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Abstract— In this paper we describe the acceleration algorithm
implemented in FastMaxwell, a program for wideband elec-
tromagnetic extraction of complicated 3D conductor structures
over substrate. FastMaxwell is based on the integral domain
mixed potential integral equation (MPIE) formulation, with
3-D full-wave substrate dyadic Green’s function kernel. Two
dyadic Green’s functions are implemented. The pre-corrected
Fast Fourier Transform (pFFT) algorithm is generalized and used
to accelerate the translational invariant complex domain dyadic
kernel. Computational results are given for a variety of structures
to validate the accuracy and efficiency of FastMaxwell. O(NlogN)
computational complexity is demonstrated by our results in both
time and memory.

I. INTRODUCTION

The integration of RF, analog and digital circuitry on a
single integrated-circuit substrate, or system-on-chip (SoC), is
associated with many challenges. For instance, substrate noise
may lead to altered circuit performance. In addition, conductor
skin and proximity effects may impact current return paths in
a network of closely-spaced conductors, as well as quality
factor in RF inductors. Moreover, the occurrence of radiated
electromagnetic interferences (EMI) may transmit disturbances
across different SoC systems. In order to avoid all the above
problems, electromagnetic simulation tools are needed that
can accurately and efficiently extract wide-band full-wave
conductor impedances in the presence of semi-conducting
substrates.

In the last decade, electromagnetic simulators based on in-
tegral formulations have been the subject of extensive research
due to the development of fast algorithms i.e. O(N logN) for
dense linear systems. These algorithms include Fast Multipole
Method (FMM) [1]- [3], precorrected-Fast Fourier Transform
[4], [5], and SVD compression [6]. Despite of the large
variety of acceleration algorithms and efficient codes, there
is no single code that is capable of solving 3-D full-wave
Maxwell’s equations for arbitrary and very large structures
over substrate. For instance, FASTCAP [1], FASTHENRY
[2] and ISC3 [6] are based on quasi-static approximations
and cannot handle full-wave kernels with substrate effects.
FASTIMP [5] solves only the full-wave free space propa-
gation problem and is therefore not suitable for simulating
substrate effects. EMX [3] is based on 2.5D formulations with
planar metal structures assumed of infinitesimal thickness.
This is similar to the formulation in IE3D, though the latter has
the ability to model 3-D structures. These approximations are
efficient for modeling standard IC technology but not suitable
for simulating micromachined structures of complex vertical
geometries. Finally, a variety of commercial software based
either on Finite Element Methods (FEM) or Finite Difference
Time Domain (FDTD) are available and can perform accurate
analysis but only on relatively small structures.

In this paper we present a 3D full-wave simulator based
on the mixed potential integral equation formulation (MPIE)
[7], [8], and accelerated using p-FFT. The solver will be
released on public domain starting from December 2006 [9].

The simulator is capable of solving Maxwell’s equations for
arbitrary 3D multi-port structures over substrate. A variety of
acceleration techniques are implemented in the simulator to
increase its computational efficiency. The Discrete complex
image method (DCIM) [10] is used to approximate the
spectral domain Green’s function into closed form and thus
avoid the need for time consuming Sommerfeld integrals. The
set of integration routines [11] to transform 3D integrations
into 1D are also implemented. In this paper we illustrate the
use of an alternative dyadic Green function, which can be used
to describe the potential of arbitrary oriented dipoles without
extra computational effort. The alternative Green’s function
has more symmetrical properties, which can be effectively
utilized to enforce the generation by our solver of symmetric
positive semidefinite matrices for guaranteed passive model
order reduction of distributed structures [12]. In addition,
we present the complete p-FFT implementation to handle
the dyadic, translational invariant dyadic kernel. In the last
section of the paper we give a large number of examples
demonstrating the accuracy and computational efficiency of
our pFFT implementation in FastMaxwell.

II. BACKGROUND

A. MPIE Formulation
As in [7], [8] the following set of integral equation can

be used to compute the unknown volumetric current density
vector J̄(r) and surface charge distribution ρ(r) :

J(r)
σ

+ jω
µ

4π

∫
v
GA(r,r′)J(r′)dr′ = −∇φ(r) (1)

1
4πε

∫
s
Gφ(r,r′)ρ(r′)dr′ = φ(r) (2)

∇ · J(r) = 0 (3)

n̂ · J(r) = jωρ(r), (4)

Where GA(r,r′),Gφ(r,r′) are the dyadic and scalar Green’s
functions, respectively. V,S are the conductors volume and
surface area, respectively, φ(r) is the scalar potential, ε is
the complex dielectric constant including dielectric losses, µ
magnetic permeability, ω the angular frequency is radians.

