
An Enhanced Technique for the Automatic Generation of
Effective Diagnosis-oriented Test Programs for Processor

E. Sánchez, M. Schillaci, G. Squillero, M. Sonza Reorda
Politecnico di Torino

Dipartimento di Automatica e Informatica
Torino, Italy

{edgar.sanchez, massimiliano.schillaci, giovanni.squillero, matteo.sonzareorda}@polito.it

ABSTRACT
The ever increasing usage of microprocessor devices is
sustained by a high volume production that in turn
requires a high production yield, backed by a controlled
process. Fault diagnosis is an integral part of the
industrial effort towards these goals. This paper presents a
new methodology that significantly improves over a
previous work. The goal is construction of cost-effective
programs sets for software-based diagnosis of
microprocessors. The methodology exploits existing post-
production test sets, designed for software-based self-test,
and may use an already developed infrastructure IP to
perform the diagnosis. Experimental results are reported
in the paper comparing the new results with existing ones,
and showing the effectiveness of the new approach for an
Intel i8051 processor core.
1. Introduction

Nowadays industries are aggressively scaling the
features in MOSFETs for leading-edge logic technology in
order to sustain the historical trends of improved device
performance. The 2005 International Technology
Roadmap for Semiconductors (ITRS05) clearly points out
that this migration of CMOS technology is severely
challenging the traditional failure analysis process. The
conventional approach will increasingly be too slow and
difficult for routine analysis. Instead, ITRS05 maintains
that software-based diagnosis (SBD) is becoming a key
area, and that SBD methodologies and tools will be
required to handle in the near future all major test
methodologies, including scan-based and BIST-based test,
functional, IDDQ and, especially important, AC (delay)
test. It seems probable that the new diagnostic
methodologies will be based on both test structures and
product-level tests. Design for testability (DFT) techniques
such as built-in self test (BIST) will be likely designed
with special consideration to support the necessary data
gathering [12]. Similar problems are expected to appear
with mass-production devices, such as small
microprocessors and microcontrollers, where the high
volumes together with the tight cost bounds will
exacerbate the situation.

Recently, Bernardi et al.[11] presented a methodology
for minimizing the cost of microprocessor SBD in a
System-on-Chip (SoC). The approach exploits an existing

set of programs for post-production test converting it to a
set of programs able to diagnose faults. This new set is
then reduced in a process called sifting, and eventually
enhanced with an evolutionary tool. The approach could
also reuse the infrastructure IP (IIP) originally designed
for the software-based self test (SBST) of the device,
limiting the area overhead.

Sifting is shown able to get an 88.3% reduction of the
original set, shrinking it from 1,414KB to 165KB [11].
The approach leads to rather long execution times for
generating the final diagnostic set: 325 hours a SUN Blade
workstation for the sifting, plus 168 hours for improving
the initial diagnostic set; but leads to good results in terms
of diagnostic resolution.

The cost of a diagnostic process can be roughly
considered composed of two factors: the cost of generating
the procedure, and the cost of applying it. The former
reflects the computational resources required; the
application cost is mainly influenced by the volume of
data required by the diagnostic procedure, during both test
set application and response analysis, by the time required
for test application, and by the type of exploited automatic
test equipment (ATE).

This paper presents a significant improvement over
[11]. Whereas the general structure of the approach is the
same, both sifting and the genetic enhancement have been
completely redesigned.

The enhancements lead to an interesting reduction in
computational effort, an increase in diagnostic resolution,
and a dramatic reduction in the size of the final diagnostic
set, thus leading to significantly smaller diagnosis time.

The paper is organized as follows: section 2 provides
a concise background in fault diagnosis for digital circuits,
and outlines the basic concepts on SBST; section 3 details
the proposed approach, with a discussion of its new
improvements; section 4 presents some experimental
results; finally, section 5 concludes the paper.
2. Fault Diagnosis and SBST Background

This section summarizes some concepts about the
fault diagnosis and software-based self-test topics, and
formalizes the terminology adopted in this paper.
2.1 Fault diagnosis

In testing, a circuit is classified as faulty if its
responses are different from the ones obtained by the good
circuit; thus, the boolean comparison between the

978-3-9810801-2-4/DATE07 © 2007 EDAA

responses of the good circuit and the faulty circuit is called
syndrome. Once a circuit has been classified as faulty, the
process performed to establish the location of the circuit
failure is called fault diagnosis, and the set of patterns
required to accurately determine the location of the failure
is named diagnostic test set (DT).

