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ABSTRACT 
The ever increasing usage of microprocessor devices is 
sustained by a high volume production that in turn 
requires a high production yield, backed by a controlled 
process. Fault diagnosis is an integral part of the 
industrial effort towards these goals. This paper presents a 
new methodology that significantly improves over a 
previous work. The goal is construction of cost-effective 
programs sets for software-based diagnosis of 
microprocessors. The methodology exploits existing post-
production test sets, designed for software-based self-test, 
and may use an already developed infrastructure IP to 
perform the diagnosis. Experimental results are reported 
in the paper comparing the new results with existing ones, 
and showing the effectiveness of the new approach for an 
Intel i8051 processor core.  
1. Introduction 

Nowadays industries are aggressively scaling the 
features in MOSFETs for leading-edge logic technology in 
order to sustain the historical trends of improved device 
performance. The 2005 International Technology 
Roadmap for Semiconductors (ITRS05) clearly points out 
that this migration of CMOS technology is severely 
challenging the traditional failure analysis process. The 
conventional approach will increasingly be too slow and 
difficult for routine analysis. Instead, ITRS05 maintains 
that software-based diagnosis (SBD) is becoming a key 
area, and that SBD methodologies and tools will be 
required to handle in the near future all major test 
methodologies, including scan-based and BIST-based test, 
functional, IDDQ and, especially important, AC (delay) 
test. It seems probable that the new diagnostic 
methodologies will be based on both test structures and 
product-level tests. Design for testability (DFT) techniques 
such as built-in self test (BIST) will be likely designed 
with special consideration to support the necessary data 
gathering [12]. Similar problems are expected to appear 
with mass-production devices, such as small 
microprocessors and microcontrollers, where the high 
volumes together with the tight cost bounds will 
exacerbate the situation. 

Recently, Bernardi et al.[11] presented a methodology 
for minimizing the cost of microprocessor SBD in a 
System-on-Chip (SoC). The approach exploits an existing 

set of programs for post-production test converting it to a 
set of programs able to diagnose faults. This new set is 
then reduced in a process called sifting, and eventually 
enhanced with an evolutionary tool. The approach could 
also reuse the infrastructure IP (IIP) originally designed 
for the software-based self test (SBST) of the device, 
limiting the area overhead.  

Sifting is shown able to get an 88.3% reduction of the 
original set, shrinking it from 1,414KB to 165KB [11]. 
The approach leads to rather long execution times for 
generating the final diagnostic set: 325 hours a SUN Blade 
workstation for the sifting, plus 168 hours for improving 
the initial diagnostic set; but leads to good results in terms 
of diagnostic resolution. 

The cost of a diagnostic process can be roughly 
considered composed of two factors: the cost of generating 
the procedure, and the cost of applying it. The former 
reflects the computational resources required; the 
application cost is mainly influenced by the volume of 
data required by the diagnostic procedure, during both test 
set application and response analysis, by the time required 
for test application, and by the type of exploited automatic 
test equipment (ATE). 

This paper presents a significant improvement over 
[11]. Whereas the general structure of the approach is the 
same, both sifting and the genetic enhancement have been 
completely redesigned. 

The enhancements lead to an interesting reduction in 
computational effort, an increase in diagnostic resolution, 
and a dramatic reduction in the size of the final diagnostic 
set, thus leading to significantly smaller diagnosis time. 

The paper is organized as follows: section 2 provides 
a concise background in fault diagnosis for digital circuits, 
and outlines the basic concepts on SBST; section 3 details 
the proposed approach, with a discussion of its new 
improvements; section 4 presents some experimental 
results; finally, section 5 concludes the paper. 
2. Fault Diagnosis and SBST Background 

This section summarizes some concepts about the 
fault diagnosis and software-based self-test topics, and 
formalizes the terminology adopted in this paper. 
2.1 Fault diagnosis 

In testing, a circuit is classified as faulty if its 
responses are different from the ones obtained by the good 
circuit; thus, the boolean comparison between the 
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responses of the good circuit and the faulty circuit is called 
syndrome. Once a circuit has been classified as faulty, the 
process performed to establish the location of the circuit 
failure is called fault diagnosis, and the set of patterns 
required to accurately determine the location of the failure 
is named diagnostic test set (DT). 

Two faults f1 and f2 are structurally equivalent if and 
only if no test set could be able to produce a different 
response for f1 and f2. on the other hand, the diagnostic 
fault equivalence could be defined in the following terms: 
two faults f1 and f2 belonging to a fault list F can be 
classified as diagnostically equivalent (or 
undistinguishable) for a given diagnostic set D if they 
produce the same syndrome during the application of D. 
Thus, structurally equivalence implies diagnostic 
equivalence but not the opposite. Structural equivalence is 
exploited in testing as well as in diagnosis trying to reduce 
the fault list size, decreasing fault simulation times. 

