
Functional and Timing Validation of Partially Bypassed
Processor Pipelines

Qiang Zhu

shiyu@labs.fujitsu.com

Fujitsu Laboratories LTD., Japan

1-1, Kamikodanaka 4-Chome,

Nakahara-ku, Kawasaki 211-8588

Aviral Shrivastava
Aviral.Shrivastava@asu.edu

Department of Computer Science

and Engineering,

ASU, Tempe, AZ 85281

Nikil Dutt
dutt@ics.uci.edu

School of Information and

Computer Science,

UC Irvine, CA 92617

ABSTRACT
Customizing the bypasses in pipelined processors is an effective
and popular means to perform power, performance and
complexity trade-offs in embedded systems. However existing
techniques are unable to automatically generate test patterns to
functionally validate a partially bypassed processor. Manually
specifying directed test sequences to validate a partially bypassed
processor is not only a complex and cumbersome task, but is also
highly error-prone. In this paper we present an automatic
directed test generation technique to verify a partially bypassed
processor pipeline using a high-level processor description. We
define a fault model and coverage metric for a partially bypassed
processor pipeline and demonstrate that our technique can fully
cover all the faults using 107,074 tests for the Intel XScale
processor within 40 minutes. In contrast, randomly generated
tests can achieve 100% coverage with 2 million tests after half
day. Furthermore, we demonstrate that our technique is able to
generate tests for all possible bypass configurations of the Intel
XScale processor.

1. INTRODUCTION
Register bypasses or forwarding paths improve the performance
of a processor by eliminating certain data hazards in pipelined
processors [1]. With bypasses, additional data paths and control
logic are added to the processor so that the result of an operation
is available for subsequent dependent operations even before it is
written to the register file. Although complete bypassing can yield
the best possible performance, it incurs significant overheads on
the cycle time, wiring area, and the power consumption of the
processor. In embedded systems where power, area, and
complexity are as critical as performance, partial bypassing is a
popular approach to achieve increased performance at the cost of
modest overheads [2], e.g. the popular Intel XScale
microarchitecture [5] implements a partially bypassed pipeline.

RF

F D OR X1 X2 WB

C5

C4C1

C3

Pipeline path

Data path

ADD R1, R2, R3

MUL R5, R3, R1

1 2 3 4 5 6

1 2 3 4, 5 6 7
cycles

C2

Figure 1: A simple pipelined architecture with bypasses

Figure 1 shows an example of a 6-stage, partially bypassed
processor. The processor pipeline contains only two bypasses C4,

and C5. The bypass C5 connects X1 pipeline stage (Execution
stage 1) to the second operand of the OR pipeline stage (Operand
Read), and C4 is a bypass from the X2 pipeline stage (Execute
stage 2) to the first operand of the OR pipeline stage. Thus in the
processor pipeline in Figure 1, the first operand can be read only
from RF (Register File) or the X2 pipeline stage. A fully bypassed
processor would have 6 bypasses, 2 from each of the units X1, X2,
and XWB, while a non-bypassed processor will have 0 bypasses.
Since altering the bypass configuration does not affect the
Instruction Set Architecture of the processor, therefore embedded
processor designers often customize the bypasses between
generations of a processor in order to tune the processor for the
desired power/performance requirements. However, there are no
existing techniques to automatically generate the test cases to
verify the functional and timing correctness of a partial bypassed
processor, and they have to be specified manually. Manually
generating these test cases is not only a very complex and time-
consuming task, it is highly error-prone.
The main challenge in generating directed test cases for a partially
bypassed processor is that the test cases should verify that the
bypass configuration in the implementation is exactly same as in
the specification. This requires ensuring that i) bypasses absent in
the specification are actually absent in the implementation, and ii)
bypasses present in the specification are indeed present in the
implementation. Any mismatch between the bypass configuration
in the specification and the bypasses implemented can cause
timing as well as functional errors. While it is absolutely
necessary to detect and correct any functional faults, it is very
important to correct and detect timing faults to be able to meet the
power, performance constraints of the design. Existing techniques
[4][12] only consider generating test cases to confirm the absence
of bypasses, and thus fail to fully validate the design.
Generating tests to check for the presence and absence of bypass
necessarily requires the key capability of accurate pipeline hazard
detection in partially bypassed processor pipeline. In other words,
given a sequence of instructions, we should be able to determine
whether there will be a pipeline hazard or not? If there is going to
be a hazard, then a check to detect the presence of a hazard (or a
pipeline stall) should be generated, while if there is no hazard,
then a check to detect the absence of a hazard (or that the pipeline
did not stall) should be generated.
However existing pipeline hazard detection mechanisms use a
constant operation latency based model and are therefore unable
to accurately detect pipeline hazards in a partially bypassed
processor pipeline [16]. In a partially bypassed processor pipeline,
the concept of operation latency is ill-defined and accurate
pipeline hazard detection requires not only detailed information
about the structure of the pipeline, the flow of operations in the
pipeline, the bypass configuration, dependent operations and the
position and register information of the dependent operands.
Shrivastava et al. [14] proposed the concept of Operation Tables
to model partially bypassed processor pipelines. An Operation

