we customize the more we drive away from the
RISC concept of simple and easily reusable Instruction Set.
An important challenge is therefore that of finding reuse of
complex instructions as much as possible within an appli-
cation, or even across applications.

Advances are needed in instruction matching, probably
not in search for exact isomorphism, but for enough simi-
larity so that as much of the application as possible can be

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



mapped onto complex extensions.
Of course, the problem of reuse across applications is

solved, at least in theory, by implementing extensions in re-
configurable, rather than hardwired logic. If an extremely
high performance reconfigurable fabric were built specifi-
cally for this purpose, it might well be the way of the future
for customizable processors, as already hinted recently [6].

2.2. Design from Scratch vs. Extension of Base Core

Designing the core processor from scratch, as opposed to
extending a simple, constant core, is another form of solu-
tion and comes with its own challenges. This class of cores
is often referred to as Application-Specific Instruction-set
Processor—or ASIP.

This approach gives a very high freedom on the over-
all architecture, therefore offering the advantage of a po-
tentially higher customization level, and a tighter matching
between architecture and application. Also, hardware sav-
ings can be envisioned since it is possible for designers to
include the very minimum functionality required by the ap-
plication.

A key challenge here is in the automatic generation of the
C compiler for ASIPs. While the use of instruction exten-
sions can be solved with in-line intrinsics, or the automated
generation of these extensions, the generation of efficient C
compilers for ASIPs is a more difficult problem. One solu-
tion is to restrict the ASIP exploration space to a domain-
specific architecture template. This approach simplifies the
automatic C compiler generation process significantly, and
has been exploited effectively in commercial products, e.g.,
by CoWare and by Target Compiler Technologies [1, 5].

2.3. Multiple Customized Processors on Chip?

Multiprocessors systems on chips are emerging as a key
class of platforms that leverage parallelism to achieve high-
performance and lower power. A key debate is in the use of
homogeneous vs.heterogeneous multi-processor platforms.

In the former case, a number of identical copies of a pro-
cessor coexist, providing advantages such as dynamic job
migration, ease of mapping, replicated design, and possi-
bly some fault tolerance. In the latter case, heterogeneity
promises better performance by proposing different cores
to better match to application subsets with different require-
ments.

A compromise approach could be that of using multiple
instances of the same customizable core family. This would
provide homogeneity in the common RISC instruction-set
subset shared by all processors. It also allows the use of a
single development environment.

A refinement of this idea is to identify the application-
specific instruction extensions that are inexpensive and du-
plicate them across all cores. This provides homogeneity
at low-cost, especially when factoring-in the fact that mem-

ory and interconnect usually dominate the overall MP-SoC
area.

Finally, more expensive instruction extensions could be
duplicated on a subset of the cores, with some overprovision
to allow for application performance scalability and/or fault
tolerance.

3. Conclusions

Customizable processors might be the right answer to
the difficult question of embedded processor design. Are we
going towards a future completely dominated by customiza-
tion, given the impressive advances that we have witnessed
in customizable processor technology and popularity? Still,
there appear to be some challenges to be met and some open
questions to be solved, before this can happen. We have
briefly outlined and discussed here what we believe to be
the main ones.

References

[1] CoWare processor designer. http://www.coware.com/.
[2] T. R. Halfhill. ARC Cores encourages “plug-ins”. Micropro-

cessor Report, 19 June 2000.
[3] T. R. Halfhill. MIPS embraces configurable technology. Mi-

croprocessor Report, 3 Mar. 2003.
[4] T. R. Halfhill. Tensilica’s software makes hardware. Micro-

processor Report, 23 June 2003.
[5] Target Compiler Technologies. http://www.retarget.com/.
[6] N. Tredennick and B. Shimamoto. Microprocessor sunset.

Microprocessor Report, 1 May 2004.
[7] Xilinx Virtex4 Devices. http://www.xilinx.com.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




