
A Compositional Approach to the Combination of Combinational and Sequential

Equivalence Checking of Circuits Without Known Reset States

In-Ho Moon Per Bjesse Carl Pixley

Advanced Technology Group

Synopsys Inc.

Abstract

As the pressure to produce smaller and faster designs in-

creases, the need for formal verification of sequential trans-

formations increases proportionally. In this paper we de-

scribe a framework that attempts to extend the set of de-

signs that can be equivalence checked. Our focus lies in

integrating sequential equivalence checking into a standard

design flow that relies on combinational equivalence check-

ing today. In order to do so, we can not make use of reset

state or reset sequence information (as this is not given in

combinational equivalence checking), and we need to mit-

igate the complexity inherent in the traditional sequential

equivalence checking algorithms. Our solution integrates

combinational and sequential equivalence checking in such

a way that the individual analyses benefit from each other.

The experimental results show that our framework can ver-

ify designs which are out of range for pure sequential equiv-

alence checking methods aimed designs with unknown reset

states.

1. Introduction

Formal equivalence checking is the standard way of

checking whether two designs (for example an RTL de-

scription, and a synthesized gate level netlist) have exactly

the same input-output behavior. The reduction of this prob-

lem to checking whether the designs correspond cone by

cone, combinational equivalence checking, has been the de-

facto standard way of deciding this problem for more than a

decade. However, due to the increasing pressures to synthe-

size smaller and faster designs, there is a large incentive to

move to a synthesis flow where transformations are utilized

that do not preserve a cone-by-cone mapping between the

pre- and post-synthesis designs.

In order to make this move, it is necessary to have tools

available to check sequential equivalence. While this prob-

lem could be solved by model checking [1], there are two

difficulties. First of all, the reset states of the pre- and

post-synthesis designs are generally not known in the early

phases of the design cycle. Second, since the equivalence

checking is performed between whole designs, the inher-

ent complexity of formal verification makes it vital to not

ignore the known problem structure. In fact, the general se-

quential equivalence checking problem is so hard that, with

the exception of some large semiconductor companies that

have developed in-house tools tailored to their particular de-

sign styles [4, 6], the industry standard is to either not use

sequential optimizations, or to not verify them formally.

In this paper, we present an attempt to integrate sequen-

tial equivalence checking into a combinational equivalence

checking environment in such a way that we get maximum

synergy between the different approaches, while not rely-

ing on the presence of reset states. In order to cope with

the complexity of the verification problem we attempt to

solve as large parts of the designs as possible without do-

ing a full sequential analysis. The use of mature combina-

tional verification engines makes it possible for us to cope

with datapaths and other hard to verify parts of the design

as long as we do not need to include them in the analysis

of the sequential transformations. This is often the case,

as many optimizations such as finite state machine (FSM)

re-encoding and optimization are local in nature.

We further mitigate the capacity problems by using an

abstraction refinement scheme that applies sequential ver-

ification on local neighborhoods only. By doing this we

make our capacity dependent on how big a portion of the

design is left unproven due to sequential optimizations and

how much surrounding logic is needed to prove each se-

quentially optimized point, rather than the design size.

The experimental results show that the resulting com-

bined framework increases the capacity significantly, and

that we are able to verify a large number of sequentially

optimized industrial designs. All but the simplest of the

designs we check are not verifiable using naive sequential

equivalence checking due to capacity problems. Our com-

bined verification approach, however, can both prove de-

signs equivalent and diagnose bugs.

The contribution in this paper is twofold. First of all,

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



we define a notion of equivalence that is compositional, and

that allows us to combine results from sequential and com-

binational analysis. Our equivalence notion is essentially a

simpler version of the theoretical framework in [4] that does

not rely on the use of manually added properties. We also

discuss precisely in what sense our notion of equivalence

implies correctness. Second, we describe completely auto-

mated tool that leverages our theory to prove equivalence

between sequentially optimized designs.

2. Preliminaries

In the remainder of this paper, we will concern ourselves

with the equivalence checking of standard synchronous cir-

cuits. In particular, we assume that all circuits are free of

combinational loops. We use the notation C(s0, π) = s1 to

denote that s1 is the state reached when starting the circuit

C in the state s0, and applying the input sequence π. We

use the notation Output(C, s0, πi) = πo to denote that πo

is the output sequence resulting when starting C in the state

s0, and applying the input sequence πi.

