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ABSTRACT 
Customizing the bypasses in pipelined processors is an effective 
and popular means to perform power, performance and 
complexity trade-offs in embedded systems. However existing 
techniques are unable to automatically generate test patterns to 
functionally validate a partially bypassed processor. Manually 
specifying directed test sequences to validate a partially bypassed 
processor is not only a complex and cumbersome task, but is also 
highly error-prone. In this paper we present an automatic 
directed test generation technique to verify a partially bypassed 
processor pipeline using a high-level processor description. We 
define a fault model and coverage metric for a partially bypassed 
processor pipeline and demonstrate that our technique can fully 
cover all the faults using 107,074 tests for the Intel XScale 
processor within 40 minutes. In contrast, randomly generated 
tests can achieve 100% coverage with 2 million tests after half 
day. Furthermore, we demonstrate that our technique is able to 
generate tests for all possible bypass configurations of the Intel 
XScale processor. 

1. INTRODUCTION 
Register bypasses or forwarding paths improve the performance 
of a processor by eliminating certain data hazards in pipelined 
processors [1]. With bypasses, additional data paths and control 
logic are added to the processor so that the result of an operation 
is available for subsequent dependent operations even before it is 
written to the register file. Although complete bypassing can yield 
the best possible performance, it incurs significant overheads on 
the cycle time, wiring area, and the power consumption of the 
processor. In embedded systems where power, area, and 
complexity are as critical as performance, partial bypassing is a 
popular approach to achieve increased performance at the cost of 
modest overheads [2], e.g. the popular Intel XScale 
microarchitecture [5] implements a partially bypassed pipeline. 
 

RF

F D OR X1 X2 WB

C5

C4C1

C3

Pipeline path

Data path

ADD R1, R2, R3

MUL R5, R3, R1

1 2 3 4 5 6

1 2 3 4, 5 6 7
cycles

C2

 
Figure 1: A simple pipelined architecture with bypasses 

Figure 1 shows an example of a 6-stage, partially bypassed 
processor. The processor pipeline contains only two bypasses C4, 

and C5. The bypass C5 connects X1 pipeline stage (Execution 
stage 1) to the second operand of the OR pipeline stage (Operand 
Read), and C4 is a bypass from the X2 pipeline stage (Execute 
stage 2) to the first operand of the OR pipeline stage. Thus in the 
processor pipeline in Figure 1, the first operand can be read only 
from RF (Register File) or the X2 pipeline stage. A fully bypassed 
processor would have 6 bypasses, 2 from each of the units X1, X2, 
and XWB, while a non-bypassed processor will have 0 bypasses. 
Since altering the bypass configuration does not affect the 
Instruction Set Architecture of the processor, therefore embedded 
processor designers often customize the bypasses between 
generations of a processor in order to tune the processor for the 
desired power/performance requirements. However, there are no 
existing techniques to automatically generate the test cases to 
verify the functional and timing correctness of a partial bypassed 
processor, and they have to be specified manually. Manually 
generating these test cases is not only a very complex and time-
consuming task, it is highly error-prone.  
The main challenge in generating directed test cases for a partially 
bypassed processor is that the test cases should verify that the 
bypass configuration in the implementation is exactly same as in 
the specification. This requires ensuring that i) bypasses absent in 
the specification are actually absent in the implementation, and ii) 
bypasses present in the specification are indeed present in the 
implementation. Any mismatch between the bypass configuration 
in the specification and the bypasses implemented can cause 
timing as well as functional errors. While it is absolutely 
necessary to detect and correct any functional faults, it is very 
important to correct and detect timing faults to be able to meet the 
power, performance constraints of the design. Existing techniques 
[4][12] only consider generating test cases to confirm the absence 
of bypasses, and thus fail to fully validate the design.  
Generating tests to check for the presence and absence of bypass 
necessarily requires the key capability of accurate pipeline hazard 
detection in partially bypassed processor pipeline. In other words, 
given a sequence of instructions, we should be able to determine 
whether there will be a pipeline hazard or not? If there is going to 
be a hazard, then a check to detect the presence of a hazard (or a 
pipeline stall) should be generated, while if there is no hazard, 
then a check to detect the absence of a hazard (or that the pipeline 
did not stall) should be generated. 
However existing pipeline hazard detection mechanisms use a 
constant operation latency based model and are therefore unable 
to accurately detect pipeline hazards in a partially bypassed 
processor pipeline [16]. In a partially bypassed processor pipeline, 
the concept of operation latency is ill-defined and accurate 
pipeline hazard detection requires not only detailed information 
about the structure of the pipeline, the flow of operations in the 
pipeline, the bypass configuration, dependent operations and the 
position and register information of the dependent operands. 
Shrivastava et al. [14] proposed the concept of Operation Tables 
to model partially bypassed processor pipelines. An Operation 
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Table is a unified representation of the structure of the processor 
and the register information of the operations. Operation Tables of 
the operations in a given schedule can be combined to accurately 
detect all the pipeline hazards, when the schedule is executed on 
the given processor pipeline model. In [15], the concept of 
Operation Tables was used to generate code for partially bypassed 
processors and achieve performance improvements. Furthermore, 
[15] demonstrated that customizing bypasses in a processor 
pipeline is a very lucrative way to achieve power performance 
tradeoffs without modifying the instruction set architecture of a 
processor. Thus designers are inclined and are designing partially 
bypassed processor pipeline, however, challenge still remains in 
verifying the correctness of a partially bypassed processor 
pipeline. 
In this paper we automatically generate test cases to verify the 
functionality and the timing correctness of the processor pipeline 
from a high level processor description. We specify the processor 
architecture, including the bypass configuration in a high-level 
Architecture Description Language (ADL) [3], and generate 
Operation Tables from it. We then propose a fault model for 
partially bypassed pipelines, and derive a coverage metric for it. 
Using the Operation Tables we generate 107,074 directed tests to 
achieve 100% coverage on the fault in the Intel XScale processor 
pipeline within 40 minutes. In contrast, randomly generated tests 
can achieve 100% coverage after 2 million tests with half day. 
Furthermore, we change the bypass configuration of the XScale 
and demonstrate that approach can be used to generate test cases 
for all bypass configurations in a reasonable amount of time. 