978-3-9810801-2-4/DATE07 © 2007 EDAA

Table is a unified representation of the structure of the processor
and the register information of the operations. Operation Tables of
the operations in a given schedule can be combined to accurately
detect all the pipeline hazards, when the schedule is executed on
the given processor pipeline model. In [15], the concept of
Operation Tables was used to generate code for partially bypassed
processors and achieve performance improvements. Furthermore,
[15] demonstrated that customizing bypasses in a processor
pipeline is a very lucrative way to achieve power performance
tradeoffs without modifying the instruction set architecture of a
processor. Thus designers are inclined and are designing partially
bypassed processor pipeline, however, challenge still remains in
verifying the correctness of a partially bypassed processor
pipeline.
In this paper we automatically generate test cases to verify the
functionality and the timing correctness of the processor pipeline
from a high level processor description. We specify the processor
architecture, including the bypass configuration in a high-level
Architecture Description Language (ADL) [3], and generate
Operation Tables from it. We then propose a fault model for
partially bypassed pipelines, and derive a coverage metric for it.
Using the Operation Tables we generate 107,074 directed tests to
achieve 100% coverage on the fault in the Intel XScale processor
pipeline within 40 minutes. In contrast, randomly generated tests
can achieve 100% coverage after 2 million tests with half day.
Furthermore, we change the bypass configuration of the XScale
and demonstrate that approach can be used to generate test cases
for all bypass configurations in a reasonable amount of time.

2. RELATED WORK
2.1 Partial Bypassing
Bypasses have been widely used in pipeline processor design to
improve the performance of a processor [1][9]. However, the
performance improvement due to full bypassing may be
accompanied by a significant increase in the cycle time, chip area,
energy consumption, wiring congestion, and design complexity.
Partial bypassing has therefore been proposed to remove several
low utilization bypasses from a design in order to reduce the
power, cost and area of the design without significantly affecting
the performance [10]. PBExplore [14] is a framework to explore
the power-performance tradeoffs of bypass configurations, and
ultimately design the bypass configuration of a processor. In
PBExplore, authors describe a retargetable compiler generated
code for the given bypass configuration using Operation Tables
[15][16]. The executable generated is then simulated on a cycle-
accurate simulator and a power simulator, also parameterized on
the same processor description to estimate the performance and
the power consumption of the processor with the given bypass
configuration. This accurate evaluation of each bypass
configuration enables the designer to choose and implement the
appropriate bypass configuration. However, no method has been
proposed to verify the design of a partially bypassed processor.
2.2 Processor Pipeline Test Generation
The field of test generation for processor pipeline verification has
been extensively explored.
2.2.1 Test Generation for Instruction Set Architecture
Early works concentrated on generating test patterns for the
instruction set architecture of a processor. Aharon et al. [7] and
Fine et al. [8] proposed a test program generation methodology for
testing the instruction set architecture of processors. However, the
instruction set description does not capture the bypasses in a
processor. Furthermore the presence/absence of bypasses do not
affect the instruction set architecture of a processor. As a result,
these approaches can not generate directed tests for testing the
processor bypasses.
2.2.2 Test Generation for the Microarchitecture
The next generation of works on processor pipeline test generation
focused on generating tests for the microarchitecture of processors.
Shen et al. [11] extract an abstract FSM model from the processor