Let us define an equivalent state pair (ESP) for two

circuits C1 and C2 to be a pair (s0, s1) such that

Output(C0, s0, π) = Output(C1, s1, π) for all input se-

quences π. We will say that two circuits are I/O equivalent

from some starting point if they will provide identical out-

put patterns forever, assuming that they are given the same

inputs.

We will be concerned with compositional use of equiva-

lence checking. We define a well partitioned design to be a

partitioning of a particular design’s gates and registers into

a finite number of sets such that every gate and register be-

longs to a unique set (the restriction of gates to belong to

a unique partition is not strictly necessary as shared gates

could be duplicated without changing the semantics of a

given design). Inputs of a partition that are not inputs of

the overall design are referred to as pseudo inputs.

Without loss of generality, we define a partitioned equiv-

alence checking problem to consist of two well partitioned

circuits together with (1) a one-to-one matching between

the partitions, and (2) one-to-one matchings of all partition

inputs and outputs. For technical reasons that will become

clear in Section 5, we require that matched partition out-

puts depend combinationally on precisely the same pseudo

inputs.

3. Initialization of circuits

When power is connected to a circuit, its state holding

elements will have random contents. However, for a circuit

to function, it is likely that a number of internal state ma-

chines and data registers have to start in particular states,

and have known initial contents, respectively. Most circuits

will therefore have a means to force the circuit into a known

region of operation from the nondeterministic initial state.

One popular notion of initialization is synchronizability:

A circuit is said to be synchronizable if there is an input

sequence π that brings the circuit from all system states to

some particular state s0 (formally, C(si, π) = s0 for all

system states si). We will refer to such a state s0 as an ini-

tial state. There are numerous relatively cheap heuristics

that allow a verification engineer to show that a design is

synchronizable; a popular choice is to use three valued sim-

ulation to find a sequence that takes the all-X value to some

completely specified binary state.

While requiring designers to produce synchronizable cir-

cuits would seem attractive, the cost would be excessive in

many cases. For example, it would require a large amount

of on-chip wiring to force the memory bank in a FIFO into a

deterministic state at bootup. Moreover, the implementation

could easily be engineered so that the particular values in

the empty slots post-reset do not matter. However, if the de-

sign let the empty slots contain uninitialized values after re-

set, it can clearly not be synchronizable. There would hence

be advantages to a notion of initialization that allows a given

design to be forced into a set of states, all of which must

guarantee equivalent behavior. This generalization of syn-

chronizability is called weak synchronizability. Formally a

design is weakly synchronizable if there exists some input

sequence π that will take it from an arbitrary power up state

to some group of states {s0 . . . sk} that are equivalent in

the sense that Output(C, s0, π) = Output(C, s1, π) . . . =
Output(C, sk, π) for all π. Deciding whether a design is

weakly synchronizable is more involved than checking syn-

chronizability; the state-of-the-art combines the power of

modern SAT technology with the use of heuristics [9].

Weak synchronization sequences have the following in-

teresting property that we will make use of: If two machines

both are weakly synchronizable, then there exists an input

trace that weakly synchronizes both of them. To see this,

assume that π1 weakly synchronizes C1 and π2 weakly syn-

chronizes C2. Then the concatenation of π1 and π2 weakly

synchronizes both C1 and C2.

4. Combinational Equivalence

If one design has been transformed into another using

operations that only change the functionality of combina-

tional logic, it is possible to perform combinational equiva-

lence checking:

1. Use heuristics to construct a one-to-one match be-

tween inputs, state elements and outputs of the two de-

signs. If inputs, state elements and outputs can not be

matched, then fail.

2. For each cone of logic feeding an output or a regis-

ter in the implementation machine, check whether the



matched cone outputs have the same values under the

assumption that the inputs to the cones have the same

values. If this is true, we are done, otherwise fail.

If two circuits C1 and C2 are declared equivalent by

the above (naive) combinational equivalence checking al-

gorithm, then they have at least one equivalent state pair

(s1,s2). To see this, just construct s1 and s2 by assign-

ing zero to every state entry. This choice of s1 and s2

clearly respect the state mapping. Moreover, the combina-

tional equivalence check guarantees that states that respect

the state mapping produce the same outputs and only tran-

sitions to states that respect the state mapping.