Two faults f1 and f2 are structurally equivalent if and
only if no test set could be able to produce a different
response for f1 and f2. on the other hand, the diagnostic
fault equivalence could be defined in the following terms:
two faults f1 and f2 belonging to a fault list F can be
classified as diagnostically equivalent (or
undistinguishable) for a given diagnostic set D if they
produce the same syndrome during the application of D.
Thus, structurally equivalence implies diagnostic
equivalence but not the opposite. Structural equivalence is
exploited in testing as well as in diagnosis trying to reduce
the fault list size, decreasing fault simulation times.

A widely studied diagnosis topic is the generation of
an effective DT; state-of-the-art DT generation techniques
employ ATPG tools [1], [3], random [10] and evolutionary
[4] pattern generation or functional approaches [9], [11].
The effectiveness of a DT is usually assessed using
measurements related to diagnostically equivalent fault
classes. For a given DT, an equivalent fault class (eci) is a
subset of the fault universe including undistinguishable
faults [1], [2]; clearly, structurally equivalent faults will
always belong to the same ec, no matter the considered
DT. Every individual eci is completely disjoint from the
others, and their union is the fault universe itself. In simple
words, a DT is most effective if it is able to split the fault
universe in the biggest possible number of ec‘s as small as
possible.

Let us define D(n) as the fraction of faults that are
classified into equivalence classes of cardinality less than
or equal to n by the used DT.

The ability of a generated DT is usually measured by
means of its diagnostic power, defined as the fraction of
all faults completely distinguished from all other faults or
belonging to fault classes eci of size 1 (i.e., D(1)), or its
diagnostic expectation, that is a simple average of ec sizes
[5].

It is also useful to define D(10) as the fraction of
faults that can be considered correctly classified, because
the exact analysis of equivalence between faults cannot be
performed for medium or large sequential circuits.

Information to built diagnostic structures is usually
gathered following two classification approaches:
• a coarse classification, obtained by processing only

the pass/fail information related to each test pattern
belonging to DT

• a fine classification, performed using the whole faulty
circuit syndromes and consists in building an output-
based diagnostic tree for each equivalent fault class to
be further divided.

The coarse classification process requires fast fault
simulations producing only a go/nogo information for each
simulated fault, reducing the process accuracy; on the
other side, fine classification process execute slow fault
simulations improving the process precision.
2.2 Software-based testing techniques

Traditionally, parametric testing of processor cores
has been applied using an ATE [6]. However,
technological progress is pushing up the complexity and
operating frequencies of low-end microprocessor cores.
Thus, even though ATE effectiveness on applying
parametric test is unquestionable, the costs for an ATE
able to run at-speed functional tests are becoming
prohibitive [8]. To overcome these problems, industries
are trying to reduce the use of expensive ATEs. One
interesting strategy is to perform microprocessor testing
resorting to the so called Software-Based Self-Test
(SBST) [7], where the test set consists in a set of assembly
programs and does not rely on any special test point to
force values or observe behaviors during test application.
Such programs are loaded in an internal memory resorting
to the available resources, and then executed in the core.
The processor is labeled as good or faulty depending on
the results produced by the test programs. A minimum
effort is thus needed to extract test results.

SBD has several advantages with respect to the use of
hardware-based methods: the diagnostic process can be
performed at-speed without using costly equipment; in
case scan chains are used there is no dependence on their
exact structure, so the approach works even if the scan
chains don’t; as any software method, SBD is intrinsically
technology-independent. Finally, the method benefits from
a high flexibility, since the test program can be easily
adapted to new needs. On the other side, SBD has a lower
control and observation abilities upon the internal nodes of
the circuit; the method is still not fully mature, so it
requires significant effort to generate the diagnostic
program set.

Regarding SBD, a deterministic approach has been
proposed in [9], where the authors exploit SBST to tackle
diagnosis of the 2k-gate processor called PARWAN. They
proposed the following:

• A great number of short test programs are
generated in order to partition the fault universe
in as many subspaces as possible

• Each program presents a reduced set of
instructions to isolate faults related to different
processor functional parts

• Multiple copies of the same program are created,
each propagating errors on different observable
points in order to distinguish the faults affecting
the processor outputs

• At the end of the test set creation a binary tree is
built for use in the actual diagnosis process.

