
Automatic Hardware Synthesis from Specifications: A Case Study

Roderick Bloem1 Stefan Galler1 Barbara Jobstmann1

Nir Piterman2 Amir Pnueli3 Martin Weiglhofer1

1 Graz University of Technology 2 EPFL Lausanne 3 Weizmann Institute

Abstract

We propose to use a formal specification language as
a high-level hardware description language. Formal lan-
guages allow for compact, unambiguous representations
and yield designs that are correct by construction. The idea
of automatic synthesis from specifications is old, but used to
be completely impractical. Recently, great strides towards
efficient synthesis from specifications have been made. In
this paper we extend these recent methods to generate com-
pact circuits and we show their practicality by synthesiz-
ing an arbiter for ARM’s AMBA AHB bus and a generalized
buffer from specifications given in PSL. These are the first
industrial examples that have been synthesized automati-
cally from their specifications.

1 Introduction

In the standard design flow for a block of hardware, an
implementation is first written and then verified, often using
a formal specification. In this paper we consider an alter-
native: we apply an automatic high-level synthesis process
which generates a correct-by-construction gate-level imple-
mentation directly from a specification written in the Prop-
erty Specification Language (PSL), thus removing the need
for hand-coding the circuit. For simplicity, we will refer
to this form of high-level synthesis as “synthesis”, but em-
phasize that it should not be confused with the synthesis of
a gate-level description from RTL code. In this paper, we
demonstrate the viability of the synthesis approach for the
derivation of correct code from a PSL specification.

Automatic synthesis of digital designs from (temporal)
logical specifications has always engaged the imagination
of many designers and has been considered as one of the
most ambitious and challenging problems in circuit design.
First identified as Church’s problem [3], several methods
have been proposed for its solution [2, 12]. The problem
was considered again in [11] in the context of synthesizing
reactive modules from a specification given in Linear Tem-
poral Logic (LTL), a subset of PSL. The method proposed in
[11] for a given LTL specification ϕ starts by constructing a
Büchi automaton, which is then converted into a determin-

istic Rabin automaton. This translation may reach a doubly
exponential complexity in the size of ϕ.

The high complexity established in [11] caused synthesis
to be deemed hopelessly intractable and discouraged many
practitioners from ever attempting to use it for system devel-
opment. Yet, there exist several interesting cases where, if
the specification of the design to be synthesized is restricted
to simpler automata or partial fragments of LTL, it has been
shown that the synthesis problem can be solved in polyno-
mial time. Major progress has been achieved in [10], which
shows that designs can be automatically synthesized from
LTL formulas belonging to the class of generalized reactiv-
ity of rank 1 (GR(1)), in time N3 where N is the size of the
state space of the design. The class GR(1) covers the vast
majority of properties that appear in specifications of cir-
cuits. We have implemented the approach of [10] in a tool
called Anzu1, and extended it to produce not only a BDD
representing a set of possible implementations, but also an
actual circuit.

We demonstrate the application of the synthesis method
by means of two examples. The first is one of the AMBA
buses [1], a characteristic industrial case which is not too
big. The second is a generalized buffer from IBM, for which
a good specification was available. Previous work on syn-
thesis has only considered toy examples such as a simple
mutual exclusion protocol, an elevator controller, or a traf-
fic light controller [5, 10, 6]. This is the first time a realistic
industrial example has been tackled.

The paper continues as follows: in Section 2, we (briefly)
introduce the synthesis method developed in [10]. In Sec-
tion 3, we describe the AMBA bus protocol, give a formal
specification of the arbiter, and discuss the results of syn-
thesis. In Section 4, we do the same for the generalized
buffer. In Section 5 we describe how the circuit is gener-
ated. We discuss lessons learned in Section 6 and present
our conclusions in Section 7.