The combinational equivalence checking algorithm is

correct in the following sense: If (1) the two designs are

weakly synchronizable and (2) the algorithm classifies the

designs as equivalent, then there exists an input sequence

whose application to both machines will guarantee that their

subsequent behavior is I/O equivalent forever. The reason

for this is simple: We have just showed that there exists

an equivalent state pair (s0, s1). Since the two machines

are weakly synchronizable, then there exists a sequence π

that weakly synchronizes both of them. Since (s0, s1) is an

equivalent state pair, then the state pair (s′
0
, s′

1
) reached by

applying π from (s0, s1) is an equivalent state pair. More-

over, since s′
0

and s′
1

are weak syncronization states, any

other pair that can be formed from weak syncronization

states will be an equivalent state pair.

It is important to realize that the correctness state-

ment for combinational equivalence checking has two an-

tecedents; in particular, a positive result from the equiva-

lence checking tool alone does not guarantee I/O equiva-

lence. If both designs lack a weak synchronizing sequence,

then there is no way to force the circuits into states where

they behave the same way. As the equivalence checking

method that we will present in Section 6 relies on combina-

tional equivalence checking at its heart, it will inherit this

trait.

5. Sequential equivalence

Many powerful synthesis transformations such as retim-

ing, FSM reencoding, and FSM optimization will produce

a transformed design that can not be checked by combina-

tional equivalence checking—specifically, there will be no

matching possible between the pre- and post-optimization

netlists. It is then necessary to apply more complex sequen-

tial equivalence checking algorithms. However, (1) sequen-

tial optimizations are often only applied to local portions of

the design, and the rest of the design may be combination-

ally equivalent, and (2) there may exists a pairing of com-

binationally failing regions that allows us to show each pair

sequentially equivalent.

Our starting point is thus that the user has not provided

us with reset state information (just like in combinational

equivalence checking), and that we need to come up with

a framework that allows us to combine results from com-

binational verification with sequential analysis results in a

compositional way.

Unfortunately, there are problems with the standard ap-

proaches to defining sequential equivalence in the absence

of reset states. Some notions, like alignability [8], are not

compositional in their nature—equivalence of parts does

not imply equivalence of the top-level designs. Other no-

tions of equivalence such as safe replacement [10] are com-

positional, but much more expensive to compute, as every

state of the two systems has to be examined. Moreover,

combinational equivalence does not imply alignability or

safe replacement.

Our solution is to define our notion of sequential equiva-

lence in the following way:

Definition 1. Two circuits are sequentially equivalent pre-

cisely when they have a nonempty set of equivalent state

pairs (nonempty ESP).

This equivalence definition has several nice properties

that make it preferable to previous attempts at defining

equivalence in the absence of reset states.

First, we can compute the equivalent state pairs of two

designs using BDD-based techniques exactly in the same

way as it is done in the first step of alignability computa-

tion [8]. Our complexity is hence guaranteed to be bounded

by the complexity of checking alignability.

Second, combinational equivalence implies our notion of

sequential equivalence: As shown in Section 4, if a combi-

national equivalence checking algorithms classifies two de-

signs as equivalent, they have at least one equivalent state

pair.

Third, we will now show that if we have a well-

partitioned equivalence checking problem between circuits

C1 and C2 and each partition has a nonempty set of equiv-

alent state pairs, then the overall designs have at least one

equivalent state pair.

Lemma 1. The partition outputs of a well-partitioned de-

sign can be sorted so that there are no combinational paths

between later and earlier entries in the ordering.

Proof. Take O1 ≺ O2 to mean that the partition output O2

is combinationally dependent on O1. It is clear that ≺ is

a partial order, as a mutual combinational dependency be-

tween two partition outputs would imply that the circuit has

a combinational cycle. Any finite partial order can be ex-

tended to a total order by a topological sort, so there exists

a total order < such that Oi < Oj implies that Oi is not

combinationally dependent on Oj .

By definition, matched partition outputs in our parti-

tioned equivalence checking problems depend combina-

tionally on precisely the same matched pseudo inputs. We



can thus lift the ordering to pairs of matched partition out-

puts.

Theorem 1. If all partitions in a partitioned equivalence

checking problem for C1 and C2 have nonempty set of

equivalent state pairs, then C1 and C2 have an equivalent

state pair.