This technique is based on the processor functional
characteristics instead of a pure structural analysis.
Anyway, the effort required to generate a test set
following these guidelines is not trivial, and grows with
the complexity of the considered processor.
3. Proposed Approach

Herein, the evolution of the automatic methodology
able to generate a suitable diagnostic set of programs
starting from an initial test set built for post-production
testing is presented. The previously devised method
described in [11] is outlined; and then, the improved
methodology is described.

Original
test set

Sporing

Spores
set

Sifting

Basic
Diagnostic

set

Evolutionary
Improvement

Diagnostic
Test set

ECs
OK?

Additional
Programs

OK

KO

Figure 1: Methodology workflow

3.1 Base methodology
The method presented in [11] starts the generation of a

set of test programs suitable for diagnosis from a post-
production test set that is automatically divided in small
programs, called spores; then, a heuristic process, called
sifting, selects a subset of such small programs generating
the initial diagnostic set. Finally, relying on an
evolutionary tool called µGP, new programs are included
into the diagnostic set improving the former results.

The workflow is divided in the following three steps:
• Sporing: the initial test set of programs is split up,

generating a vast set of small programs or spores.
• Static sifting: following a static analysis, only the

most promising programs are kept in the test set.
• Evolutionary improvement: resorting to an

automatic tool, the diagnostic ability of the test
set is improved.

Figure 1 illustrates the workflow of the proposed
methodology; further details about this method can be
found in [11]. A brief outline of the steps that have been
improved in the new method is provided below.
3.1.1 Sporing

The execution of a program is simulated, and for
every instruction execution a small program is generated;
this program first sets the processor state to the one
reached immediately before the considered instruction,

then executes the instruction, and finally propagates the
results to some accessible output, such as I/O ports.
3.1.2 Static sifting

As detailed in [11], the goal of sifting is to obtain a
minimal diagnostic set without losing diagnostic capability
with respect to the complete set of spores. To achieve this,
first of all, every spore is assigned a fitness value, then the
whole set is sorted in decreasing order; and finally,
starting from the top of this list, spores are kept until their
cumulative fault coverage equals that of the complete set;
the following are discarded as redundant. Figure 2 reports
the pseudo-code of the sifting process.

Figure 2: Static sifting pseudo-code

The fitness values are computed based on the concept
of fault density that is the number of spores able to detect a
fault. Every spore is assigned a fitness value fs(Fd , sNF):

sF NF
F

dsf 11 ⋅⎟
⎠

⎞
⎜
⎝

⎛
= ∑ (1)

where F is the fault index over the covered faults, Fd

is the corresponding fault density and sNF is the number
of faults covered by the spore. The value of fs ranges from
0 to 1 and the higher its value the higher the diagnostic
capability of the spore.
3.1.3 Evolutionary improvement

The sporing process may generate a vast number of
code fragments, all of which have to be fault simulated for
evaluation. To save time fault dropping is employed; in
this way, however, only a pass/fail information can be
generated. The processor to be diagnosed has been
equipped with an IIP containing a MISR to collect
information from the I/O ports: this allows a finer
classification of faults. The MISR signature is collected
only at the end of the fault simulation.

The sifted spore set is then fault simulated and the
information given by the MISR signatures is gathered. The
signatures, 24 bit wide, contain more information than a
simple pass/fail indicator, thus allowing to classify
covered faults in different sets: this makes a fine
classification possible.