A widely studied diagnosis topic is the generation of 
an effective DT; state-of-the-art DT generation techniques 
employ ATPG tools [1], [3], random [10] and evolutionary 
[4] pattern generation or functional approaches [9], [11]. 
The effectiveness of a DT is usually assessed using 
measurements related to diagnostically equivalent fault 
classes. For a given DT, an equivalent fault class (eci) is a 
subset of the fault universe including undistinguishable 
faults [1], [2]; clearly, structurally equivalent faults will 
always belong to the same ec, no matter the considered 
DT. Every individual eci is completely disjoint from the 
others, and their union is the fault universe itself. In simple 
words, a DT is most effective if it is able to split the fault 
universe in the biggest possible number of ec‘s as small as 
possible. 

Let us define D(n) as the fraction of faults that are 
classified into equivalence classes of cardinality less than 
or equal to n by the used DT. 

The ability of a generated DT is usually measured by 
means of its diagnostic power, defined as the fraction of 
all faults completely distinguished from all other faults or 
belonging to fault classes eci of size 1 (i.e., D(1)), or its 
diagnostic expectation, that is a simple average of ec sizes 
[5].  

It is also useful to define D(10) as the fraction of 
faults that can be considered correctly classified, because 
the exact analysis of equivalence between faults cannot be 
performed for medium or large sequential circuits. 

Information to built diagnostic structures is usually 
gathered following two classification approaches: 
• a coarse classification, obtained by processing only 

the pass/fail information related to each test pattern 
belonging to DT 

• a fine classification, performed using the whole faulty 
circuit syndromes and consists in building an output-
based diagnostic tree for each equivalent fault class to 
be further divided.  

The coarse classification process requires fast fault 
simulations producing only a go/nogo information for each 
simulated fault, reducing the process accuracy; on the 
other side, fine classification process execute slow fault 
simulations improving the process precision. 
2.2 Software-based testing techniques 

Traditionally, parametric testing of processor cores 
has been applied using an ATE [6]. However, 
technological progress is pushing up the complexity and 
operating frequencies of low-end microprocessor cores. 
Thus, even though ATE effectiveness on applying 
parametric test is unquestionable, the costs for an ATE 
able to run at-speed functional tests are becoming 
prohibitive [8]. To overcome these problems, industries 
are trying to reduce the use of expensive ATEs. One 
interesting strategy is to perform microprocessor testing 
resorting to the so called Software-Based Self-Test 
(SBST) [7], where the test set consists in a set of assembly 
programs and does not rely on any special test point to 
force values or observe behaviors during test application. 
Such programs are loaded in an internal memory resorting 
to the available resources, and then executed in the core. 
The processor is labeled as good or faulty depending on 
the results produced by the test programs. A minimum 
effort is thus needed to extract test results. 

SBD has several advantages with respect to the use of 
hardware-based methods: the diagnostic process can be 
performed at-speed without using costly equipment; in 
case scan chains are used there is no dependence on their 
exact structure, so the approach works even if the scan 
chains don’t; as any software method, SBD is intrinsically 
technology-independent. Finally, the method benefits from 
a high flexibility, since the test program can be easily 
adapted to new needs. On the other side, SBD has a lower 
control and observation abilities upon the internal nodes of 
the circuit; the method is still not fully mature, so it 
requires significant effort to generate the diagnostic 
program set. 

Regarding SBD, a deterministic approach has been 
proposed in [9], where the authors exploit SBST to tackle 
diagnosis of the 2k-gate processor called PARWAN. They 
proposed the following: 

• A great number of short test programs are 
generated in order to partition the fault universe 
in as many subspaces as possible 

• Each program presents a reduced set of 
instructions to isolate faults related to different 
processor functional parts 

• Multiple copies of the same program are created, 
each propagating errors on different observable 
points in order to distinguish the faults affecting 
the processor outputs 

• At the end of the test set creation a binary tree is 
built for use in the actual diagnosis process. 