B. Formulation Discretization
The conductors volume and surface area are discretized

using piecewise constant basis functions into filaments and
panels (Fig.1) as in [7], [8], [13], respectively. These are then
assembled using Galerkin and mesh analysis [7] into a dense
linear system of the form:

Vm×1 = Mm×bZb×bMT
b×mIm×1 (5)

where b is the number of branches of the equivalent circuit, m
is the number of independent meshes, M is the mesh matrix,
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Fig. 1. Conductor volume discretized into filaments supporting the volumetric
current density basis functions; conductor surface area discretized into panels
supporting the surface charge density basis functions

V is the known excitation vector and I is the unknown current
vector. Matrix Z is defined as:

Z =
[

[R]+ jω[L] 0
0 [P]

jω

]
(6)

The partial matrices [R], [L] and [P] are generated via Galerkin
technique for both volumetric and surface current distributions:

Rii =
�i

σai
(7)

Li j =
1

aia j

∫
vi

∫
v j

GA(r,r′)�i · � jdr′dr (8)

Pi j =
1

SiS j

∫
si

∫
s j

Gφ(r,r′)dr′dr (9)

where ai, �i are the cross sectional area and directional vector
of filament i, respectively andSi is the surface area of panel i.

C. Traditional Dyadic Green’s Function
The full-wave substrate effects are captured by using the

dyadic Green’s function. Different formulations have been
previously introduced in literature to satisfy the boundary
conditions. In a traditional formulation the horizontal dipole
generates horizontal and vertical vector potentials [14]. The
scalar potential has two different components corresponding
to the horizontal and vertical dipoles.

GA(r,r′) =

(
Gxx 0 0
0 Gxx 0

Gxz Gyz Gzz

)
,Gφ(r,r′) =


 GH

GH

GV


 (10)

Detailed derivation of the individual components can be found
for instance in [15]. It is noted that closed form expressions
are available for the Green’s functions in the spectral domain.
The two-level discrete complex image method (DCIM) [10]
is used to transform the closed form spectral domain Green’s
functions into the spatial domain counterparts, thus avoiding
computing slow converging Sommerfeld integrals. A modified
sampling path has been implemented to minimize the number
of complex exponential used in the approximation. The final
general form of any component of the Green’s functions can
be written as a sum of real and complex images [11].

Guu
A (r,r′) = g(x− x′,y− y′,z− z′)

+ ∑
k

akg(x− x′,y− y′,z+ z′+βk) (11)

Gvz
A (r,′ r) = ∑

k

∂
∂v

akg(x− x′,y− y′,z+ z′+βk) (12)

Where g(x,y,z) is the free space Green’s function, ak, βk are
complex constants obtained from the DCIM, u ∈ [x,y,z] and
v ∈ [x,y].

D. pFFT
The dense linear system in (5) is typically solved using

Krylov subspace iterative methods. It should be noted that a
good preconditioner is essential for proper operation of the
algorithm. A commonly used preconditioner is Mdiag[Z]MT .
The solver complexity is dominated by a dense matrix vector
product, which can be accelerated using the precorrected Fast
Fourier Transform (pFFT) algorithm [4], [5]. The acceleration
in pFFT is based on sparsifying the dense matrix vector
product by separating it into a direct matrix that accounts
for nearby interactions, and an approximated matrix that
accounts for the far field weak interactions. The resulting direct
interactions constitute a sparse matrix because of the relatively
few neighbors of a single element and the matrix vector
product can therefore be implemented in O(N), where N is the
number of unknowns. The weak interactions are approximated
via a projection on a regular three-dimensional grid and by
making use of the translational invariance of the free space
kernel. Interactions on the grid are calculated via fast Fourier
transform in O(Ng logNg), where Ng is the total number of grid
points. The final algorithm complexity is O(N +Ng logNg) for
the time and O(N +Ng)for the memory. Typically, the number
of grid points is comparable to the number of unknowns.