Proof. Pick an equivalent state pair for each matched parti-

tion. Construct our candidate state pair (s0, s1) so that the

projection of this state onto each partition pair gives us the

picked partition state pair. This is possible as all partitions

are nonoverlapping.

Assume that C1 and C2 are in a state pair that is com-

prised by equivalent state pairs for all partitions, and that

the matched inputs to C1 and C2 have the same values.

Also assume that there exists a smallest partition output

pair (O1, O2) that does not have matching values. The

partition output pair will be combinationally dependent on

some real circuit inputs, some state elements, and some

pseudo inputs. As the circuit inputs match and the parti-

tions are in an equivalent state pair, some pseudo input pair

that O1 and O2 are combinationally dependent on must not

match. But this is impossible as (O1, O2) is the smallest

mismatched partition output pair. All partition output pairs

hence have matching values (and in particular, all circuit

outputs match). Moreover, all pseudo inputs to all partitions

match, so the next state of each partition is an equivalent

state pair.

Note that Theorem 1 does not require that partitions can

be ordered so that later partitions do not feed earlier parti-

tions; we only make use of the fact that the designs have no

combinational loops. Also note that our notion of sequen-

tial equivalence implies circuit correctness in precisely the

same sense (and using the same argument) as combinational

equivalence checking: If two designs are weakly synchro-

nizable, a classification of them as equivalent entails that

there exists an input sequence that can be used to force I/O

equivalence of the two circuits. As a consequence, a posi-

tive verification result needs to be accompanied by separate

checks of weak synchronizability for the two designs, just

like in the case of pure combinational equivalence checking.

When restricted to weakly synchronizable designs, our no-

tion of equivalence is a reflexive, transitive and symmetric

relation that implies alignability (this follows from Theorem

3 and Theorem 9 of [8]).

6. Implementation

We have implemented a general framework that ex-

tends a state-of-the-art industrial combinational equivalence

checker to handle sequential optimizations. Figure 1 shows

the general structure of our algorithm. The upper dashed re-

gion performs combinational equivalence checking and the

lower dashed region is concerned with sequential analysis.

We make use of design information such as the location of

counters, FSMs, datapath registers, and memory registers.

This information is extracted in the front end of our tool.

Our heuristic for performing sequential analysis on combi-

nationally failing regions is very naive (and we are working

on more elaborate schemes); however, it has worked sur-

prisingly well in practice.

Our overall algorithm alternates between cheap combi-

national verification and a more expensive sequential anal-

ysis that checks whether the region around the matched

but currently failing compare points has a nonempty set of

equivalent state pairs. If we have successfully analyzed all

output compare points, we know that the designs as a whole

have a nonempty set of equivalent state pairs, due to the re-

sults in Section 5. We refer to the high level structure of our

computation as the outer loop.

Read Designs

Matching

Combinational Verification

Sequential Verification

Find Regions to Verify

Design Information

Sequential Results

Constraints

Combinational Results

Figure 1. Outer loop.

6.1. Sequential analysis

Our implementation uses a modified BDD-based equiv-

alent state pair computation algorithm that can deal with

don’t care constraints encoded in the design description [7].

This modification is necessary to be able to process many

of the designs that we have encountered.

Our sequential analysis makes use of a simple abstrac-

tion refinement scheme. We form an initial verification out-

put boundary by making our output pair set contain the cur-

rent set of matched and combinationally failing compare

points. Given the output boundary, we form an abstraction

by including all the fanin logic and registers up to the clos-

est boundary containing only verified compare points.

Next, we attempt to compute the set of equivalent state

pairs.

If the resulting set of equivalent state pairs is nonempty,

we mark all the output compare points of the region as ver-

ified.

Alternatively, if the computation results in an empty set

of equivalent state pairs, we grow the current region back-



wards to include more context and repeat the equivalent

state pair computation. Our strategy for growing a given

region is coarse: If a matched FSM or counter register is

feeding the current region, we include the complete FSM or

counter immediately; we also expand the current inputs to

the region by the inclusion of all fanin logic and registers up

to the next excluded matched and verified compare points.

However, we do not expand a current input backwards if

doing so would include datapath registers or memory regis-

ters.

Finally, if the equivalent state pair computation times

out, we see if we can move our output boundary forward

by including the next set of compare points, and then form

a new abstraction and start the process over. In order to curb

the computation time, we only attempt to move our output

boundary forward a single time in each sequential verifica-

tion pass.