After the fine classification has been performed using
the sifted diagnostic set several large equivalence classes
remain. Each of these is then targeted for splitting: an
evolutionary tool, called µGP, is used to automatically

foreach (s in SporeSet)
 evaluateSporeFitness(s);
sortSporeSet();
T=faultCoverage(SporeSet);
foreach (s in SporeSet)
 B:=B+s;
 exit if (faultCoverage(B)=T)

generate a program whose goal is to split that class, and
whose fitness is computed accordingly.
3.2 Improved methodology

The new generation methodology is based on the
existing workflow, but the individual steps have been
redesigned to improve results. The starting point, an
already existing test program, is the same: the main
justification for its use is not just technical but also
economic and it hasn't changed over time. The sporing
process also remains identical, since its purpose is to
decompose an existing program into small fragments
corresponding, as closely as possible, to single instruction
executions. As the base concept of a spore has not
changed, so has not the process for their generation.
Subsequent steps, however, have been refined.
3.2.1 Dynamic sifting

The new sifting process is as follows: the fitness of
every spore is evaluated; then the spore with the highest
fitness is considered for inclusion in the sifted set. If the
total number of equivalence classes increases then the
spore is included, otherwise it is discarded, and the one
with the next highest fitness is analyzed.

Every time a spore is included in the sifted set the
fitness evaluation has to be repeated, since some faults
may be uniquely diagnosed. Taking into account these
faults is useless, so they are eliminated from the fault list
when computing densities.

The new dynamic sifting pseudo-code is shown in
figure 3.

Figure 3: Dynamic sifting pseudo-code

Having produced a pass/fail information, every spore
has the ability to partition the entire fault set into two
disjoint sets. When multiple spores (multiple programs,
indeed) are considered, all these partitions overlap,
possibly producing further fragmentation of the fault set.
An increase in equivalence class number directly
corresponds to a greater fragmentation. Given an existing
partition of the fault set the additional information given
by a spore cannot move a fault from a subset (not even
that of uncovered faults) to an already existing subset.
Exactly like glass splinters belonging to a slab, fault sets

can only be broken up, not merged. Unlike glass splinters,
equivalence classes can only be divided up to individual
faults, and, more important, they are much more difficult
to aim at for splitting.

The advantage of dynamically re-computing fitness is
that several spores with similar (static) fitness may help
isolate the same subset of faults. Once the first one is
included in the sifted set the others become nearly useless,
but a static fitness does not reflect this fact. Worse, with a
static fitness some of those may be included as well in the
sifted set but only give a very small contribution to
diagnosis. If many such contributions accumulate they
may mask the existence of a few spores able to more
effectively split the set. Experimental results show that this
is indeed the case.
3.2.2 New evolutionary improvement

The new sifting process leads to vastly improved
results with respect to the previous one: the same
diagnostic power is obtained with just a fraction of the
spores. Since spores are very short programs they are
relatively easy to fault simulate. One drawback of the
initial spore set is that, although very large, it does not
include all opcodes and all operand combinations, even for
opcodes present in the set. This is a consequence of their
generation process: it starts from an existing set of test
programs, and can only extract information contained
therein, but does not generate more.

This leads to a simple idea for evolutionary
improvement of the spore set: generate more spores by
mutation of existing ones. Every spore has a fixed
structure, composed of initialization of the processor state,
execution of a single instruction, called target instruction,
and observation of the results. The mutation is not
intended to change this scheme, but rather to work within
it. The performed modifications are of two kinds: small
changes of the operands related to the target instruction,
and arbitrary changes of executed operation. The reason
for this different treatment of operands and opcodes is that
the cardinality of the opcode set is much lower than the
cardinality of the operands space.

Figure 4: Two possible mutations of a spore

newClasses:=0;
B:=0;
do
 equivalenceClasses:=newClasses;
 foreach (s in SporeSet)
 evaluateSporeFitness(s);
 sortSporeSet();
 foreach (s in SporeSet)
 newClasses=evalClasses(B+s);
 if (newClasses>equivalenceClasses)
 B:=B+s;
 break;
while (newClasses>equivalenceClasses);

;initialization
MOV A,#01h
MOV B,#7Fh

MUL AB

;observation

;initialization
MOV A,#01h
MOV B,#7Fh

DIV AB

;observation

;initialization
MOV A,#01h
MOV B,#3Fh

MUL AB

;observation

Original spore

Mutation 1

Mutation 2

;initialization
MOV A,#01h
MOV B,#7Fh

MUL AB

;observation

;initialization
MOV A,#01h
MOV B,#7Fh

DIV AB

;observation

;initialization
MOV A,#01h
MOV B,#3Fh

MUL AB

;observation

Original spore

Mutation 1

Mutation 2

Figure 4 exemplifies two possible mutations of the
original spore reported. In the first case, a slight variation
is undergone by the B accumulator, toggling a single bit of
its initial value; in the second case, the target instruction is
mutated becoming a DIV instruction.