This technique is based on the processor functional 
characteristics instead of a pure structural analysis. 
Anyway, the effort required to generate a test set 
following these guidelines is not trivial, and grows with 
the complexity of the considered processor. 
3. Proposed Approach 

Herein, the evolution of the automatic methodology 
able to generate a suitable diagnostic set of programs 
starting from an initial test set built for post-production 
testing is presented. The previously devised method 
described in [11] is outlined; and then, the improved 
methodology is described. 
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Figure 1: Methodology workflow 

3.1 Base methodology 
The method presented in [11] starts the generation of a 

set of test programs suitable for diagnosis from a post-
production test set that is automatically divided in small 
programs, called spores; then, a heuristic process, called 
sifting, selects a subset of such small programs generating 
the initial diagnostic set. Finally, relying on an 
evolutionary tool called µGP, new programs are included 
into the diagnostic set improving the former results. 

The workflow is divided in the following three steps: 
• Sporing: the initial test set of programs is split up, 

generating a vast set of small programs or spores. 
• Static sifting: following a static analysis, only the 

most promising programs are kept in the test set. 
• Evolutionary improvement: resorting to an 

automatic tool, the diagnostic ability of the test 
set is improved. 

Figure 1 illustrates the workflow of the proposed 
methodology; further details about this method can be 
found in [11]. A brief outline of the steps that have been 
improved in the new method is provided below. 
3.1.1 Sporing 

The execution of a program is simulated, and for 
every instruction execution a small program is generated; 
this program first sets the processor state to the one 
reached immediately before the considered instruction, 

then executes the instruction, and finally propagates the 
results to some accessible output, such as I/O ports. 
3.1.2 Static sifting 

As detailed in [11], the goal of sifting is to obtain a 
minimal diagnostic set without losing diagnostic capability 
with respect to the complete set of spores. To achieve this, 
first of all, every spore is assigned a fitness value, then the 
whole set is sorted in decreasing order; and finally, 
starting from the top of this list, spores are kept until their 
cumulative fault coverage equals that of the complete set; 
the following are discarded as redundant. Figure 2 reports 
the pseudo-code of the sifting process. 

 

 
Figure 2: Static sifting pseudo-code 

The fitness values are computed based on the concept 
of fault density that is the number of spores able to detect a 
fault. Every spore is assigned a fitness value fs( Fd , sNF ): 
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where F is the fault index over the covered faults, Fd  

is the corresponding fault density and sNF  is the number 
of faults covered by the spore. The value of fs ranges from 
0 to 1 and the higher its value the higher the diagnostic 
capability of the spore. 
3.1.3 Evolutionary improvement 

The sporing process may generate a vast number of 
code fragments, all of which have to be fault simulated for 
evaluation. To save time fault dropping is employed; in 
this way, however, only a pass/fail information can be 
generated. The processor to be diagnosed has been 
equipped with an IIP containing a MISR to collect 
information from the I/O ports: this allows a finer 
classification of faults. The MISR signature is collected 
only at the end of the fault simulation. 

The sifted spore set is then fault simulated and the 
information given by the MISR signatures is gathered. The 
signatures, 24 bit wide, contain more information than a 
simple pass/fail indicator, thus allowing to classify 
covered faults in different sets: this makes a fine 
classification possible. 

After the fine classification has been performed using 
the sifted diagnostic set several large equivalence classes 
remain. Each of these is then targeted for splitting: an 
evolutionary tool, called µGP, is used to automatically 

foreach (s in SporeSet) 
  evaluateSporeFitness(s); 
sortSporeSet(); 
T=faultCoverage(SporeSet); 
foreach (s in SporeSet) 
  B:=B+s; 
  exit if (faultCoverage(B)=T) 



generate a program whose goal is to split that class, and 
whose fitness is computed accordingly. 
3.2 Improved methodology 

The new generation methodology is based on the 
existing workflow, but the individual steps have been 
redesigned to improve results. The starting point, an 
already existing test program, is the same: the main 
justification for its use is not just technical but also 
economic and it hasn't changed over time. The sporing 
process also remains identical, since its purpose is to 
decompose an existing program into small fragments 
corresponding, as closely as possible, to single instruction 
executions. As the base concept of a spore has not 
changed, so has not the process for their generation. 
Subsequent steps, however, have been refined. 
3.2.1 Dynamic sifting 

The new sifting process is as follows: the fitness of 
every spore is evaluated; then the spore with the highest 
fitness is considered for inclusion in the sifted set. If the 
total number of equivalence classes increases then the 
spore is included, otherwise it is discarded, and the one 
with the next highest fitness is analyzed.  

Every time a spore is included in the sifted set the 
fitness evaluation has to be repeated, since some faults 
may be uniquely diagnosed. Taking into account these 
faults is useless, so they are eliminated from the fault list 
when computing densities. 

The new dynamic sifting pseudo-code is shown in 
figure 3. 