2. RELATED WORK 
2.1 Partial Bypassing 
Bypasses have been widely used in pipeline processor design to 
improve the performance of a processor [1][9]. However, the 
performance improvement due to full bypassing may be 
accompanied by a significant increase in the cycle time, chip area, 
energy consumption, wiring congestion, and design complexity. 
Partial bypassing has therefore been proposed to remove several 
low utilization bypasses from a design in order to reduce the 
power, cost and area of the design without significantly affecting 
the performance [10]. PBExplore [14] is a framework to explore 
the power-performance tradeoffs of bypass configurations, and 
ultimately design the bypass configuration of a processor. In 
PBExplore, authors describe a retargetable compiler generated 
code for the given bypass configuration using Operation Tables 
[15][16]. The executable generated is then simulated on a cycle-
accurate simulator and a power simulator, also parameterized on 
the same processor description to estimate the performance and 
the power consumption of the processor with the given bypass 
configuration. This accurate evaluation of each bypass 
configuration enables the designer to choose and implement the 
appropriate bypass configuration. However, no method has been 
proposed to verify the design of a partially bypassed processor. 
2.2 Processor Pipeline Test Generation 
The field of test generation for processor pipeline verification has 
been extensively explored. 
2.2.1 Test Generation for Instruction Set Architecture  
Early works concentrated on generating test patterns for the 
instruction set architecture of a processor. Aharon et al. [7] and 
Fine et al. [8] proposed a test program generation methodology for 
testing the instruction set architecture of processors. However, the 
instruction set description does not capture the bypasses in a 
processor. Furthermore the presence/absence of bypasses do not 
affect the instruction set architecture of a processor. As a result, 
these approaches can not generate directed tests for testing the 
processor bypasses. 
2.2.2 Test Generation for the Microarchitecture 
The next generation of works on processor pipeline test generation 
focused on generating tests for the microarchitecture of processors. 
Shen et al. [11] extract an abstract FSM model from the processor 