1Anzu and the specifications described here can be found at
http://www.ist.tugraz.at/staff/jobstmann/anzu/

1

978-3-9810801-2-4/DATE07 © 2007 EDAA

2 Preliminaries

Property Specification Language. We will not give an
introduction to PSL. A thorough introduction to PSL can
be found in [4]. The specifications shown in this paper
should be easy to read for someone familiar with LTL. In
particular, always , eventually! , and next! correspond
to G, F , and X , respectively. The until operator requires
the first operand to hold either forever or up to and includ-
ing the time that the second operand holds. The construct
φ before ψ is equivalent to ¬ψ until φ. We use one op-
erator that is not in PSL: φ until [i] ψ means that φ holds
either forever or up to and including the ith time that ψ
holds.
Synthesis of GR(1) Properties We briefly review the re-
sults presented in [10] on synthesizing GR(1) properties.
We are interested in the question of realizability of PSL

specifications (cf. [11]). Assume two sets of Boolean vari-
ables X and Y . Intuitively X is the set of input variables
controlled by the environment and Y is the set of sys-
tem variables. Realizability amounts to checking whether
there exists an open controller that satisfies the specifica-
tion. Such a controller can be represented as an automaton
which, at any step, reads values of the X variables and out-
puts values for the Y variables.

Here we concentrate on a subset of PSL for which real-
izability and synthesis can be solved efficiently. The spec-
ifications we consider are of the form ϕ = ϕe → ϕs. We
require that ϕα for α ∈ {e,s} can be rewritten as a conjunc-
tion of the following parts.
• ϕα

i – a Boolean formula which characterizes the initial
states of the implementation.

• ϕα
t – a formula of the form

∧
i always Bi where each

Bi is a Boolean combination of variables from X ∪Y
and expressions of the form next! v where v ∈ X if
α = e, and v ∈ X ∪Y otherwise.

• ϕα
g – has the form

∧
i∈I always eventually! Bi

where each Bi is a Boolean formula.
In order to allow formulas of other forms (e.g.,
always (p → (q until r)) where p, q, and r are Boolean)
we augment the set of variables by adding deterministic
monitors. Deterministic monitors are variables whose be-
havior is deterministic according to the choice of the in-
puts and the outputs. These monitors follow the truth
value of the expression nested inside the always oper-
ator. We rewrite these types of formulas to the form
always eventually! b where b is a Boolean formula us-
ing the variables of the monitor. (An example can be found
in Section 3.3.) It should be noted that even with these re-
strictions, all possible (finite state) designs can be expressed
as a set of properties.

We reduce the realizability problem of a PSL formula to
the decision of the winner in an infinite two-player game
played between a system and an environment. The goal of

the system is to satisfy the specification regardless of the
actions of the environment. A game structure is a multi-
graph whose nodes are all the truth assignments to X and
Y . A node v is connected by edges to all the nodes v′ such
that the truth assignments to X and Y satisfy ϕe

t ∧ϕs
t , where

v supplies the assignments to the current values and v′ to the
next values. We then group all the edges that agree on the
assignment of X in v′ to one multi-edge. A play starts by the
environment choosing an assignment to X and the system
choosing a state in ϕe

i ∧ϕs
i that agrees with this assignment.

A play proceeds by the environment choosing a multi-edge
and the system choosing one of the nodes connected to this
multi-edge. The system wins if this interaction produces an
infinite play that satisfies ϕe

g → ϕs
g.

We solve the game, attempting to decide whether the
game is winning for the environment or the system. If the
environment is winning the specification is unrealizable. If
the system is winning, we synthesize a winning strategy.
This strategy, a BDD, is a nondeterministic representation
of a working implementation. (Efficiently extracting a cir-
cuit from this BDD is one of the subjects of the paper.) For-
mally, we have the following.

Theorem 1. [10] Given sets of variables X and Y and
a PSL formula ϕ of the form presented above with m
and n conjuncts, we can determine using a symbolic al-
gorithm whether ϕ is realizable in time proportional to
(mn2d+|X |+|Y |)3 where d is the number of variables added
by the monitors for ϕ.