HDL description. However, they generate tests from
implementation, and not a specification. As a result if the
implementation has a different but correct bypass configuration, it
will not be able to detect an error in the specification. Furthermore,
it will not be possible to generate directed tests for bypasses, as it
is very difficult to isolate the bypasses in a HDL description of a
processor.
Iwashita et al. [12] and Ur et al. [13] describe the processor
microarchitecture in a high-level description. They then transform
the pipeline description into a FSM model. The states relate to the
units and the different types of instructions that it can hold. They
then generate paths to cover every transition in the FSM. However,
all three approaches cannot scale with the microarchitectural
complexity and are therefore unusable for any realistic
microarchitecture. Furthermore, they cannot generate directed
tests for bypasses, because they abstract away the
microarchitectural components and generate tests from a state
machine, from where it is not possible to identify and isolate
bypasses.
2.2.3 Directed Test Generation
Realizing that the number of tests required for complete testing a
microprocessor is very large, and even impractical, recent
approaches have focused on generating directed tests. Directed
tests verify certain microarchitectural feature or property, and
provide a quantitative handle on the coverage of the tests. Mishra
et al. [4] generate directed tests from a high-level processor
description in the EXPRESSION ADL [3]. However, they do not
model bypasses in their ADL description, and are therefore unable
to generate test cases to verify a bypassed microarchitecture.
Further, they propose to find out the set of operation sequences
which can cause the stall (Stall Set) in the pipelined architecture,
and check the correctness of the functional results. They do not
generate tests for the (Activate Set), which implies they do not test
for the presence of bypasses. However, any inconsistency between
the bypasses and the bypass control logic may result in a timing or
functional error.
To conclude, none of the previous approaches model a partially
bypassed processor pipeline and cannot generate directed tests to
test a partially bypassed processor pipeline in a realistic machine.
In this paper, we explicitly model partial bypasses in the
architecture description language (ADL). We use Operation
Tables to provide the capability to generate directed tests to verify
for both the presence as well as the absence of the bypasses. We
then propose fault models to exhaustively test the bypass
configuration. However since the test cases are prohibitively large,
dependent on the implementation style, we propose a constrained
fault model to drastically reduce the number of tests. Our
experimental results to generate tests for the Intel XScale
microarchitecture demonstrate that our approach can be utilized to
automatically generate test cases and verify the bypass
configuration of a realistic processor in a reasonable time.

3. OUR APPROACH
Figure 2 outlines our approach for test generation for a partially
bypassed processor. We describe the processor microarchitecture
at a high level of abstraction in an Architecture Description
Language (ADL). We develop fault models for partially bypassed
processor pipelines, and define coverage metrics using these fault
models. The test generator takes the processor description and the
fault model/coverage metric as an input and generates directed test
to cover the fault model, and verify the partially bypassed
processor pipeline.

Figure 2: ADL driven bypass test generation methodology

3.1 Processor Description
We describe the partially bypassed processor microarchitecture at
a high level of abstraction. Figure 3 shows the 7-stages pipelined
processor architecture at our level of representation. F, D, OR, X1,
X2 are the pipeline stages in the processor.

Figure 3: An example of a bypassed architecture

The flow of operations is explicitly modeled in the pipeline. Each
pipeline unit contains a list of operations that it supports, and the
time they spend in the unit. The path of each operation in the
pipeline can then be derived, and is represented by the block
arrows in Figure 3. Pipeline units can read/write operands using
read/write ports. A port may be connected to other ports in the
Register File (RF), or other pipeline units via explicit directed
connections. Bypasses are modeled simply as a connection
between a write port on a pipeline unit and a read port on the OR
pipeline unit. Thus the first operand in OR can be read from
pipeline unit X2 via bypass C4, but not from X1. A more detailed,
graphical model of the processor description in the ADL is
presented in [17].
3.2 Operation Tables
An Operation Table (OT) models the execution of an operation in
the processor. As defined in Table 1, an OT is a DAG (Directed
Acyclic Graph), whose nodes contain information about the
pipeline unit in which the operation is being executed, and the
operands are being read, written, and bypassed in that execution
cycle. The edges of the DAG define a temporal ordering on the
nodes.