III. AN ALTERNATIVE DYADIC GREEN’S FUNCTION

In spite of its popularity, the dyadic Green’s formulation in
section II-C is associated with some disadvantages, including
the need for two scalar Green’s functions for the horizontal
and vertical dipoles, respectively. This prevents the usage of
the formulation for arbitrarily oriented dipoles. In addition,
the dyadic kernel in the presence of vertical current is not
symmetric, hence it does not allow the generation of symmet-
ric positive semidefinite matrices which would facilitate the
passive model order reduction of distributed systems [12].

In order to address these issues we have implemented
an alternative formulation for the dyadic kernel [14]. This
formulation is associated with a single scalar Green’s function
provided the source and observation points are in the same
dielectric layer. The existence of a unique scalar potential
means that this formulation can be used with dipoles of
arbitrary orientations. Furthermore, the dyadic kernel of the
alternative formulation is symmetric:

GA(r,r′) =

(
Gxx Gxy 0
Gxy Gxx 0
0 0 Gzz

)
,Gφ(r,r′) = GV (13)

The closed form spectral domain components of the Green’s
function are summarized in the appendix of [14]. By apply-
ing the discrete complex image method the spectral domain
components can be transformed into closed form spatial coun-
terparts. The spatial domain components can be summarized
in the following closed form:

Gvv
A (r,r′) = g(x− x′,y− y′,z− z′)

+ ∑
k

akg(x− x′,y− y′,z+ z′+βk)

+ ∑
k

ak
∂2

∂v∂v′
g(x− x′,y− y′,z+ z′+βk) (14)

Gzz
A (r,r′) = g(x− x′,y− y′,z− z′)

+ ∑
k

akg(x− x′,y− y′,z+ z′+βk)

Gxy
A (r,r′) = ∑

k

ak
∂2

∂x∂y′
g(x− x′,y− y′,z+ z′+βk) (15)

Where g(x,y,z) is the free space Green’s function, ak, βk
are complex constants obtained from the DCIM, and v ∈



[x,y]. We note that the reduction of the number of scalar
potentials is compromised by an added term in the components
Gvv

A . Furthermore, we observe that no first order derivatives
are present in the Green’s functions components but rather
second order derivatives. Fortunately, we can generalize the
integration schemes presented in [11], such that they can be
used to accelerate the newly introduced second order terms.

∫
V

∫
V ′

∂
∂h1

∂
∂h′2

g(r,r′)dV ′dV =
∫

V
dV

∂
∂h1

∫
V ′

∇′ · (h′2g(r,r′))dV ′

= ∑
S′

∫
V

dV ∇ · (h1(
∫

S′
(h′2 ·dS′)g(r,r′)))

= ∑
S

∑
S′

∫
S
(h1 ·dS)(

∫
S′
(h′2 ·dS′)g(r,r′))

where h1 ∈ [x,y] and h2 ∈ [x,y]. Each summation is performed
over the two surfaces perpendicular to the corresponding
integration variable. We therefore have transformed the three
dimensional integration with the second order kernel into a
sum of four two dimensional integrations. These surface inte-
grals can be accelerated using the same integration technique
in [11]. The formulation presented in this paper has the
major advantage of handling dipoles with arbitrary orienta-
tion, provided they are confined to a single dielectric layer.
For conductor structure distributed in different layers either
formulation A or formulation C in [14] must be used.

IV. P-FFT FOR FULL-WAVE DYADIC KERNEL

A. pFFT for Traditional Green’s Function

In this section we show how the MPIE formulation with
the translational invariant traditional Green’s function (section
II-C) can be accelerated using pFFT. Only the traditional
formulation is considered in this subsection, while all nec-
essary modifications required for the alternative symmetric
formulation are detailed in the next subsection. Equation (5)
needs to be modified such that the unknown vector is the
branch currents rather than mesh currents. This is because the
branch currents are the physical quantity that are associated
with the discretization elements and that are projected on the
grid.