HDL description. However, they generate tests from 
implementation, and not a specification. As a result if the 
implementation has a different but correct bypass configuration, it 
will not be able to detect an error in the specification. Furthermore, 
it will not be possible to generate directed tests for bypasses, as it 
is very difficult to isolate the bypasses in a HDL description of a 
processor. 
Iwashita et al. [12] and Ur et al. [13] describe the processor 
microarchitecture in a high-level description. They then transform 
the pipeline description into a FSM model. The states relate to the 
units and the different types of instructions that it can hold. They 
then generate paths to cover every transition in the FSM. However, 
all three approaches cannot scale with the microarchitectural 
complexity and are therefore unusable for any realistic 
microarchitecture. Furthermore, they cannot generate directed 
tests for bypasses, because they abstract away the 
microarchitectural components and generate tests from a state 
machine, from where it is not possible to identify and isolate 
bypasses. 
2.2.3 Directed Test Generation 
Realizing that the number of tests required for complete testing a 
microprocessor is very large, and even impractical, recent 
approaches have focused on generating directed tests. Directed 
tests verify certain microarchitectural feature or property, and 
provide a quantitative handle on the coverage of the tests. Mishra 
et al. [4]  generate directed tests from a high-level processor 
description in the EXPRESSION ADL [3]. However, they do not 
model bypasses in their ADL description, and are therefore unable 
to generate test cases to verify a bypassed microarchitecture. 
Further, they propose to find out the set of operation sequences 
which can cause the stall (Stall Set) in the pipelined architecture, 
and check the correctness of the functional results. They do not 
generate tests for the (Activate Set), which implies they do not test 
for the presence of bypasses. However, any inconsistency between 
the bypasses and the bypass control logic may result in a timing or 
functional error. 
To conclude, none of the previous approaches model a partially 
bypassed processor pipeline and cannot generate directed tests to 
test a partially bypassed processor pipeline in a realistic machine.  
In this paper, we explicitly model partial bypasses in the 
architecture description language (ADL). We use Operation 
Tables to provide the capability to generate directed tests to verify 
for both the presence as well as the absence of the bypasses. We 
then propose fault models to exhaustively test the bypass 
configuration. However since the test cases are prohibitively large, 
dependent on the implementation style, we propose a constrained 
fault model to drastically reduce the number of tests. Our 
experimental results to generate tests for the Intel XScale 
microarchitecture demonstrate that our approach can be utilized to 
automatically generate test cases and verify the bypass 
configuration of a realistic processor in a reasonable time. 

3. OUR APPROACH 
Figure 2 outlines our approach for test generation for a partially 
bypassed processor. We describe the processor microarchitecture 
at a high level of abstraction in an Architecture Description 
Language (ADL). We develop fault models for partially bypassed 
processor pipelines, and define coverage metrics using these fault 
models. The test generator takes the processor description and the 
fault model/coverage metric as an input and generates directed test 
to cover the fault model, and verify the partially bypassed 
processor pipeline. 



 
Figure 2: ADL driven bypass test generation methodology 

3.1 Processor Description 
We describe the partially bypassed processor microarchitecture at 
a high level of abstraction. Figure 3 shows the 7-stages pipelined 
processor architecture at our level of representation. F, D, OR, X1, 
X2 are the pipeline stages in the processor.  

 
Figure 3: An example of a bypassed architecture 

The flow of operations is explicitly modeled in the pipeline. Each 
pipeline unit contains a list of operations that it supports, and the 
time they spend in the unit. The path of each operation in the 
pipeline can then be derived, and is represented by the block 
arrows in Figure 3. Pipeline units can read/write operands using 
read/write ports. A port may be connected to other ports in the 
Register File (RF), or other pipeline units via explicit directed 
connections. Bypasses are modeled simply as a connection 
between a write port on a pipeline unit and a read port on the OR 
pipeline unit. Thus the first operand in OR can be read from 
pipeline unit X2 via bypass C4, but not from X1. A more detailed, 
graphical model of the processor description in the ADL is 
presented in [17]. 
3.2 Operation Tables 
An Operation Table (OT) models the execution of an operation in 
the processor. As defined in Table 1, an OT is a DAG (Directed 
Acyclic Graph), whose nodes contain information about the 
pipeline unit in which the operation is being executed, and the 
operands are being read, written, and bypassed in that execution 
cycle. The edges of the DAG define a temporal ordering on the 
nodes. 
 