Table 1: Operation Table Definition
OperationTable := {otCycle}
otCycle := unit ros wos bos dos
ros := ReadOperands {operand}
wos := WriteOperands {operand}
bos := BypassOperands {operand }
dos := DestOperands {regNo}
operand := regNo {regConn }

Table 2 shows the OT of the operation ADD R1, R2, R3 on the
processor pipeline shown in Figure 3. Operation Tables have been
used to accurately detect all pipeline hazards when a given
schedule of instructions executes on a given processor pipeline,
even in the presence of partial bypassing. In this work, we use the
concept of OTs to automatically generate test sequences to verify
the functional and timing correctness of a partially bypassed
processor pipeline.

Table 2: Operation Table of ADD R1 R2 R3
1 F
2 D
3 OR
 ReadOperands
 R2
 C1, C4
 R3
 C2, C5
 DestOperands
 R1, RF
4 X1
 WriteOperands
 R1

 C5
5 X2
 WriteOperands
 R1

 C4
5 WB
 WriteOperands
 R1
 C3

3.3 Bypass Test
A bypass test is an ordered sequence of operations, which will try
to use a bypass. A bypass test necessarily contains two operations,
a Bypass Producer Operation (BPO), and a Bypass Consumer
Operation (BCO). A BPO of a bypass is an operation, which can
generate a bypass value from the operation in the unit at the
source-end (write port) of the bypass. A BCO of a bypass is an
operation that can receive a bypass value from the operation in the
unit at the destination-end (read port) of the bypass.

Figure 4: A bypass test to verify the presence of the bypass C5
In order to exercise a bypass, the operations, BPO and BCO
should be correctly separated. For example, in Figure 1, to
exercise the bypass C5, the difference between the schedule times
of the BPO and BCO should 1 if the BPO is an ADD operation,
but it should be 2, if the BPO is a MUL operation. This is because
MUL takes two cycles to execute in X1, and it can bypass the
result only after it has finished execution.
Figure 4 shows an outline of a directed test case to verify the
presence of bypass C5. It comprises of 3 steps: i) Initializing the
register values (R2 = 3, R3 = 5). ii) Exciting the bypass C5. The
operation MUL R1 R2 R3 can write the value R1 in the bypass C5,
two cycles after it is issued, and that is exactly when we have
scheduled the operation ADD R5 R1 R3, which can use the value
of R1 as the first operand through the bypass C5. The operation
ADD R6 R6 R6 is an independent operation, which will ensure
separation of the two operations without any stall. iii) Check the
timing and functional correctness of the execution.
3.4 Fault Model
Bypass design consists of two parts, first is the data path that
actually connects a write port of any unit to a read port in the OR
pipeline stage, and second is the control logic to enable transfer of
values between operations, and the corresponding pipeline stall

// Part 1. Initialize the registers
ADDI R2 R0 3
ADDI R3 R0 5
ADDI R6 R0 5

// Part 2. Excite the bypass from X1 to OR
MUL R1 R2 R3
ADD R6 R6 R6
ADD R5 R1 R3

// Part 3. Check timing and functional correctness
if (stall) JUMP ERROR
if (R5 != 15) JUMP ERROR
SUCCESS;

logic. Functional and timing faults can be due to incorrect
implementation in the data path or in the control logic.
3.4.1 Fault model for the presence of bypasses
The implementation of a bypass that is present in the specification
is erroneous if on exercising the bypass, the output result is
incorrect, or if a pipeline stall occurs.
To find such faults, we define an Activate Set for a bypass b, ACTb
as the set of all possible operation sequences that activate the
bypass b. The activation set of all the bypasses ActivationSet =
∪∀bACTb. Let us assume a sequence of operations opsact can cause
an activation act (i.e., act ∈ ActivationSet). Let valact denote the
result of computing the operation sequence opsact, and Nstall
represent the number of stalls. The valact has n components
(k

act
n

1k val=∪). In the fault-free case, all the destinations will
contain correct values, i.e., k

ik valdestk =∀ and no stall occurs.
Under a fault, at lease one of the destinations will have incorrect
value, or an unexpected stall occurs, i.e.,

)0(or) (≠≠∃ stallNk
ivalkdestk .