Vm×1 = Mm×bZb×bIb×1 (16)

where Ib×1 is the vector composed of the currents density
vector in the filaments IT

f = [Ix, Iy, Iz] and the current in the
panels Ip

IT
b×1 =

(
IT

f IT
p
)

(17)

Furthermore, equations (5) and (7)- (10) define the branch
voltages Vb×1 = Zb×bIb×1:

Vb×1 =
(

[R]I f
0

)
+




jω[Lxx]Ix
jω[Lyy]Iy

jω([Lxz]Ix +[Lyz]Iy +[Lzz]Iz)
[P]
jω Ip


 (18)

Matrix [R] is diagonal and therefore the first matrix vector
product [R]I f does not require acceleration. The second term
is composed of six matrix vector products, [Luu]Iu, [Lvz]Iv and

[P]Ip. The elements of the matrices[L] and [P] are:

Li j
uu =

1
aia j

∫
Vi

∫
Vj

dr′dr(g(x− x′,y− y′,z− z′)

+ ∑
k

akg(x− x′,y− y′,z+ z′+βk)�iu · � ju) (19)

Li j
vz =

1
aia j

∫
Vi

∫
Vj

dr′dr

· ∑
k

ak
∂
∂v

g(x− x′,y− y′,z+ z′+βk)�iv · � jz (20)

Pi j =
1

SiS j

∫
Si

∫
S j

dr′dr(g(x− x′,y− y′,z− z′)

+ ∑
k

akg(x− x′,y− y′,z+ z′+βk)) (21)

Each of the six matrix vector products is accelerated in-
dependently using pFFT, because of the different nature of
the discretization elements and Green function kernel in each
product. Without loss of generality only (19) and (20) are
treated in this analysis since (21) is identical to (20) up to
the dimension of the integration. From (19) and (20) we
observe that three different projection matrices are required;
for g(r), ∂g(r)

∂x , and ∂g(r)
∂y [5]. The first term in (19) is clearly

translational invariant and can be handled using traditional
pFFT. The second term in (19) and the term in (20), which are
a result of the Green’s function associated with the complex
images, are translational invariant in x, and y but do change
with z. The resulting matrix is therefore two-level Toeplitz and
one level Hankel. Therefore, these terms cannot be treated with
traditional pFFT. The Hankel portion of the matrix must first
be transformed into a Toeplitz matrix using an appropriate
permutation, multiplied by the vector using FFT and then re-
transformed back using the inverse permutation:

Hx = P−1PHx = P−1(PH)x = P−1(T )x = P−1(T x)
where H is a two level Toeplitz and one level Hankel

matrix,T is a three level Toeplitz matrix, x is the input vector,
and P = P3 is a permutation matrix defined recursively, such
that

PN+1 =

(
PN 0 0
0 . . . 0
0 0 PN

)

where P1 is the anti-diagonal unity matrix with elements
(pi,N−i+1 = 1),and P−1

3 = P3. The size of the matrices P3,
P2, and P1 is dependent on the number of grid points in the
x,y,z directions,respectively. The Hankel matrix is generated
by traversing the grid in the sequence z, x, y. The proposed
permutation has the effect of reversing the order of the z grid
index, which means that the multiplication can be implemented
without any extra cost by mapping the z index as k← K− k,
where k is the z index and K is the total number of grid points
in the direction. We conclude that the vector multiplication
with the Hankel matrix can therefore be implemented with
exactly the same computational complexity as the Toeplitz
matrix, i.e. in O(Ng logNg). After constructing the six matrix
vector product the mesh voltages are obtained from the branch
current using (16) and (18):

Vm×1 = Mm×bVb×1
Consequently, a standard Krylov subspace iterative tech-

nique can be used to solve the dense linear system in O(N +
Ng logNg).

B. pFFT for the Alternative Green’s Function
In this section we present the pFFT implementation with the

alternative Green’s function presented in section III. Equations



(16) and (17) in section IV-A are independent on the kernel,
and hence are also valid for this alternative implementation.
Equations (18) - (21) are re-written for the alternative kernel:

Vb×1 =
(

[R]I f
0

)
+




jω([Lxx]Ix +[Lxy]Iy)
jω([Lxy]Ix +[Lyy]I)y

jω[Lzz]Iz
[P]
jω Ip


 (22)

The matrix elements are:

Li j
vv =

1
aia j

∫
Vi

∫
Vj

dr′dr(�iv · � jv)(g(x− x′,y− y′,z− z′)

+ ∑
k

akg(x− x′,y− y′,z+ z′+βk)

+ ∑
k

∂
∂v′

∂
∂v

akg(x− x′,y− y′,z+ z′+βk)) (23)

Li j
zz =

1
aia j

∫
Vi

∫
Vj

dr′dr(�iz · � jz)(g(x− x′,y− y′,z− z′)