3 AMBA AHB Case Study

3.1 Protocol

ARM’s Advanced Microcontroller Bus Architecture
(AMBA) [1] defines the Advanced High-Performance Bus
(AHB), an on-chip communication standard connecting
such devices as processor cores, cache memory, and DMA
controllers. Up to 16 masters and up to 16 slaves can be
connected to the bus. The masters initiate communication
(read or write) with a slave of their choice. Slaves are pas-
sive and can only respond to a request. Master 0 is the de-
fault master and is selected whenever there are no requests
for the bus.

The AHB is a pipelined bus. This means that different
masters can be in different stages of communication. At one
instant, multiple masters can request the bus, while another
master transfers address information, and a yet another mas-
ter transfers data. A bus access can be a single transfer or
a burst, which consists of a specified or unspecified number
of transfers. Access to the bus is controlled by the arbiter,
which is the subject of this section. All devices that are con-
nected to the bus are Moore machines, that is, the reaction
of a device to an action at time t can only be seen by the
other devices at time t +1.

2

The AMBA standard leaves many aspects of the bus un-
specified. The protocol is at a logic level, which means that
timing and electric parameters are not specified; neither are
aspects such as the arbitration protocol.

We will now introduce the signals used in the AHB. The
notation S[n:0] denotes an (n+1)-bit signal.

• HBUSREQi – A request from Master i to access the bus.
Driven by the masters.

• HLOCKi – A request from Master i to receive a locked
(uninterruptible) access to the bus. (Raised in combi-
nation with HBUSREQi.) Driven by the masters.

• HMASTER [3:0] – The master that currently owns the
address bus (binary encoding). Driven by the arbiter.

• HREADY – High if the slave has finished process-
ing the current data. Change of bus ownership and
commencement of transfers only takes place when
HREADY is high. Driven by the slave.

• HGRANTi – Signals that if HREADY is high,
HMASTER = i will hold in the next tick. Driven by
the arbiter.

• HMASTLOCK – Indicates that the current master is per-
forming a locked access. If this signal is low, a burst
access may be interrupted when the bus is assigned to
a different master. Driven by the arbiter

The following set of signals is multiplexed using HMASTER
as the control signal. For instance, although every master
has an address bus, only the address provided by the cur-
rently active master is visible on HADDR.

• HADDR[31:0] – The address for the next transfer. The
address determines the destination slave.

• HBURST[1:0] – One of SINGLE (a single transfer),
BURST4 (a four-transfer burst access), or INCR (un-
specified length burst).

The list of signals does not contain the data transfer signals
as these do not concern the arbiter. (Ownership of the data
bus follows ownership of the address bus in a straightfor-
ward manner.) Bursts of length 8 or 16 are not taken into
account, nor are the different addressing types for bursts.
Adding longer bursts only lengthens the specification and
the addressing types do not concern the arbiter. Further-
more, as an optional feature of the AHB, a slave is allowed to
“split” a burst access and request that it be continued later.
We have left this feature out for simplicity, but it can be
handled by our approach.

A typical set of accesses is shown in Fig. 1. (Please ig-
nore the DECIDE, START, and LOCKED signals for now.)
At time 1, Masters 1 and 2 request an access. Master 1 re-
quests a locked transfer. The access is granted to Master 1
at the next time step, and Master 1 starts its access at time
3. Note that HMASTER changes and HMASTLOCK goes
up. The access is a BURST4 that cannot be interrupted. At
time 6, when the last transfer in the burst starts, the arbiter
prepares to hand over the bus to Master 2 by changing the

0 1 3 4 5 6 7 82

0 1 3 4 5 6 7 82

A10 A11 A12 A13 A20

21

BURST4 SINGLE

HCLK

HBUSREQ1

HLOCK1

HBUSREQ2

HLOCK2

HREADY

HBURST

HGRANT1

HGRANT2

HMASTER

HMASTLOCK

HADDR

DECIDE

START

LOCKED

Figure 1. An example of AMBA bus behavior

grant signals. However, HREADY is low, so the last transfer
is extended and the bus is only handed over in time step 8,
after HREADY has become high again.