The evolutionary process starts from the sifted set and
generates one new spore from a randomly chosen one.
This is first compared with the existing ones to discover if
it is identical to one of them: if it is, there is no need to
evaluate it. To evaluate the spore a fault simulation is
performed, collecting the signature for each fault, after
which the equivalence class number is recomputed. If the
new spore is able to split some fault subset then it is
retained in the final set, together with simulation data;
otherwise it is still retained as an existing (but useless)
spore, and its simulation data are discarded. In this way it
is ensured that every generated spore is only evaluated
once.
4. Experimental evaluations

To experimentally demonstrate the new improvements
of the enhanced method, the same case study presented in
[11] was tackled, allowing us to perform a systematic
comparison at each step of the proposed workflow. All the
experiments were performed in a SUN Blade processor-
based workstation.

As in [11], the considered microcontroller is an Intel
i8051 microcontroller, supposed to be embedded into a
SoC. The synthesized microcontroller, obtained using a
generic home-developed library, contains 37,417
equivalent gates, and the collapsed fault list counts 12,642
faults.

The whole generating process was started from a post-
production test set composed of 8 test programs written by
hand, and reaching a fault coverage of about 92% on the
collapsed list.

The sporing step generates about 60k test programs
containing a few instructions that initialize the
microprocessor, compute the target instruction, and
propagate the results to save the syndrome; this set of
programs is called spore set. Further details about sporing
can be found in [13]. The spores set was fault simulated
gathering only a pass/fail information in order to speed up
the initial phase of the process. At this point of the
process, the sifting is performed producing the initial test
set; and finally, the evolutionary improvement left us with
the final test set.

Table 1 summarizes the results obtained exploiting the
new approach. In the columns, the main characteristics of
the different sets of programs collected through the whole
generation process are reported.

It could be noticed that not only the total application
time of the diagnostic set does not grow, but it reduces by
a factor of approximately four.

 Post-
production

test set

Initial
test set

Final
test set

Programs [#] 8 449 852
Test set size [KB] 4 13.20 18.26
Total Clock Cycles 1,003K 146.39K 239.85K
D(1) [%] 11.56 47.31 70.61
D(10) [%] 32.90 69.2 83.41
Table 1: The equivalence class summary for the analyzed
processor core

Table 2 shows the overall comparison in the final
results between the former methodology and the new one.

 [11] New method
Programs [#] 7,266 852
Test set size [KB] 177 18.47
Total Clock Cycles 2,000.0K 246.7K
D(1) [%] 61.39 70.6
D(10) [%] 84.30 84.31

Table 2: Methodologies comparison

The new results compare very favorably with the old

ones: the diagnostic power increases by about 9% and the
percentage of correctly classified faults remains almost the
same. These results are obtained with a diagnostic set
much smaller than previously, both in terms of program
number, memory occupation and application time. All of
these figures decrease by about ten times.

Table 3 presents a comparison in terms of required
time to perform both strategies.

 [11] New Method
Sporing 0.3h 0.3h
Coarse FS 225h 225h
Sifting 0.5h 2.24h
Fine FS 100h 6h
Evolutionary improvement 168h 129h
TOTAL 493.8h 362.54h

Table 3: Time comparison

The total generation time decreases by about 30%:

since both the sporing process and the fault simulation
needed for the coarse classification (Coarse FS) remain
unchanged, so do the related times; the sifting process is
slower, but amounts to a small fraction of the total; since
the initial test set is much smaller than previously, the fault
simulation performed for the fine classification (Fine FS)
is much faster; finally, the times needed for evolutionary
improvement are roughly similar. It should be noticed that
a trade-off exists between the duration of the evolutionary
improvement and the quality of the obtained results.

For the sake of comparison, two additional
experiments were performed in order to assess the
goodness of the new algorithm improvements. Thus,

mixed experiments were launched using in the first case
the old sifting or static sifting, and the new evolutionary
improvement method; and in the second case the new
sifting or dynamic sifting, and the old evolutionary
improvement tool. Table 4 presents the obtained values
mixing old and new approaches. The results are reported
in terms of the diagnostic capability reached by the
different sets of diagnostic programs.