Table 1: Operation Table Definition 
OperationTable  := {otCycle} 
otCycle               :=  unit ros wos bos dos 
ros                      :=  ReadOperands {operand} 
wos                     := WriteOperands {operand} 
bos                     := BypassOperands {operand } 
dos                      := DestOperands {regNo} 
operand               := regNo {regConn } 

 
Table 2 shows the OT of the operation ADD R1, R2, R3 on the 
processor pipeline shown in Figure 3. Operation Tables have been 
used to accurately detect all pipeline hazards when a given 
schedule of instructions executes on a given processor pipeline, 
even in the presence of partial bypassing. In this work, we use the 
concept of OTs to automatically generate test sequences to verify 
the functional and timing correctness of a partially bypassed 
processor pipeline. 

Table 2: Operation Table of ADD R1 R2 R3 
1 F 
2 D 
3 OR 
                  ReadOperands                  
                         R2     
                                C1, C4 
                         R3 
                                C2, C5 
                  DestOperands 
                         R1, RF 
4 X1 
                  WriteOperands 
                         R1 

          C5 
5 X2 
                  WriteOperands 
                         R1 

         C4 
5 WB 
                  WriteOperands 
                         R1 
                               C3 

3.3 Bypass Test 
A bypass test is an ordered sequence of operations, which will try 
to use a bypass. A bypass test necessarily contains two operations, 
a Bypass Producer Operation (BPO), and a Bypass Consumer 
Operation (BCO). A BPO of a bypass is an operation, which can 
generate a bypass value from the operation in the unit at the 
source-end (write port) of the bypass. A BCO of a bypass is an 
operation that can receive a bypass value from the operation in the 
unit at the destination-end (read port) of the bypass. 
 

 
Figure 4: A bypass test to verify the presence of  the bypass C5 
In order to exercise a bypass, the operations, BPO and BCO 
should be correctly separated. For example, in Figure 1, to 
exercise the bypass C5, the difference between the schedule times 
of the BPO and BCO should 1 if the BPO is an ADD operation, 
but it should be 2, if the BPO is a MUL operation. This is because 
MUL takes two cycles to execute in X1, and it can bypass the 
result only after it has finished execution.  
Figure 4 shows an outline of a directed test case to verify the 
presence of bypass C5. It comprises of 3 steps: i) Initializing the 
register values (R2 = 3, R3 = 5). ii) Exciting the bypass C5. The 
operation MUL R1 R2 R3 can write the value R1 in the bypass C5, 
two cycles after it is issued, and that is exactly when we have 
scheduled the operation ADD R5 R1 R3, which can use the value 
of R1 as the first operand through the bypass C5. The operation 
ADD R6 R6 R6 is an independent operation, which will ensure 
separation of the two operations without any stall. iii) Check the 
timing and functional correctness of the execution. 
3.4 Fault Model 
Bypass design consists of two parts, first is the data path that 
actually connects a write port of any unit to a read port in the OR 
pipeline stage, and second is the control logic to enable transfer of 
values between operations, and the corresponding pipeline stall 

// Part 1. Initialize the registers 
ADDI R2 R0 3 
ADDI R3 R0 5 
ADDI R6 R0 5 
 
// Part 2. Excite the bypass from X1 to OR 
MUL R1 R2 R3 
ADD R6 R6 R6 
ADD R5 R1 R3 
 
// Part 3. Check timing and functional correctness 
if (stall) JUMP ERROR 
if (R5 != 15) JUMP ERROR 
SUCCESS; 



logic. Functional and timing faults can be due to incorrect 
implementation in the data path or in the control logic. 
3.4.1 Fault model for the presence of bypasses 
The implementation of a bypass that is present in the specification 
is erroneous if on exercising the bypass, the output result is 
incorrect, or if a pipeline stall occurs.  
To find such faults, we define an Activate Set for a bypass b, ACTb 
as the set of all possible operation sequences that activate the 
bypass b. The activation set of all the bypasses ActivationSet = 
∪∀bACTb. Let us assume a sequence of operations opsact can cause 
an activation act (i.e., act ∈ ActivationSet). Let valact denote the 
result of computing the operation sequence opsact, and Nstall 
represent the number of stalls. The valact has n components 
( k

act
n

1k val=∪ ). In the fault-free case, all the destinations will 
contain correct values, i.e., k

ik valdestk =∀   and no stall occurs. 
Under a fault, at lease one of the destinations will have incorrect 
value, or an unexpected stall occurs, i.e., 

)0(or  ) ( ≠≠∃ stallNk
ivalkdestk . 