+ ∑
k

akg(x− x′,y− y′,z+ z′+βk)) (24)

Li j
xy =

1
aia j

∫
Vi

∫
Vj

dr′dr�ix · � jy

. ∑
k

∂
∂x′

∂
∂y

akg(x− x′,y− y′,z+ z′+βk) (25)

Pi j =
1

SiS j

∫
Si

∫
S j

dr′dr(g(x− x′,y− y′,z− z′)

+ ∑
k

akg(x− x′,y− y′,z+ z′+βk)) (26)

From (22) six different matrix vector products are required.
By utilizing the symmetry of the new Green’s functions the
computational effort required for the mutual inductance terms
can be significantly reduced. However, we should note that
this alternative Green’s function requires three interpolation
matrices as opposed to only one interpolation matrix required
by the traditional Green’s function. This is because of the
three operators in the outer integral in (23) and (25): g(r′),
∂g(r′)

∂x and ∂g(r′)
∂y [5]. The number of projection matrices is

still three. Fortunately, the computational effort required for
the additional interpolation matrices is insignificant and does
not affect the efficiency of the pFFT algorithm, while the
symmetry of the Green’s function typically results in a net
significant cost reduction both in time and memory. However,
we further highlight that the main advantage of the alternative
Green’s function is its ability to handle dipoles in arbitrary
orientation.

C. Implementation Optimization
The computational time consumed by the pFFT algorithm

is dominated by both the fill time and the solution time. To
further increase the computational efficiency of FastMaxwell,
the direct and pre-correction matrices fill time is optimized by
avoiding redundant calculations:

1 Mutual interactions are identical because of the symme-
try properties of the scalar Green’s function and the used
Galerkin technique. G(r,r′) = G(r′,r)

2 The regularity of the structures and the translational
invariant properties of the Green’s function can be effec-
tively used to reduce the time by tabulating computed
integrals and reusing them.

3 Near interactions in the direct matrix are computed
using quasi static approximations, thus accelerating the
integration without loss of accuracy.

Fig. 2. Microstrip tub geometry; only a small segment of the structure is
demonstrated for clarity

In addition, the convolution matrix fill time can be signif-
icantly reduced by observing that to perform the FFT, the
Toeplitz matrix is embedded into a circulant matrix. Because
of the symmetry property of the scalar Green’s function, the
Toeplitz matrix is symmetric and is completely defined by Ng
elements, while the circulant matrix is of size 2Ng. This means
that Ng Toeplitz elements can be reused, corresponding to a
reduction factor in time and memory of 2. The computational
time and memory required to handle the three-level Toeplitz
matrix are thus reduced by a factor of 8 and that of the two
level Toeplitz and one level Hankel matrix is reduced by a
factor of 4.

V. RESULTS

A. Accuracy Validation
In this section we establish the accuracy of our solver by

validating its results in examples small and simple enough,
such that they can be solved also by available commercial
software. Shorted transmission line. The first example (Fig.2)
is a microstrip tub [16] consisting of two quarter wavelength
copper microstrip lines embedded in a half space of dielectric
constant 4.4 and isolated by a microstrip tub. The lines are
10um above a ground plane and have dimensions: width=5um
height=4um length=400um, and center to center separation
20um. Three identical parallel shields are used to isolate the
lines. Each shield consists of two parallel lines of width 4um,
thickness 1um and 4um and distance to ground 5um and
10um, respectively. A set of 50 vertical square vias connect the
lines and the ground. The signal carrying microstrip lines are
terminated by 50Ω lumped element resistances for matching.
The isolation coefficient S12 is simulated and compared against
results obtained from IE3D (Fig.3). Microstrip line. The
second example is a single microstrip line terminated by a
short circuit and placed in a half space of dielectric constant
10.2. The line is surrounded by two shields as described in
the last example. In Fig.4 FastMaxwell results are compared
against IE3D. Very good matching is observed. Array of
RF inductors. The third example we use to establish the
accuracy of our solver consists of an array of 16 element
array of square inductors (Fig.5). All the inductors are identical
and are separated by 200um. Each inductor area is 0.01mm2.
Copper wires are 2um thick and 15um wide. The separation
distance between each of the 3 turns is 5um. An underpass is
situated 1um below the inductor to contact the center of the
spiral. The isolation coefficient S12 between one inductor in the
corner of the array and all the inductor in the diagonal of the
array including the element itself are calculated and compared
against IE3D (Fig. 6). The small discrepancies are mainly due
to the excitation mechanism and the planar approximation in
IE3D.