3.4.2 Fault model for the absence of bypasses
Similarly the implementation of a bypass that is absent in the
specification is erroneous if on exercising the bypass, the output
result is incorrect, or if a pipeline stall does not occur.
To find these faults we define a stall set for the OR unit (SSor) as
all possible ways to stall the OR unit. A sequence of operations
opsss is a sequence which can cause a stall ss in OR unit (ss ∈
SSor). Let valss denote the result of computing the operation
sequence opsss. The valss has n components (k

ss
n
k val1=∪). In the

fault-free case, all the destinations will contain correct values, i.e.,
k
ik valdestk =∀ and a stall occurs. Under a fault, at lease one of

the destinations will have incorrect value or no stall occurs, i.e.,
)0(Nor) (stall =≠∃ k

ik valdestk .

3.5 Coverage Metric
Given the fault model for the presence and the absence of the
bypasses, we now estimate how many test sequences will be there
to exhaustively test functionality and the stall logic of the
processor pipeline. The number of unique test sequences to excite
a bypass is b

BCO
b
BPO

b
possible nnN ×= , where b

BPOn is the number of
different BPO operations of the bypass b, and b

BCOn is the number
of different BCO operations of bypass b.
Thus, the total number of possible test sequences is the number of
all combinations of BPOs and BCOs shown as follows,

∑∑ ∈∈
×==

Bb
b
BCO

b
BPOBb

b
possiblepossible nnNN (1)

where B is the set of all the bypasses that are present in the
processor pipeline. Suppose the set of all the operations in a
processor is O. Further suppose that operation Ooi ∈ has ndoi.
destinations, then ∑ ∈

=
Oo i

b
BPO

i
ndon . Similarly if operation

Ooi ∈ has sdoi . register sources, then ∑ ∈
=

Oo i
b
BCO

i
sdon . .

Thus, formula (1) can be transformed to formula (2) as follows.

∑∑
∈∈

×=
Oo

ii
Bb

possible
i

sdondoN .. (2)

which is bounded by |B|×|O|2×nd×sd, where
ndoMAXnd iOoi

.
∈

= and sdoMAXsd iOoi

.
∈

= .

The coverage metric derived from this fault model is

∑
∈

=
Bb

b
possible

b
trypresence NNC , where b

tryN is the number of unique

operation sequences that excite the bypass b have been tried. This
coverage metric provides a quantitative estimate of the exhaustive
test coverage that has been achieved.

3.6 Test Generation

Figure 5: Directed test generation for the fault model

Figure 5 shows the algorithm to generate tests for our bypass fault
model. The first set of loop (lines 01-03) find out the BPOs and
BCOs for each bypass b. B is the set of all bypasses present in the
processor. Next, bypass tests need to be generated to test this
combination of bpo and bco trying to activate the bypass b.

Figure 6: The function SetBCOBPORegisters sets the register

numbers of the operands of BPO and BCO

TestGenerate()
01: for each bypass b ∈ B
02: for each operation bco ∈ BCO(b)
03: for each operation bpo∈ BPO(b)
04: // generate tests for (b, bpo, bco)
05: dopnds = bpo.OT.opndsThatWriteTo(b.srcPort);
06: sopnds = bco.OT.opndsThatReadFrom(b.destPort);
07: for each dopnd ∈ dopnds
08: for each sopnd ∈ sopnds
09: t1 = bpo.OT.getWriteCycle(dopnd, b);
10: t2 = bco.OT.getReadCycle(sopnd, b);
11: d = t1-t2;
12: GenBypassTest(b, bpo, dopnd, bco, sopnd,
d);
13: end for
14: end for
15: end for
16: end for
17: end for