 
3.4.2 Fault model for the absence of bypasses 
Similarly the implementation of a bypass that is absent in the 
specification is erroneous if on exercising the bypass, the output 
result is incorrect, or if a pipeline stall does not occur.  
To find these faults we define a stall set for the OR unit (SSor) as 
all possible ways to stall the OR unit. A sequence of operations 
opsss is a sequence which can cause a stall ss in OR unit (ss ∈ 
SSor). Let valss denote the result of computing the operation 
sequence opsss. The valss has n components ( k

ss
n
k val1=∪ ). In the 

fault-free case, all the destinations will contain correct values, i.e., 
k
ik valdestk =∀   and a stall occurs. Under a fault, at lease one of 

the destinations will have incorrect value or no stall occurs, i.e., 
)0(Nor  ) ( stall =≠∃ k

ik valdestk . 

3.5 Coverage Metric 
Given the fault model for the presence and the absence of the 
bypasses, we now estimate how many test sequences will be there 
to exhaustively test functionality and the stall logic of the 
processor pipeline. The number of unique test sequences to excite 
a bypass is b

BCO
b
BPO

b
possible nnN ×= , where b

BPOn  is the number of 
different BPO operations of the bypass b, and b

BCOn is the number 
of different BCO operations of bypass b.  
Thus, the total number of possible test sequences is the number of 
all combinations of BPOs and BCOs shown as follows, 

∑∑ ∈∈
×==

Bb
b
BCO

b
BPOBb

b
possiblepossible nnNN    (1) 

where B is the set of all the bypasses that are present in the 
processor pipeline. Suppose the set of all the operations in a 
processor is O. Further suppose that operation Ooi ∈ has ndoi.  
destinations, then ∑ ∈

=
Oo i

b
BPO

i
ndon .  Similarly if operation 

Ooi ∈ has sdoi .  register sources, then ∑ ∈
=

Oo i
b
BCO

i
sdon . . 

Thus, formula (1) can be transformed to formula (2) as follows.  

∑∑
∈∈

×=
Oo

ii
Bb

possible
i

sdondoN ..                                                   (2) 

which is bounded by |B|×|O|2×nd×sd, where 
ndoMAXnd iOoi

.
∈

= and sdoMAXsd iOoi

.
∈

= . 

The coverage metric derived from this fault model is 

∑
∈

=
Bb

b
possible

b
trypresence NNC , where b

tryN is the number of unique 

operation sequences that excite the bypass b have been tried. This 
coverage metric provides a quantitative estimate of the exhaustive 
test coverage that has been achieved. 

3.6 Test Generation 

 
Figure 5: Directed test generation for the fault model 

Figure 5 shows the algorithm to generate tests for our bypass fault 
model. The first set of loop (lines 01-03) find out the BPOs and 
BCOs for each bypass b. B is the set of all bypasses present in the 
processor. Next, bypass tests need to be generated to test this 
combination of bpo and bco trying to activate the bypass b. 

 
Figure 6: The function SetBCOBPORegisters sets the register 

numbers of the operands of BPO and BCO 

TestGenerate()
01: for each bypass b ∈ B 
02:    for each operation bco ∈ BCO(b) 
03:       for each operation bpo∈ BPO(b) 
04:             // generate tests for (b, bpo, bco) 
05:             dopnds = bpo.OT.opndsThatWriteTo(b.srcPort); 
06:             sopnds = bco.OT.opndsThatReadFrom(b.destPort); 
07:             for each dopnd ∈ dopnds 
08:                   for each sopnd ∈ sopnds 
09:                       t1 = bpo.OT.getWriteCycle(dopnd, b); 
10:                       t2 = bco.OT.getReadCycle(sopnd, b); 
11:                       d = t1-t2; 
12:                       GenBypassTest(b, bpo, dopnd, bco, sopnd, 
d); 
13:                    end for 
14:              end for 
15:         end for 
16:     end for 
17: end for 

SetBCOBPORegisters (b, bpo, dopnd, bco, sopnd, d))
01: depReg; 
02: regsToInit; 
03: // set registers of bpo 
04: for each opnd ∈ bpo.destOperands U bpo.srcOperands 
05:      if (opnd.type = REGISTER) 
06:           r = getNewRegister(); 
07:           bpo.setOpnd(opnd,  r); 
08:           if (opnd = dopnd) depReg = r; 
09:           regsToInit += r; 
10:           end if 
11:      end if 
12: end for 
 