B. P-FFT Validation
The following examples have been used to demonstrate the

computational efficiency of the pFFT implementation:
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Fig. 5. discretized three- turn square RF-inductor and sixteen element
inductor array
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1 Industry provided three dimensional interconnect struc-
ture composed of two parallel microstrip lines surrounded
by a set of horizontal wires and connected to the ground
plane via six thick vias (Fig. 7).

2 two microstrip lines isolated by a microstrip tub and
terminated by 50 ohm lumber resistor.

3 three-turn square RF inductor placed 4.8um above a
patterned finite ground plane.

4 Array of 8 inductors on top of semi-conducting substrate
5 Array of 16 inductors in free space
6 Power and ground distribution grid with 400 ports and

two metal layers
7 Power and ground distribution grid with 900-ports and of

two metal layers.
Note that fullwave analysis is necessary in testcases 4 to 7

since the overall array dimension exceeds one wavelength. All
the simulations have been performed on a desktop computer
with a Pentium IV microprocessor with 2GHz clock frequency,
256MB of cache, 1GB of RAM, and operating under Redhat
Enterprise Linux, kernel 2.4.21-37.EL. The parameters of the
pFFT algorithm such as grid size, stencil sizes and iterative
algorithm convergence criteria are tuned to obtain accuracy
of 5% compared to the exact vector matrix product. If exact
results cannot be obtained, then pFFT is repeated with higher
accuracy until change in results does not exceed 2%. Table. I
summarizes the overall time and memory performance of
the complete solver. In the last two examples the exact
results cannot be obtained and numbers are estimated based
on complexity asymptotes. It can be observed that the time
computational complexity of FastMaxwell is O(N logN) and
that of memory is O(N), as opposed to O(N2) and O(N2) for
the exact vector matrix product.

C. Validation of pFFT Optimization
The implementation optimization techniques suggested in

section IV-C are validated by simulating the array of identical
inductors with different number of inductors and with different
discretizations. In Fig. 8 pFFT overall time is decomposed into
its two main components, matrix fill time and solution time.
Matrix fill time is shown for the full-wave substrate Green’s
function with integrations calculated with and without the
optimization techniques. It is observed that the matrix fill time
dominates for small sized and medium sized problems up to a
few tens of thousands of unknowns, because of the complexity
of the integrated kernel and the lack of closed form analytical



TABLE I
COMPARISON OF FULL WAVE OVERALL TIME AND MEMORY

REQUIREMENTS FOR BOTH PFFT AND EXACT VECTOR MATRIX PRODUCT

SOLVERS ON PENTIUM IV AT 200GHZ AND 1GB OF RAM

pFFT Exact Method
Structure Num. Memory Time in Memory Time in

unknowns in (MB) minutes in (MB) minutes
3D

interconnect 1232 8.7 8 10 11
Microstrip

Tub 1428 9 8 10 13
Patterned

Ground Plane 3295 18.4 21 98.3 98
8 Inductor
Substrate 4594 24.7 28 150 133

16 Inductor estimated
Array 25342 119 100 4034 22 hour

20 × 20 estimated estimated
Power Grid 43486 150 196 64140 4 days

30 × 30 estimated estimated
Power Grid 99342 423 500 413000 16 days

Fig. 7. Portion of the industry provided three-dimensional interconnect
structure

formula. This time is reduced by an average factor of 8 if
the proposed optimization techniques are used. On the other
hand, the solution time dominates in large scale examples and
behaves as O(N logN). The only way to reduce the solution
time is to use a better preconditioner and therefore reduce
the number of iterations required for convergence. Analogous
conclusions are valid for the memory requirements of small
and large examples: in small examples the memory consumed
is a function of N and the number of direct neighbors of
each element. Asymptotically the number of neighbors is a
constant determined by the pFFT parameters and the memory
computational complexity grows as O(N).