SetBCOBPORegisters (b, bpo, dopnd, bco, sopnd, d))
01: depReg;
02: regsToInit;
03: // set registers of bpo
04: for each opnd ∈ bpo.destOperands U bpo.srcOperands
05: if (opnd.type = REGISTER)
06: r = getNewRegister();
07: bpo.setOpnd(opnd, r);
08: if (opnd = dopnd) depReg = r;
09: regsToInit += r;
10: end if
11: end if
12: end for

13: // set registers of bco
14: for each opnd ∈ bco.destOperands U bco.srcOperands
15: if (opnd.type = REGISTER)
16: if (opnd = sopnd) r = depReg
17: else r = getNewRegister();
18: end if
19: bpo.setOpnd(opnd, r);
20: regsToInit += r;
21: end if
22: end for

23: // set registers of nop
24: for each opnd ∈ nop.destOperands U nop.srcOperands
25: if (opnd.type = REGISTER)
26: r = getNewRegister();
27: nop.setOpnd(opnd, r);
28: regsToInit += r;
29: end if
30: end for

A bypass test will be generated for each destination operand
dopnd of bpo that can write into the bypass b, and each source
operand sopnd of bco that can read from bypass b (Lines 08-09).
We use Operation Tables to find out dopnd (Line 05) and sopnd
(Line 06). We use the Operation Tables of bpo to find out the
cycle in which dopnd writes into the bypass b, and the Operation
Table of bco to find out the cycle (t2) when sopnd reads from the
bypass b (Lines 09-10). The required separation between the bpo
and bco should be d=t1–t2 (Line 11). Finally, we call the function
GenerateBypassTest that will generate one directed test sequence.
The function GenBypassTest will generate a test sequence to test
the given bypass b. The key function here is to set the register
values of the bco, bpo and nop operations. This functionality is
achieved by the function SetBCOBPORegisters, described in
Figure 6. The function has to make sure that the dependent
operand of the bpo, dopnd and bco, sopnd should be the same
register. This is achieved using the variable depReg in Figure 6.
This function should also ensure that there are no other data
hazards. Therefore it should provide fresh registers for all the
other operands of operations. After setting the operands, Part 2 of
the test shown in Figure 4 can be easily generated.
The function SetBCOBPORegisters in Figure 6 returns the set of
registers that need to be initialized, regsToInit in Part 1 of the
bypass test in Figure 4. The stall checking sequence, i.e., Part 3 of
bypass test in Figure 4 is an important part of the test sequence to
verify the timing the correctness of the bypass configuration, i.e.,
to check the occurrence of stalls. Figure 7 shows an example of a
generated stall checking sequence for Intel Xscale [5] architecture.
The stall checking sequence is very architecture specific, and
requires hardware support. The Intel XScale processor contains
hardware counters that count the number of stalls. These counters
can be reset and read, enabling us to count the number of stalls in
a sequence of instructions.

Figure 7: Stall check sequence for the Intel XScale

4. EXPERIMENTS
To demonstrate the usefulness of our approach, we apply it to the
partially bypassed Intel XScale [5] processor, whose pipeline
diagram is shown in Figure 8. XScale processor implements the
ARM instruction set, and is a popular embedded processor for
wireless and handheld devices. XScale has three execution
pipelines, the X pipeline (units X1, X2, and XWB), the D pipeline
(units D1, D2, and DWB), and M pipeline (units M1, M2 and
MWB). We assume that the 7 pipeline stages X1, X2, XWB, M2,
MWB, D2 and DWB can bypass to all the 4 operands in the RF
stage. Thus there are 2847 =× different bypasses that are
possible.

Figure 8: XScale 7-stage super-pipeline

We describe the ARM ISA and the XScale microarchitecture in
the EXPRESSION processor-Architecture Description Language
(ADL), and automatically generate Operation Tables from there.
We use the Operation Tables and our scheme of automated test
generation described in Section 3 to generate test sequences to test
the bypass and stall logic of the processor. To fully demonstrate
the applicability and capability of our approach we present three
sets of experiments.