13: // set registers of bco 
14: for each opnd ∈ bco.destOperands U bco.srcOperands 
15:      if (opnd.type = REGISTER) 
16:           if (opnd = sopnd) r = depReg 
17:           else r = getNewRegister(); 
18:           end if 
19:           bpo.setOpnd(opnd,  r); 
20:           regsToInit += r; 
21:      end if 
22: end for 
 
23: // set registers of nop 
24: for each opnd ∈ nop.destOperands U nop.srcOperands 
25:      if (opnd.type = REGISTER) 
26:           r = getNewRegister(); 
27:           nop.setOpnd(opnd,  r); 
28:           regsToInit += r; 
29:      end if 
30: end for 



A bypass test will be generated for each destination operand 
dopnd of bpo that can write into the bypass b, and each source 
operand sopnd of bco that can read from bypass b (Lines 08-09). 
We use Operation Tables to find out dopnd (Line 05) and sopnd 
(Line 06). We use the Operation Tables of bpo to find out the 
cycle in which dopnd writes into the bypass b, and the Operation 
Table of bco to find out the cycle (t2) when sopnd reads from the 
bypass b (Lines 09-10). The required separation between the bpo 
and bco should be d=t1–t2 (Line 11). Finally, we call the function 
GenerateBypassTest that will generate one directed test sequence. 
The function GenBypassTest will generate a test sequence to test 
the given bypass b. The key function here is to set the register 
values of the bco, bpo and nop operations. This functionality is 
achieved by the function SetBCOBPORegisters, described in 
Figure 6. The function has to make sure that the dependent 
operand of the bpo, dopnd and bco, sopnd should be the same 
register. This is achieved using the variable depReg in Figure 6. 
This function should also ensure that there are no other data 
hazards. Therefore it should provide fresh registers for all the 
other operands of operations. After setting the operands, Part 2 of 
the test shown in Figure 4 can be easily generated. 
The function SetBCOBPORegisters in Figure 6 returns the set of 
registers that need to be initialized, regsToInit in Part 1 of the 
bypass test in Figure 4. The stall checking sequence, i.e., Part 3 of 
bypass test in Figure 4 is an important part of the test sequence to 
verify the timing the correctness of the bypass configuration, i.e., 
to check the occurrence of stalls. Figure 7 shows an example of a 
generated stall checking sequence for Intel Xscale [5] architecture. 
The stall checking sequence is very architecture specific, and 
requires hardware support. The Intel XScale processor contains 
hardware counters that count the number of stalls. These counters 
can be reset and read, enabling us to count the number of stalls in 
a sequence of instructions. 

 
Figure 7: Stall check sequence for the Intel XScale 

4. EXPERIMENTS 
To demonstrate the usefulness of our approach, we apply it to the 
partially bypassed Intel XScale [5] processor, whose pipeline 
diagram is shown in Figure 8. XScale processor implements the 
ARM instruction set, and is a popular embedded processor for 
wireless and handheld devices. XScale has three execution 
pipelines, the X pipeline (units X1, X2, and XWB), the D pipeline 
(units D1, D2, and DWB), and M pipeline (units M1, M2 and 
MWB). We assume that the 7 pipeline stages X1, X2, XWB, M2, 
MWB, D2 and DWB can bypass to all the 4 operands in the RF 
stage. Thus there are 2847 =× different bypasses that are 
possible. 

 
Figure 8: XScale 7-stage super-pipeline 

We describe the ARM ISA and the XScale microarchitecture in 
the EXPRESSION processor-Architecture Description Language 
(ADL), and automatically generate Operation Tables from there.  
We use the Operation Tables and our scheme of automated test 
generation described in Section 3 to generate test sequences to test 
the bypass and stall logic of the processor. To fully demonstrate 
the applicability and capability of our approach we present three 
sets of experiments. 