 

 
Figure 3: Dynamic sifting pseudo-code 

Having produced a pass/fail information, every spore 
has the ability to partition the entire fault set into two 
disjoint sets. When multiple spores (multiple programs, 
indeed) are considered, all these partitions overlap, 
possibly producing further fragmentation of the fault set. 
An increase in equivalence class number directly 
corresponds to a greater fragmentation. Given an existing 
partition of the fault set the additional information given 
by a spore cannot move a fault from a subset (not even 
that of uncovered faults) to an already existing subset. 
Exactly like glass splinters belonging to a slab, fault sets 

can only be broken up, not merged. Unlike glass splinters, 
equivalence classes can only be divided up to individual 
faults, and, more important, they are much more difficult 
to aim at for splitting. 

The advantage of dynamically re-computing fitness is 
that several spores with similar (static) fitness may help 
isolate the same subset of faults. Once the first one is 
included in the sifted set the others become nearly useless, 
but a static fitness does not reflect this fact. Worse, with a 
static fitness some of those may be included as well in the 
sifted set but only give a very small contribution to 
diagnosis. If many such contributions accumulate they 
may mask the existence of a few spores able to more 
effectively split the set. Experimental results show that this 
is indeed the case. 
3.2.2 New evolutionary improvement 

The new sifting process leads to vastly improved 
results with respect to the previous one: the same 
diagnostic power is obtained with just a fraction of the 
spores. Since spores are very short programs they are 
relatively easy to fault simulate. One drawback of the 
initial spore set is that, although very large, it does not 
include all opcodes and all operand combinations, even for 
opcodes present in the set. This is a consequence of their 
generation process: it starts from an existing set of test 
programs, and can only extract information contained 
therein, but does not generate more. 

This leads to a simple idea for evolutionary 
improvement of the spore set: generate more spores by 
mutation of existing ones. Every spore has a fixed 
structure, composed of initialization of the processor state, 
execution of a single instruction, called target instruction, 
and observation of the results. The mutation is not 
intended to change this scheme, but rather to work within 
it. The performed modifications are of two kinds: small 
changes of the operands related to the target instruction, 
and arbitrary changes of executed operation. The reason 
for this different treatment of operands and opcodes is that 
the cardinality of the opcode set is much lower than the 
cardinality of the operands space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Two possible mutations of a spore 

newClasses:=0; 
B:=0; 
do 
  equivalenceClasses:=newClasses;  
  foreach (s in SporeSet) 
    evaluateSporeFitness(s); 
  sortSporeSet(); 
  foreach (s in SporeSet) 
    newClasses=evalClasses(B+s); 
    if (newClasses>equivalenceClasses) 
      B:=B+s; 
      break; 
while (newClasses>equivalenceClasses); 

;initialization
MOV A,#01h
MOV B,#7Fh

MUL AB

;observation

;initialization
MOV A,#01h
MOV B,#7Fh

DIV AB

;observation

;initialization
MOV A,#01h
MOV B,#3Fh

MUL AB

;observation

Original spore

Mutation 1

Mutation 2

;initialization
MOV A,#01h
MOV B,#7Fh

MUL AB

;observation

;initialization
MOV A,#01h
MOV B,#7Fh

DIV AB

;observation

;initialization
MOV A,#01h
MOV B,#3Fh

MUL AB

;observation

Original spore

Mutation 1

Mutation 2



Figure 4 exemplifies two possible mutations of the 
original spore reported. In the first case, a slight variation 
is undergone by the B accumulator, toggling a single bit of 
its initial value; in the second case, the target instruction is 
mutated becoming a DIV instruction. 

The evolutionary process starts from the sifted set and 
generates one new spore from a randomly chosen one. 
This is first compared with the existing ones to discover if 
it is identical to one of them: if it is, there is no need to 
evaluate it. To evaluate the spore a fault simulation is 
performed, collecting the signature for each fault, after 
which the equivalence class number is recomputed. If the 
new spore is able to split some fault subset then it is 
retained in the final set, together with simulation data; 
otherwise it is still retained as an existing (but useless) 
spore, and its simulation data are discarded. In this way it 
is ensured that every generated spore is only evaluated 
once. 
4. Experimental evaluations 

To experimentally demonstrate the new improvements 
of the enhanced method, the same case study presented in 
[11] was tackled, allowing us to perform a systematic 
comparison at each step of the proposed workflow. All the 
experiments were performed in a SUN Blade processor-
based workstation. 