 D(1) [%] D(10) [%]
Static sifting alone 35.70 58.02
Static sifting + old EI 61.39 84.30
Static sifting + new EI 60.37 69.42
Dynamic sifting alone 47.31 69.20
Dynamic sifting + old EI 51.50 73.71
Dynamic sifting + new EI 70.61 83.41

Table 4: Mixed experiments

This table clearly shows that both modifications of the

original methodology improve the quality of the final
diagnostic set.

5. Conclusions and future work
In this paper, an improved methodology for the

generation of software-based diagnostic sets for
microprocessors has been presented.

The new improvements of the presented methodology
allowed to achieve a substantial reduction in the
computational effort required to automatically generate a
diagnostic set of programs with respect to the method
previously presented. Moreover, since the number of
programs and the application time of the diagnostic set are
also reduced, the effective time required to perform
processor diagnosis is successfully reduced.

The reported results experimentally demonstrate that
SBD techniques are becoming effective and economical
solutions for the current diagnosis requirements.

6. Acknowledgements
The authors wish to thank Danilo Ravotto for

implementing the new sifting and evolutionary tool, and
performing experiments for the new methodology.

This work was partially supported by the Italian
Ministry for University through the PRIN04 project
“Tecniche per la progettazione di circuiti e sistemi
elettronici digitali innovativi ad alta disponibilità e
affidabilità”.

7. References
[1] A.Veneris, R.Chang, M.S.Abadir, M.Amiri, “Fault

equivalence and diagnostic test generation using
ATPG”, IEEE International Symposium on Circuits
and Systems, Volume 5, 23-26 May 2004, Page(s): V-
221 - V-224

[2] T.Bartenstein, “Fault distinguishing pattern
generation”, IEEE International Test Conference, 3-5
Oct. 2000, Page(s):820 – 828

[3] T.Gruning, U.Mahlstedt, H.Koopmeiners,
“DIATEST: a fast diagnostic test pattern generator for
combinational circuits”, IEEE International
Conference on Computer-Aided Design, 1991,
Page(s):194 – 197

[4] P.Camurati, A.Lioy, P.Prinetto, M.Sonza Reorda,
“Diagnosis oriented test pattern generation”, IEEE
European Design Automation Conference, 1990,
Page(s):470 – 474

[5] P.G.Ryan, W.K.Fuchs, I.Pomeranz, “Fault dictionary
compression and equivalence class computation for
sequential circuits”, IEEE International Conference on
Computer-Aided Design, 1993, Page(s):508 – 511

[6] V.Agrawal, M. Bushnell, “Essentials of Electronic
Testing for Digital, Memory and Mixed-Signal VLSI
Circuits”, Kluwer Academic Publishers, 2000

[7] L.Chen, S.Dey, “Software Based Self Test
methodology using a embedded Soft-ware Tester”,
IEEE Transaction on Computer Aided Design of
Integrated Circuits and Systems, 2001, pp 369-380

[8] Semiconductor Industry Association (2002)
International Technology Roadmap for
Semiconductors 2002 Update,
http://www.semichips.org/pre_stat.cfm

[9] L.Chen, S.Dey, “Software-based diagnosis for
processors”, IEEE/ACM Design Automation
Conference, 2002, Page(s): 259-262

[10] R.C.Aitken, V.K.Agarwal, “A Diagnosis method
using pseudo-random vectors without intermediate
signatures”, IEEE International Conference on
Computer-Aided Design, 1989, Page(s): 574-580

[11] P.Bernardi, E.Sanchez, M.Schillaci, G.Squillero,
M.Sonza Reorda, “An Effective Technique for
Minimizing the Cost of Processor Software-Based
Diagnosis in SoCs”, IEEE Conference on Design,
Automation and Test in Europe, 2006, Page(s): 412-
417

[12] International Technology Roadmap for
Semiconductors – ITRS 2005 Edition,
http://www.itrs.net/Links/2005ITRS/Home2005.htm

[13] E.Sánchez, M.Sonza Reorda, G.Squillero, “On the
transformation of Manufacturing Test Sets into On-
Line Test Sets for Microprocessors”, IEEE
International Symposium on Defect and Fault
Tolerance in VLSI Systems, 2005, pp. 494-504

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