VI. CONCLUSION

In this paper we have presented a complete pFFT imple-
mentation of a fullwave electromagnetic field solver based on
the MPIE formulation with dyadic substrate Green function.
The alternative Green function implemented in the code can
lead to computational cost reduction in several examples. Most
importantly it allows the use of dipoles (i.e. filaments) in
arbitrary orientations, and it helps providing symmetric posi-
tive semidefinite matrices, hence facilitating the passive model
order reduction of distributed systems. The pFFT algorithm
has been extended and optimized to accelerate the fullwave
substrate Green’s function. The accuracy and efficiency of
FastMaxwell and the implemented acceleration algorithms has
been established by a variety of examples as large as 100,000
unknowns. The pFFT computational complexity of O(N logN)
in overall solver time and O(N) in memory usage has been
observed from our results.
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Fig. 8. Comparison between solution time and matrix fill time with
and without implementation optimization. The effect of the implementation
optimization is to reduce the average matrix filling time by a factor of 8.

ACKNOWLEDGMENT

The authors would like to acknowledge Ibrahim Elfadel
from IBM T.J. Watson Research Center for providing indus-
trial examples used for the validation of the performance of
FastMaxwell. This work was supported in part by Semicon-
ductor Research Corporation, MARCO, and by the National
Science Foundation.

REFERENCES

[1] K. Nabors and J. White, “FASTCAP A multipole-accelerated 3-D
capacitance extraction program,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 10, pp. 1447-1459,
November 1991.

[2] M. Kamon, M. J. Tsuk, and J.K. White, “FastHenry: A multipole-
accelerated 3-D inductance extraction program,” IEEE Transactions on
Microwave Theory and Techniques, vol. 42, no. 9, pp. 1750-1758,
September 1994.

[3] S. Kapur and D.E. Long, “Large Scale Full-Wave Simulation,” In Proc.
41st Design Automation Conf., pages 744-749, 2004.

[4] Joel R. Phillips and J. K. White, “A precorrected-FFT method for
electrostatic analysis of complicated 3D structures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, pp. 1059-
1072, 1997.

[5] Z. Zhu, B. Song, and J. K. White. “Algorithms in FastImp: A fast and
wideband impedance extraction program for complicated 3-D geome-
tries.” In Proc. 40th Design Automation Conf., pages 712-717, 2003.

[6] S. Kapur and D.E. Long, “IES3: A fast integral equation solver for effi-
cient 3-dimensional extraction,” International Conference on Computer
Aided-Design, pp. 448-455, 1997.

[7] M. Kamon, N. Marques and J. K. White, “Generating compact guar-
anteed passive reduced-order models of 3-D RLC interconnects” IEEE
Transaction on Advanced Packaging,Vol.27, Nov. 2004.

[8] A. E. Ruehli. “Equivalent Circuit Models for Three Dimensional Mul-
ticonductor Systems.” IEEE Trans. Microwave Theory Tech. Vol. 22.
March 1974.

[9] “http://www.rle.mit.edu/cpg/fastmaxwell.htm”
[10] M.I. Aksun. “A Robust Approach for the Derivation of Closed-Form

Green’s Functions.” IEEE Trans. Microwave Theory and Tech., Vol. 44,
No. 5, May 1996.

[11] Xin Hu, J.K. White, Jung Hoon Lee, L. Daniel, “Analysis of full-
wave conductor system impedance over substrate using novel integration
techniques”. In Proc. 42nd Design Automation Conf., pages 147-152,
2005.

[12] L. Daniel, J. Phillips, ”Model Order Reduction for Strictly Passive
and Causal Distributed Systems”, IEEE/ACM 39th Design Automation
Conference, New Orleans, Jun 2002.

[13] Luca Daniel, Simulation and Modeling Techniques for Signal Integrity
and Electromagnetic Interference on High Frequency Electronic Sys-
tems, Ph.D. thesis UCB EECS Department, 2003.

[14] K.A. Michalski, D. Zheng, “Electromagnetic Scattering and Radiation
by Surfaces of Arbitrary Shape in Layered Media, Part I: Theory.” IEEE
Trans. Antennas Propagat., Vo1.38.No. 3, March 1990.

[15] Xin Hu, Full-wave analysis of large conductor systems over substrates,
Ph.D. thesis MIT EECS Department, 2006.

[16] A. Komijani, A. Hajimiri, “A wideband 77GHz, 17.5dBm power ampli-
fier in silicon.” Proc. of the IEEE Custom Integrated Circuits Conference,
pages 571-574, Sept. 2005.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