4.1 Directed Test Generation 
We generated test sequences to test the partially bypassed XScale 
processor pipeline. A total of 80,516 test sequences were 
generated for verifying the presence of bypasses, and 26,558 test 
sequences were generated to verify for the absence of the 
bypasses. The test generation time was approximately 40 minutes 
on a 3.2 GHz Pentium-4 processor, 1G MB Memory PC. Since 
many full processor-level RTL simulators operate at about 1 
instruction per second, we estimate that our generated tests can 
verify a detailed RTL model of a processor in about a day. This 
shows that our technique can verify the bypass and stall logic of a 
real processor pipeline in a reasonable amount of time. 
4.2 Comparison with random test generation 
To demonstrate the goodness of our fault model and coverage 
metric, we randomly generated dependent operation sequences 
that are separated by a random number of NOPs and measured 
their coverage. Note that the maximum number of NOPs is less 
than maximum execution time of the operation in the none-
bypassed architecture. Figure 9 shows the results which compare 
our direct test generation with the randomly test generation. The 
random test generation spent about half day to generate 2 million 
tests to achieve 100% coverage for our fault model, while our 
method of directed test generation can achieve 100% coverage 
using about 107,074 tests within 40 minutes. 
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Figure 9 Randomly V.S. Directed Test Generation 

4.3 Other Bypass Configurations 
To demonstrate that our technique can successfully generate tests 
for various bypass configurations, we change the bypass 
configuration in the Intel XScale and generate tests for each of 
them. The Intel XScale has 28 different bypasses. This means that 
there can be up to 228 different bypass configurations. While our 
technique can generate test sequences for all these cases, here we 
present two important feasible set of explorations. 
First we automatically generate test sequences by varying the 
bypass sources. We vary whether bypasses exist from a pipeline 
unit. Since there are 7 units that can generate a bypass value, 
therefore there can be 27 = 128 bypass configurations. We number 
the bypass configurations using a 7-bit number where the bits 
from the right to the left identify whether the bypasses from units 
X1, X2, XWB, M2, MWB, D2 DWB are present or not. Figure 10 
plots the number of test sequences generated to verify for the 
presence and the absence of the bypasses. We note that the 
number of test sequences required to achieve 100% coverage 
across all bypass configurations is bounded to less than 120,000 
tests. 

01: mrc p14, 0, r5, c2, c0, 0 
02: cmp r5, #0 
03: bne ERROR_S 
04: … 
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Figure 10: Number of tests while exploring bypass sources 

In the second set of experiments, we vary the bypass destinations. 
We vary whether the bypasses exits to the ports in the RF unit. 
Since there are 4 ports in the RF unit, there are 24 = 16 bypass 
configurations. 
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Figure 11: Number of tests while exploring bypass 

destinations 
As before we define a bypass configuration by a 4-bit number, 
with the bits from right to left identifying whether the bypasses to 
port1, port2, port3 and port4 of the RF unit are present or not. 
Figure 11 plots the number of test sequences required to verify the 
presence and absence of bypasses in these bypass configurations.  
Again, we note that the number of directed test sequences 
generated by our approach is bounded to less than 110,000 to 
achieve 100% coverage of the fault model. 
These results demonstrate that we can successfully, automatically, 
and efficiently generate bypass tests to test a partially bypassed 
processor pipeline. 

5. SUMMARY 
Partial bypassing is an attractive option in embedded processors to 
achieve power, performance and complexity tradeoffs. While 
previous approaches have demonstrated the need and usefulness 
of partially bypassed processors, and have even suggested 
techniques to explore and design them, no method has been 
proposed to verify their correctness. Existing test generation 
schemes are unable to generate tests for partially bypassed 
processors, chiefly because i) they cannot model partial bypassing 
in processors, and consequently, and ii) they do not generate test 
cases to verify for the presence of bypasses. Specifying bypass 
tests by hand is not only a time consuming and cumbersome task, 
but is also highly error-prone. In this paper, we presented a fault 
model for partially bypassed processors and derived coverage 
metrics. We then proposed a directed test generation scheme, 
which needs about 40 minutes to generate 107,074 tests, to fully 
cover the faults in a partially bypassed Intel XScale processor. In 
contrast, random test generation scheme can achieve 100% 
coverage after 2 million tests in half a day, demonstrating the 
goodness of our fault model and coverage metric. Finally, we vary 
the bypasses in the Intel XScale processor and show that we can 
generate test sequences for all bypass configurations, 

demonstrating the efficacy of our approach. Future work includes 
confirming the effect of our approach by randomly injecting bugs 
into implementation and checking the difference between fault 
models based on specification and implementation. 
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