As in [11], the considered microcontroller is an Intel 
i8051 microcontroller, supposed to be embedded into a 
SoC. The synthesized microcontroller, obtained using a 
generic home-developed library, contains 37,417 
equivalent gates, and the collapsed fault list counts 12,642 
faults. 

The whole generating process was started from a post-
production test set composed of 8 test programs written by 
hand, and reaching a fault coverage of about 92% on the 
collapsed list. 

The sporing step generates about 60k test programs 
containing a few instructions that initialize the 
microprocessor, compute the target instruction, and 
propagate the results to save the syndrome; this set of 
programs is called spore set. Further details about sporing 
can be found in [13]. The spores set was fault simulated 
gathering only a pass/fail information in order to speed up 
the initial phase of the process. At this point of the 
process, the sifting is performed producing the initial test 
set; and finally, the evolutionary improvement left us with 
the final test set.  

Table 1 summarizes the results obtained exploiting the 
new approach. In the columns, the main characteristics of 
the different sets of programs collected through the whole 
generation process are reported. 

It could be noticed that not only the total application 
time of the diagnostic set does not grow, but it reduces by 
a factor of approximately four. 

 
 

 Post-
production 

test set 

Initial 
test set 

Final 
test set 

Programs [#] 8 449 852 
Test set size [KB] 4 13.20 18.26 
Total Clock Cycles 1,003K 146.39K 239.85K 
D(1) [%] 11.56 47.31 70.61 
D(10) [%] 32.90 69.2 83.41 
Table 1: The equivalence class summary for the analyzed 
processor core 
 

Table 2 shows the overall comparison in the final 
results between the former methodology and the new one.  

 
 [11] New method 
Programs [#] 7,266 852 
Test set size [KB] 177 18.47 
Total Clock Cycles 2,000.0K 246.7K 
D(1) [%] 61.39 70.6 
D(10) [%] 84.30 84.31 

Table 2: Methodologies comparison 
 
The new results compare very favorably with the old 

ones: the diagnostic power increases by about 9% and the 
percentage of correctly classified faults remains almost the 
same. These results are obtained with a diagnostic set 
much smaller than previously, both in terms of program 
number, memory occupation and application time. All of 
these figures decrease by about ten times. 

Table 3 presents a comparison in terms of required 
time to perform both strategies. 

 
 [11] New Method 
Sporing 0.3h 0.3h 
Coarse FS 225h 225h 
Sifting 0.5h 2.24h 
Fine FS 100h 6h 
Evolutionary improvement 168h 129h 
TOTAL 493.8h 362.54h 

Table 3: Time comparison 
 
The total generation time decreases by about 30%: 

since both the sporing process and the fault simulation 
needed for the coarse classification (Coarse FS) remain 
unchanged, so do the related times; the sifting process is 
slower, but amounts to a small fraction of the total; since 
the initial test set is much smaller than previously, the fault 
simulation performed for the fine classification (Fine FS) 
is much faster; finally, the times needed for evolutionary 
improvement are roughly similar. It should be noticed that 
a trade-off exists between the duration of the evolutionary 
improvement and the quality of the obtained results. 

For the sake of comparison, two additional 
experiments were performed in order to assess the 
goodness of the new algorithm improvements. Thus, 



mixed experiments were launched using in the first case 
the old sifting or static sifting, and the new evolutionary 
improvement method; and in the second case the new 
sifting or dynamic sifting, and the old evolutionary 
improvement tool. Table 4 presents the obtained values 
mixing old and new approaches. The results are reported 
in terms of the diagnostic capability reached by the 
different sets of diagnostic programs. 

 
 D(1) [%] D(10) [%] 
Static sifting alone 35.70 58.02 
Static sifting + old EI 61.39 84.30 
Static sifting + new EI 60.37 69.42 
Dynamic sifting alone 47.31 69.20 
Dynamic sifting + old EI 51.50 73.71 
Dynamic sifting + new EI 70.61 83.41 

Table 4: Mixed experiments  
 
This table clearly shows that both modifications of the 

original methodology improve the quality of the final 
diagnostic set. 

5. Conclusions and future work 
In this paper, an improved methodology for the 

generation of software-based diagnostic sets for 
microprocessors has been presented. 

The new improvements of the presented methodology 
allowed to achieve a substantial reduction in the 
computational effort required to automatically generate a 
diagnostic set of programs with respect to the method 
previously presented. Moreover, since the number of 
programs and the application time of the diagnostic set are 
also reduced, the effective time required to perform 
processor diagnosis is successfully reduced.  

The reported results experimentally demonstrate that 
SBD techniques are becoming effective and economical 
solutions for the current diagnosis requirements. 
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