3.2 Specification

This section contains the specification of the arbiter. To
simplify the specification, we have added three auxiliary
variables, START, LOCKED, and DECIDE, which are driven
by the arbiter. Signal START indicates the start of an access.
In Fig. 1, for instance, START is high in Step 3 and 8 and low
otherwise. The master only switches when START is high.
The signal LOCKED indicates if the bus will be locked at the
next start of an access. Signal DECIDE is described below.

We group the properties into three sets. The first set of
properties defines when a new access is allowed to start, the
second describes how the bus has to be handed over, and
the third describes which decisions the arbiter makes. We
distinguish guarantees, which are properties that the arbiter
must fulfill, and assumptions, which are properties that the
arbiter’s environment must fulfill. The formal PSL specifi-
cation is given in Table 1.

Starting an Access

Assumption 1. During a locked unspecified length burst,
leaving HBUSREQi high locks the bus. This is forbidden by
the standard.

Assumption 2. Leaving HREADY low locks the bus, the
standard forbids it.

Assumption 3. The lock signal is asserted by a master at
the same time as the bus request signal.

Guarantee 1. A new access can only start when HREADY
is high.

3

Table 1. PSL specification

A1
∀i : always ((HMASTLOCK∧HBURST = INCR∧HMASTER = i)

→ next! eventually! ¬HBUSREQi)
A2 always eventually! HREADY

A3 always (HLOCKi → HBUSREQi)
G1 always (¬HREADY → next! ¬START)

G2
∀i : always ((HMASTLOCK∧HBURST = INCR∧START∧

HMASTER = i) → next! (¬START until ¬HBUSREQi))

G3
∀i : always (HMASTLOCK∧HBURST = BURST4∧START →

(HREADY∧next! (¬START until [3] HREADY))∨
(¬HREADY∧ (next! ¬START until [4] HREADY)))

G4 ∀i : always (HREADY → (HGRANTi ↔ next! HMASTER = i))
G5 always (HREADY → (LOCKED ↔ next! HMASTLOCK))

G6
∀i : always (next! ¬START →

((HMASTER = i ↔ next! HMASTER = i)∧
(HMASTLOCK ↔ next! HMASTLOCK)))

G7
∀i : always ((DECIDE∧next! HGRANTi) →

(HLOCKi ↔ LOCKED))

G8
always (¬DECIDE → ∧

i(HGRANTi ↔ next! HGRANTi))
always (¬DECIDE → (LOCKED ↔ next! LOCKED))

G9
∀i : always (HBUSREQi →

eventually! (¬HBUSREQi∨HMASTER = i))

G10
∀i 	= 0 : always (¬HGRANTi →

(HBUSREQi before HGRANTi))
always (DECIDE∧∀i : ¬HBUSREQi → next! HGRANT0)

G11
DECIDE∧START∧HGRANT0∧HMASTER = 0∧

¬HMASTLOCK∧∀i 	= 0 : ¬HGRANTi

A4 ∀i(¬HBUSREQi∧¬HLOCKi)∧¬HREADY

Guarantee 2. When a locked unspecified length burst
starts, a new access does not start until the current master (i)
releases the bus by lowering HBUSREQi.

Guarantee 3. When a length-four locked burst starts, no
other accesses start until the end of the burst. We can only
transfer data when HREADY is high, so the current burst
ends at the fourth occurrence of HREADY. (In the formula,
we treat the cases where HREADY is true initially separately
from the case in which it is not.)

Granting the Bus

Guarantee 4. The HMASTER signal follows the grants:
When HREADY is high, HMASTER is set to the master that
is currently granted. This implies that no two grants may
be high simultaneously and that the arbiter cannot change
HMASTER without giving a grant.

Guarantee 5. Whenever HREADY is high, the signal
HMASTLOCK copies the signal LOCKED.

Guarantee 6. If we do not start an access in the next time
step, the bus is not reassigned and HMASTLOCK does not
change.