4.1 Directed Test Generation
We generated test sequences to test the partially bypassed XScale
processor pipeline. A total of 80,516 test sequences were
generated for verifying the presence of bypasses, and 26,558 test
sequences were generated to verify for the absence of the
bypasses. The test generation time was approximately 40 minutes
on a 3.2 GHz Pentium-4 processor, 1G MB Memory PC. Since
many full processor-level RTL simulators operate at about 1
instruction per second, we estimate that our generated tests can
verify a detailed RTL model of a processor in about a day. This
shows that our technique can verify the bypass and stall logic of a
real processor pipeline in a reasonable amount of time.
4.2 Comparison with random test generation
To demonstrate the goodness of our fault model and coverage
metric, we randomly generated dependent operation sequences
that are separated by a random number of NOPs and measured
their coverage. Note that the maximum number of NOPs is less
than maximum execution time of the operation in the none-
bypassed architecture. Figure 9 shows the results which compare
our direct test generation with the randomly test generation. The
random test generation spent about half day to generate 2 million
tests to achieve 100% coverage for our fault model, while our
method of directed test generation can achieve 100% coverage
using about 107,074 tests within 40 minutes.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 400000 800000 1200000 1600000 2000000

The number of tests

C
ov

er
ag

e

 Random
 Direct

Figure 9 Randomly V.S. Directed Test Generation

4.3 Other Bypass Configurations
To demonstrate that our technique can successfully generate tests
for various bypass configurations, we change the bypass
configuration in the Intel XScale and generate tests for each of
them. The Intel XScale has 28 different bypasses. This means that
there can be up to 228 different bypass configurations. While our
technique can generate test sequences for all these cases, here we
present two important feasible set of explorations.
First we automatically generate test sequences by varying the
bypass sources. We vary whether bypasses exist from a pipeline
unit. Since there are 7 units that can generate a bypass value,
therefore there can be 27 = 128 bypass configurations. We number
the bypass configurations using a 7-bit number where the bits
from the right to the left identify whether the bypasses from units
X1, X2, XWB, M2, MWB, D2 DWB are present or not. Figure 10
plots the number of test sequences generated to verify for the
presence and the absence of the bypasses. We note that the
number of test sequences required to achieve 100% coverage
across all bypass configurations is bounded to less than 120,000
tests.

01: mrc p14, 0, r5, c2, c0, 0
02: cmp r5, #0
03: bne ERROR_S
04: …

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120
Bypass configurations < D2 DWB M2 MWB X1 X2 XWB >

N
um

be
r

of
 b

yp
as

s t
es

ts
 Bypass Presence Tests
 Bypass Absence Tests

Figure 10: Number of tests while exploring bypass sources

In the second set of experiments, we vary the bypass destinations.
We vary whether the bypasses exits to the ports in the RF unit.
Since there are 4 ports in the RF unit, there are 24 = 16 bypass
configurations.

0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bypass configurations <P1, P2, P3, P4>

N
um

be
r

of
 b

yp
as

s t
es

ts

 Bypass Presence Tests
 Bypass Absence Tests

Figure 11: Number of tests while exploring bypass

destinations
As before we define a bypass configuration by a 4-bit number,
with the bits from right to left identifying whether the bypasses to
port1, port2, port3 and port4 of the RF unit are present or not.
Figure 11 plots the number of test sequences required to verify the
presence and absence of bypasses in these bypass configurations.
Again, we note that the number of directed test sequences
generated by our approach is bounded to less than 110,000 to
achieve 100% coverage of the fault model.
These results demonstrate that we can successfully, automatically,
and efficiently generate bypass tests to test a partially bypassed
processor pipeline.

5. SUMMARY
Partial bypassing is an attractive option in embedded processors to
achieve power, performance and complexity tradeoffs. While
previous approaches have demonstrated the need and usefulness
of partially bypassed processors, and have even suggested
techniques to explore and design them, no method has been
proposed to verify their correctness. Existing test generation
schemes are unable to generate tests for partially bypassed
processors, chiefly because i) they cannot model partial bypassing
in processors, and consequently, and ii) they do not generate test
cases to verify for the presence of bypasses. Specifying bypass
tests by hand is not only a time consuming and cumbersome task,
but is also highly error-prone. In this paper, we presented a fault
model for partially bypassed processors and derived coverage
metrics. We then proposed a directed test generation scheme,
which needs about 40 minutes to generate 107,074 tests, to fully
cover the faults in a partially bypassed Intel XScale processor. In
contrast, random test generation scheme can achieve 100%
coverage after 2 million tests in half a day, demonstrating the
goodness of our fault model and coverage metric. Finally, we vary
the bypasses in the Intel XScale processor and show that we can
generate test sequences for all bypass configurations,

demonstrating the efficacy of our approach. Future work includes
confirming the effect of our approach by randomly injecting bugs
into implementation and checking the difference between fault
models based on specification and implementation.