6.2. Use of sequential information

After each sequential verification pass, we construct a

new combinational verification problem as follows. For

every pair of sequentially equivalent compare points (ei-

ther primary outputs or registers), we compute the set of

unmatched or combinationally failing registers that transi-

tively drive only sequentially equivalent compare points,

and remove these registers from consideration. Compare

points that were diagnosed as sequentially failing could be

artifacts of a design bug, but is more likely to be the symp-

tom of an incorrect matching. We thus use this information

to refine our matching of registers.

If FSMs or counters have been identified and matched

in both designs by the combinational equivalence check-

ing tool, then we use the symbolic characterization of their

equivalent state pairs to compute combinational don’t care

constraints over the partition outputs. The constraints are

then used in the next iteration of combinational verification

(the extension of our theory to handle this is straight for-

ward, but we omit it for space reasons).

7. Experimental Results

Table 1 shows our experimental results, generated on a

1.4 Ghz Intel processor machine with 4 Gb memory run-

ning Red Hat Linux 7.2. In the table, the columns Rs and

Ri show the number of registers in specification and im-

plementation designs. The two columns (I and O) show

the number of inputs and outputs in the design. Next, the

columns Cf and Ct contain the number of combination-

ally failing compare points in the first round of combina-

tional verification, and the number of total compare points.

Note that the total number of compare points is not neces-

sarily the same as the sum of primary outputs and registers

in the design since we can have compare points at hierarchi-

cal boundaries and some registers could be left unmatched.

Finally, the two columns Tc and Ts shows the total time in

seconds spent during combinational equivalence checking

and sequential equivalence checking respectively.

D Rs Ri I O Cf Ct Tc Ts

D1 28 21 17 8 21 39 4 3

D2 33 55 12 9 23 29 5 886

D3 53 50 29 31 18 79 8 3

D4 58 106 25 28 17 77 3 192

D5 104 98 9 30 68 102 20 82

D6 175 176 17 10 3 189 12 3

D7 216 216 31 5 14 247 8 1

D8 228 227 59 66 1 186 9 81

D9 259 259 118 78 1 375 34 20

D10 296 288 216 35 33 489 21 7

D11 6840 6840 399 312 558 7239 776 4654

D12 7265 7260 262 252 16 7490 213 120

Table 1. Experimental results.

Among the 12 designs, we have found two real bugs in

D2 and D12, and successfully verified all others. As in-

dicated by the number of initially failing compare points,

combinational equivalence checking alone cannot handle

any of the designs. All designs except D11 are proved us-

ing a single iteration of the outer loop; D11 needs two iter-

ations. Pure top-level sequential analysis through alignabil-

ity checking without any combinational verification could

only verify D1 and D3 within 24 hours. However, D1 was

easy enough that pure sequential checking took less time

than running our combination method, and our method was

about 18X faster than a pure sequential analysis in the case

of D3. We also tried our implementation of the SAT-based

alignability checking from [3] for the 10 harder designs, but

we could not solve any of them within 24 hours.

8. Related work

The most related work to ours is Khasidashvili and

coworker’s framework at Intel for alignability-based com-

positional equivalence checking [4]. However, there are

a number of differences between our approach and theirs.

First of all, the work in [4] is centered around the use

of manually added verification properties, whereas we fo-

cus on a flow that is completely automatic. Second, the

framework in [4] uses computationally expensive alignabil-

ity computations to check all subparts, whereas we apply

combinational techniques wherever possible. Moreover,

our notion of equivalence for a partition is easier to com-

pute than alignability as we do not need the aligning se-

quence computation. Our theory is essentially a simplified

version of the theory in [4] that allows the use of combi-

national results, while taking away the use of verification



properties.

In independent research to the work presented here,

Khasidashvili and coworkers recently presented a revised

equivalence checking method that aim to integrate combi-

national and sequential equivalence checking in a compo-

sitional manor [5]. In contrast to our approach, the work

in [5] presupposes knowledge of a sequence that is used to

force a design into a set of post-reboot “good” states. As our

method is aimed at integration in an traditional combina-

tional equivalence checking environment, we do not require

this information (but we could use it to prove weak syn-

chronizability or I/O equivalence in a compositional manor,

if we had it available). However, if a reboot sequence is

known we believe that the most computationally efficient

course of action is to compute reset states and use standard

model checking algorithms, rather than relying on modifica-

tions of equivalence notions aimed at designs with unknown

reset states.