Deciding the Next Access

Signal DECIDE indicates the time slot in which the arbiter
decides who the next master will be, and whether its access
will be locked. The decision is based on HBUSREQi and
HLOCKi. (For instance, DECIDE is high in Step 1 and 6 in

Fig. 1.) Note that a decision is executed at the next START
signal, which can occur at the earliest two time steps after
the HBUSREQi and HLOCKi signals are read. (See Fig. 1,
the signals are read in Step 1 and the corresponding access
starts at Step 3.)

Guarantee 7. When the arbiter decides to grant the bus, it
uses LOCKED to remember whether a locked access was
requested.

Guarantee 8. We do not change the grant or locked signals
if DECIDE is low.

Guarantee 9. We have a fair bus. Note that this is not re-
quired by the AMBA standard, and there are valid alterna-
tives, such as a fixed-priority scheme. (Without this prop-
erty, there is no need for the arbiter to serve any master at
all.)

Guarantee 10. We do not grant the bus without a request,
except to Master 0. If there are no requests, the bus is
granted to Master 0.

Guarantee 11. An access by Master 0 starts in the first
clock tick and simultaneously, a decision is taken. Thus,
the signals DECIDE, START, and HGRANT0 are high and all
others are low.

Assumption 4. We assume that all input signals are low ini-
tially.

3.3 Synthesis

As explained in Section 2, not all PSL specifications
can be synthesized directly. Rather, we first have to build
deterministic monitors for the formulas A1, G2, G3, and
G10. Although there are formulas for which no determin-
istic monitor exists, and constructing such monitors is hard
in general [8], constructing them is very simple for the for-
mulas considered in this paper.

For instance, let PRE be HMASTLOCK ∧ HBURST =
INCR∧HMASTER = i. Guarantee 2 (for one master) reads

always ((START∧PRE) →
next! (¬START until ¬HBUSREQi)).

Figure 2 shows the automaton for this formula, constructed
using the standard approach to construct Büchi automata
from LTL formulas (e.g., [15]) using a slightly modified
form of the standard expansion rules. In particular, we used
the expansion rule φ until q equals (q∧ φ)∨ (¬q∧ φ∧
next! (φ until q)) and the fact that (START∧ PRE) → φ
equals (¬START∨¬PRE)∨ (START∧PRE∧φ).

Note that deterministic automata are easily represented
in PSL by a set of formulas of the form always (s∧ i →
next! (s′)), one for each edge, where s and s′ identify states
and i is an input.

After the specification has been brought into the proper
form, it is synthesized using the algorithm of [10]. Sub-

4

si

¬START∨¬PRE

¬si

¬START∧¬HBUSREQi

¬START∧HBUSREQi
START∧PRE

Figure 2. Monitor for Guarantee 2

sequently, a circuit is constructed using the techniques de-
scribed in Section 5, optimized using SIS’ script.rugged
and then mapped by SIS using stdcell2 2 [13].

Synthesis for a master with 1 client takes 0.7s (time spent
by SIS not included) and yields a circuit of size 2.9k (SIS
standard-cell grid count) with a delay of 17. For two Mas-
ters we have 7.1s, size 32k, and delay 45. For three masters
we get 200s, size 79k, delay 63. For four masters we need
2700s and SIS is unable to map the circuit. Minimization
by SIS yielded an improvement in size of one third through-
out. In contrast, a manual implementation for 16 masters
has size 11k and delay 25.

The automatically generated arbiter implements a round-
robin arbitration scheme. This can be explained from the
construction of the strategy in the synthesis algorithm, but
it is also the simplest implementation of a fair arbiter. We
have validated our specification by combining the result-
ing arbiter with manually written masters and clients, with
which it cooperates without problems.

4 Generalized Buffer Case Study

In this section we briefly describe a case study that we
performed on a generalized buffer2. The buffer communi-
cates with four senders and two receivers using two differ-
ent four-stage handshake protocols. It receives data from
the senders in an arbitrary order and serves the receivers in
round-robin order. The buffer contains a FIFO to hold data
until it can be sent to the receivers.