6. REFERENCES
[1] P. Hennesy and D.A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann Publisher, 1990.
[2] E. McLellan. The Alpha AXP Architecture and 21064 processor.

IEEE Micro, June 1993.
[3] A. Halambi and P. Grun and V. Ganesh and A. Khare and N. Nutt

and A. Nicolau. EXPRESSION: A language for architecture
exploration through compiler/simulator retarget- ability. In
Proceedings of Software and Compilers for Embedded Systems
(SCOPES), 2001.

[4] P. Mishra, N. Dutt, Functional Verification of Programmable
Embedded Architectures- A Top-Down Approach, Springer, 2005.

[5] http://www.intel.com/design/intelxscale/273436.htm, Intel XScale
Microarchitecture Programmers Reference, 2001.

[6] Intel XScale Microarchitecture for the PXA255 Processor User’s
manual, pages 88-95, 2003.

[7] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka, C.
Metzger, and G. Shurek. Test Program Generation for Functional
Verification of PowerPC Processors in IBM. In Proceedings of
Design Automation Conference (DAC), pages 279-285, 1995.

[8] S. Fine and A. Ziv. Coverage Directed Test Generation for
Functional Verification using Bayesian Networks, In Proceeding of
Design Automation Conference (DAC), pages 286-291, 2003.

[9] S. Muchnick, Advanced Complier Design and Implementation.
Morgan Kaufmann Publishers, 1998.

[10] K. Fan, N. Clark, M. Chu, K. V. Manjunath, R. Ravindran, M.
Smelyanskiy, and S. Mahlke. Systematic Register Bypass
Customization for Application-Specific Processors. In Proc. of
ASSAP, 2003.

[11] Shen, J. and J. Abraham, An RTL Abstraction Technique for
Processor Micorarchitecture Validation and Test Generation, J.
Electronic Testing: Theory&Application 16 (1999), pp. 67–81.

[12] H. Iwashita, S. Kowatari, T. Nakata and F. Hirose. Automatic test
pattern generation for pipelined processors. In Proceedings of
International Conference on Computer-Aided Design (ICCAD),
pages 580-583, 1994.

[13] S. Ur and Y. Yadin, Micro architecture coverage directed
generation of test programs, In Proceeding of Design Automation
Conference (DAC), pages 175-180, 1999.

[14] A. Shrivastava, E. Earlie, N. Dutt, and A. Nicolau., PBExplore: A
Framework for Compiler-in-the-Loop Exploration of Partial
Bypassing in Embedded Processors, In Proceedings of the
International Conference on Design Automation and Test in Europe,
DATE 2005, pages 1264-1269, 2005.

[15] S. Park, A. Shrivastava, E. Earlie, A. Nicolau, Y. Paek, N. Dutt.,
Automatic Generation of Operation Tables for Fast Exporation of
Bypasses in Embedded Processors, In Proceedings of the
International Conference on Design Automation and Test in Europe,
DATE 2006, pages 1197-1202, 2006.

[16] A. Shrivastava, E. Earlie, N. Dutt, and A. Nicolau. Operation tables
for scheduling in the presence of incomplete bypassing. In
CODES+ISSS ’04, pages 194–199, New York, NY, USA, 2004.
ACM Press.

[17] P. Mishra, A. Shrivastava, N. Dutt, Architecture Description
Language (ADL)-Driven Software Toolkit Generation for
Architectural Exploration of Programmable SOCs, In Proceedings of
the 41st Annual Conference on Design Automation, DAC '04. 2004.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