There are other notions of sequential equivalence in the

absence of reset states, such as variations of safe replacabil-

ity [10]. However, as our notion of equivalence is easier to

compute than alignability, it is likely to be easier to compute

than safe replacibility for the reasons outlined in [4]. More-

over, as top-level alignability implies nonempty ESP, and

safe replacement for weakly synchronizable designs implies

alignability [3], we can show at least as many weakly syn-

chronizable designs equivalent as safe replacement check-

ing. Finally, combinational equivalence is compositional

with our notion of equivalence. This is not the case for safe

replacement.

Sequential equivalence checking of industrial designs

have been addressed in a number of other papers. Specifi-

cally, Mony and coworkers at IBM have developed a frame-

work for equivalence checking based on applying verifica-

tion transformations [6], Huang and coworkers have con-

structed a sequential equivalence checker called AQUILA

that uses ATPG and BDD techniques [2], and Stoffel et

al. have implemented a system that uses a representation

of state spaces based on the queue of transformations that

merge points [11]. Both AQUILA and the IBM equivalence

checker use abstraction refinement and make use of com-

binational verification. However, all of the three previous

approaches rely on the knowledge of the reset states of the

checked designs, and are hence not applicable to the prob-

lem that we are trying to solve.

9. Conclusions

We have presented a general framework for sequential

equivalence checking of designs without a known reset state

that integrates combinational and sequential analysis seam-

lessly. Our focus is to be able to show as many designs as

possible equivalent without having to resort to manual in-

tervention from the designer.

The experimental results showed that our proposed

framework was able to verify many industrial designs that

are not combinationally equivalent, while being out of range

for pure sequential equivalence checking methods that do

not rely on reset information.

As future work, we are investigating more efficient re-

finement strategies since our current strategy is excessively

greedy. We are also looking into ways of coping with the re-

sult of global sequential transformations such as retiming.

References

[1] E. Clarke, O. Grumberg, and D. A. Peled. Model Checking.

MIT Press, 2000.

[2] S.-Y. Huang, K.-T. Cheng, K.-C. Chen, F. Brewer, and C.-Y.

Huang. AQUILA: An equivalence checking system for large

sequential designs. IEEE Transactions on Computers, 2000.

[3] Z. Khasidashvili and Z. Hanna. SAT-based methods for se-

quential hardware equivalence verification without synchro-

nization. Electronic Notes in Theoretical Computer Science,

89(4):593–607, 2003.

[4] Z. Khasidashvili, M. Skaba, D. Kaiss, and Z. Hanna. The-

oretical framework for compositional sequential hardware

equivalence verification in presence of design constraints. In

Proceedings of the International Conference on Computer-

Aided Design, pages 58–65, San Jose, CA, Nov. 2004.

[5] Z. Khasidashvili, M. Skaba, D. Kaiss, and Z. Hanna. Post-

reboot equivalence and compositional verification of hard-

ware. In Formal Methods in Computer Aided Design, 2006.

[6] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman.

Exploiting suspected redundancy without proving it. In De-

sign Automation Conference, 2005.

[7] I.-H. Moon, P. Bjesse, and C. Pixley. Practical issues in

sequential equivalence checking through alignability: Han-

dling don’t cares and generating debug traces. In IEEE Inter-

national High Level Design Validation and Test Workshop,

2006.

[8] C. Pixley. A theory and implementation of sequential hard-

ware equivalence. IEEE Transactions on Computer-Aided

Design, 11(12):1469–1478, Dec. 1992.

[9] A. Rosenmann and Z. Hanna. Alignability equivalence of

synchronous sequential circuits. In International Workshop

on High Level Design Validation and Test, pages 111–114,

Cannes, France, Oct. 2002.

[10] V. Singhal, C. Pixley, A. Aziz, and R. K. Brayton. Theory of

safe replacements for sequential circuits. IEEE Transactions

on Computer-Aided Design, 20(2):249–265, Feb. 2001.

[11] D. Stoffel, M. Wedler, P. Warkentin, and W. Kunz. Struc-

tural FSM traversal. IEEE Transactions on Computer-Aided

Design, 23(5):598–619, May 2004.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