Since the buffer is a tutorial design used by IBM for
teaching PSL, it comes with a good informal specification
and a relatively complete formal specification. It was quite
easy to complete the specification. Most importantly, we
only specified the control logic, assuming that an imple-
mentation of the FIFO was given. In order for the design
to be realizable, we needed an abstract specification of the
FIFO. It was sufficient to assume that putting data into the
queue results in a nonempty queue and removing data re-
sults in a queue that is not full. The initial circuit would
ignore the FIFO: it waited until it could send data to a re-
ceiver before accepting data from a sender. This was easily
remedied by requiring that the buffer not remain idle when a

2www.haifa.ibm.com/projects/verification/RB Homepage/tutorial3/

request from a sender occurs. The full specification consists
of 12 guarantees and 4 assumptions.

The buffer synthesizes in 2 seconds and the resulting cir-
cuit has size 63k and a delay of 60.

5 Generating Circuits from BDDs

The synthesis approach presented in [10] constructs a
strategy from which a sequential circuit can be constructed.
The strategy, represented as a BDD, is a relation between
the inputs and the current states on the one side and the out-
puts and next states on the other. Initial experiments using
the approach of [7] to generate combinational logic from
the strategy yielded extremely large circuits. Our current
approach generates combinational logic using the following
pseudo code, where S is the Strategy and O\o denotes set of
combinational outputs excluding output o. The algorithm
proceeds one combinational output at a time, generating a
function that is consistent with the relation for that output.
for all combinational outputs o do

S’ = exists O\o . S

p = positive cofactor of o in S’

n = negative cofactor of o in S’

// note: p and n in general incomparable

careset = p*!n + !p*n

f[o] = p minimized wrt. careset

// keep relation between outputs

S = S in which o is substituted by f[o]

od

The result is an array f of BDDs, which is written to
a file using CUDD’s DumpBlif command [14]. This ap-
proach, in combination with minimization of the strategy
with respect to the reachable states yields an improvement
of more than an order of magnitude in the size of the re-
sulting circuit over [7]. (Note that [7] solves a more general
problem: that of extracting a circuit that can exhibit any
behavior consistent with the relation. Our circuit only im-
plements one such behavior.) The generation of the circuit
from the BDD currently takes the major part of the time to
synthesize a circuit.

6 Discussion

In this section we discuss the most important benefits and
drawbacks of automatic synthesis, as we perceive them.

Writing a complete formal specification for the arbiter
was not trivial. Many aspects of the arbiter are not defined
in ARMs standard. Such ambiguities would lead to long dis-
cussions on how someone implementing a bus device could
read the standard, and which behavior the arbiter should al-
low. Note that the same problem occurs when writing a
VERILOG implementation.

Second, it is not trivial to translate the informal specifica-
tion to formulas. One of the important insights when writ-
ing the specification of the arbiter was that the additional

5

signals, START, DECIDE, and LOCKED were needed. This
problem also occurs when we attempt to formally verify a
manually coded arbiter, in which case the same signals are
useful. (In fact, these signals occur, in one form or other, in
our manual implementation as well.)

We did not have the same problems with the generalized
buffer. The informal specification was clear and the formal
specification could be reused to a large extent.

The effort for a manual implementation of an arbiter for,
say, four masters is not much different from that for 16 mas-
ters. The same is not true for automatic synthesis: the time
to synthesize the arbiter grows with the number of masters
as does the size of the generated circuit. Unfortunately, the
generated gate-level output is complicated and cannot be
changed by hand. The resulting circuit can likely be im-
proved further by using more intelligent methods to gener-
ate the circuits, which will be important if this methodology
is to become accepted. The problem is related to synthesis
of partially specified functions with the important charac-
teristic that the space of allowed functions is very large.

On the upside, the resulting PSL specification is short,
readable, and easy to modify, much more so than a manual
implementation in VERILOG. We expect that it is easier to
learn the way the arbiter functions from the formal specifi-
cation than from a manual VERILOG implementation. The
synthesis algorithm was also a great tool to get the specifi-
cations to be consistent and complete.

Automatic synthesis is first and foremost applicable to
control circuitry. We are looking into methods to benefi-
cially combine manually coded data paths with automati-
cally synthesized control circuitry.

Although this approach removes the need for verification
of the resulting circuit, the specification itself still needs to
be validated. The lack of tools for debugging specifications
was apparent in our exercise. Some work on such tools has
taken place [9], but further research, in particular in connec-
tion with realizability, is needed.

7 Conclusions

When specifications are available early, automatic syn-
thesis can be used to obtain a first implementation, yield-
ing a functional test environment when critical blocks are
replaced by manual implementations. Furthermore, these
implementations function as a valuable sanity check for the
specification, which is very important when a future manual
implementation is to be based on the formal specification.

Although automatic synthesis has long been pursued,
only recent developments have made it applicable to real-
istic examples. This paper presents the first time that real-
life blocks have been synthesized from their specifications.
The circuits that we obtain are quite large, but the approach
is still very young and only a few avenues for optimization

have been pursued. Our simple algorithm to generate cir-
cuits, for instance, yielded an improvement of more than
an order of magnitude. We expect that future research will
yield further large improvements, making automatic syn-
thesis a real alternative to manual coding of some types of
circuits.

Acknowledgments This work was supported in part by
the European Commission under contract number 507219
(PROSYD). We are grateful to Karin Greimel and Milan
Milinkovic for their help with the implementation and to Margaret
Rugira, Chris Styles and Colin Campbell at ARM for their help
with understanding the specification. (This does not constitute an
endorsement of the paper by ARM.)

References

[1] ARM Ltd. AMBA Specification (Rev. 2). Available from
www.arm.com, 1999.

[2] J. Büchi and L. Landweber. Solving sequential conditions by
finite-state strategies. Trans. Amer. Math. Soc., 138:295–311,
1969.

[3] A. Church. Logic, arithmetic and automata. In Proc. 1962
Int. Congr. Math., pages 23–25, 1963.

[4] C. Eisner and D. Fisman. A Practical Introduction to PSL.
Springer-Verlag, 2006.

[5] A. Harding, M. Ryan, and P. Schobbens. A new algorithm
for strategy synthesis in LTL games. In Tools and Algorithms
for the Construction and the Analysis of Systems, pages 477–
492, 2005.

[6] B. Jobstmann and R. Bloem. Optimizations for LTL synthe-
sis. In Conference on Formal Methods in Computer Aided
Design, pages 117–124, 2006.

[7] J. H. Kukula and T. R. Shiple. Building circuits from rela-
tions. In Conference on Computer Aided Verification, pages
113–123, 2000.

[8] O. Kupferman and M. Y. Vardi. Freedom, weakness, and
determinism: From linear-time to branching-time. In Proc.
13th IEEE Symposium on Logic in Computer Science, 1998.

[9] I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and
A. Cimatti. Formal analysis of hardware requirements. In
Design Automation Conference, 2006.

[10] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1)
designs. In Conference on Verification, Model Checking, and
Abstract Interpretation, pages 364–380, 2006.

[11] A. Pnueli and R. Rosner. On the synthesis of a reactive mod-
ule. In Proc. 16th ACM Symp. Princ. of Prog. Lang., pages
179–190, 1989.

[12] M. Rabin. Automata on Infinite Objects and Church’s Prob-
lem, volume 13 of Regional Conference Series in Mathemat-
ics. American Mathematical Society, 1972.

[13] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Bray-
ton, and A. Sangiovanni-Vincentelli. Sequential circuit de-
sign using synthesis and optimization. In International Con-
ference on Computer Desgin, pages 328–333, 1992.

[14] F. Somenzi. CUDD: CU Decision Diagram Package. Uni-
versity of Colorado at Boulder, ftp://vlsi.colorado.edu/pub/.

[15] F. Somenzi and R. Bloem. Efficient Büchi automata from
LTL formulae. In Conference on Computer Aided Verifica-
tion (CAV’00), pages 248–263, 2000.

6

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

