
Working with Process Variation Aware Caches∗

Madhu Mutyam
International Institute of Information Technology, Hyderabad

Gachibowli, Hyderabad - 500032, India
mutyam@iiit.ac.in

Vijaykrishnan Narayanan
Pennsylvania State University

University Park, PA 16802, USA
vijay@cse.psu.edu

Abstract

Deep-submicron designs have to take care of process
variation effects as variations in critical process parameters
result in large variations in access latencies of hardware
components. This is severe in the case of memory compo-
nents as minimum sized transistors are used in their design.

In this work, by considering on-chip data caches, we
study the effect of access latency variations on performance.
We discuss performance losses due to the worst-case de-
sign, wherein the entire cache operates with the worst-
case process variation delay, followed by process variation
aware cache designs which work at set-level granularity.
We then propose a technique called block rearrangement
to minimize performance loss incurred by a process varia-
tion aware cache which works at set-level granularity. Us-
ing block rearrangement technique, we rearrange the physi-
cal locations of cache blocks such that a cache set can have
its ”n” blocks (assuming a n-way set-associative cache) in
multiple rows instead of a single row as in the case of a
cache with conventional addressing scheme. By distribut-
ing blocks of a cache set over multiple sets, we minimize the
number of sets being affected by process variation. We eval-
uate our technique using SPEC2000 CPU benchmarks and
show that our technique achieves significant performance
benefits over caches with conventional addressing scheme.

1 Introduction

With continued reduction in technology feature sizes, the
device parameters such as channel length, oxide thickness,
random placement of dopants in channel, etc., are expected
to exhibit significant variations. Variations in critical pro-
cess parameters can result in large variations in access laten-
cies and/or leakage energy of hardware components. With
CMOS process technology moving into nanometer regime,
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the degree of variability encountered in critical parameters
makes the worst-case design methodologies a non-viable
option for future designs [5, 6, 26]. Process variation ef-
fects are very severe in memory circuits as memories are
typically designed using minimum sized transistors for den-
sity reasons [21]. In order to reduce performance loss due
to process variation, one can work with an adaptive design
methodology which exploits the variability in memory ac-
cess latency.

As our main focus is on on-chip data caches, we now dis-
cuss adaptive design methodologies for data caches. In or-
der to reduce performance loss due to process variation, we
can design a process variation aware cache which exploits
access latency variations. Under such a variation aware de-
sign scenario, we predict access latency of a load instruc-
tion using a prediction technique [4, 10] and then issue all
dependent instructions of the load instruction based on the
predicted latency. If the prediction is correct, we obtain per-
formance improvements due to early issue of dependent in-
structions. On the other hand, if the prediction is wrong,
we replay all the dependent instructions to ensure correct
execution. The granularity of the latency prediction in pres-
ence of variation is critical in influencing the performance
benefits. For example, all blocks in a set of an associative
cache can assumed to have same latency (determined by
worst-case of all blocks in the set) or based on specific block
corresponding to a particular way of a set in an associative
cache. Latency prediction at way-level granularity has more
potential to deal with variability without being constrained
by the worst-case of blocks in other ways of a cache. How-
ever, current way-prediction techniques for data caches are
not accurate enough as in instruction caches [22].

In this paper, by considering process variation aware
data caches which work at set-level granularity, we propose
block rearrangement technique to minimize performance
loss due to access latency variations. Using our technique,
we rearrange the physical locations of cache blocks to mini-
mize the number of sets being affected by process variation.

The rest of this paper is organized as follows. The next
section presents our technique. We validate our technique in

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



Figure 1. An illustration for cache block orga-
nization in CAS, PairedBRT, and PerfectBRT.
Shaded portions indicate the blocks which
are affected by process variation.

Section 3. Section 4 presents related work in the literature
and Section 5 concludes the paper.

2 Block Rearrangement Technique

The idea in block rearrangement technique is to rear-
range the physical locations of blocks to minimize the num-
ber of sets having both low and high latency blocks. By
considering rearrangement of cache blocks between a pair
of cache sets and among all cache sets, we propose two
techniques, namely, paired block rearrangement technique
(PairedBRT) and perfect block rearrangement technique
(PerfectBRT), respectively. In PairedBRT, we consider two
adjacent sets as a group and perform block rearrangement
within the group. In PerfectBRT, block of a set can be re-
arranged to any position in the corresponding cache way.
For a n-way set-associative cache, the block rearrangement
range in PairedBRT and PerfectBRT is 2 and n, respec-
tively. In both techniques, blocks in a cache way are rear-
ranged in such a way that the high latency blocks are moved
to the bottom of a group or an entire cache way. Note that
PairedBRT is simple to implement, whereas PerfectBRT is
very effective in performance.

We illustrate our techniques using a 2-way set associative
cache which has 8 sets (numbered from 0 to 7) as shown in
Figure 1. Blocks of a set i are represented as block i in both
way 0 and way 1. Shaded blocks in Figure 1 represent the
process variation affected blocks, and hence they take high
access latency. In conventional addressing scheme (CAS),
all blocks of a set are placed in a single row so that even if
one block is affected by process variation, the correspond-
ing set takes high access latency. From CAS part of Figure
1, we know that two sets, i.e., sets 5-6, take low latency and
all other sets take high access latency as they have at least
one high latency block. From PairedBRT part of Figure 1,
as blocks which belong to sets 2i and 2i + 1, 0 ≤ i ≤ 3,
are rearranged, it is clear that four sets, i.e., sets 0, 2, 4, and
6, take low latency and the remaining sets take high latency.

Figure 2. Decoder configuration in CAS.

Note that after applying PairedBRT, we have set 5 with one
high latency block in way 1 and set 7 with one high latency
block in way 0. As these two sets are differently grouped,
it is not possible to rearrange their blocks. We can over-
come this problem by using PerfectBRT, where any block
can be placed anywhere in its cache way. PerfectBRT part
of Figure 1 shows that five cache sets take low latency.

In general, using PerfectBRT, the minimum number of
sets which take high access latency in a n-way set associa-
tive cache becomes k, where

k = max{ki | ki is the number of high access

latency blocks in way i, 0 ≤ i ≤ n − 1}.

In order to rearrange cache blocks, we consider a pro-
grammable address decoder which is similar to the one pro-
posed in [24]. Address decoder in [24] is programmed in
a way to disable faulty cache blocks and re-map any ref-
erences to the faulty blocks to the good blocks. In our
techniques, we consider an address decoder which is pro-
grammed to rearrange block positions. In order to pro-
gram the address decoder, we make use of the March test
[7] which can distinguish the low and high latency cache
blocks. The March test is employed during the functional
testing of memory components. It involves applying a spe-
cific sequence of operations that read and write values of
0s and 1s to different locations in a memory. The March
test can also identify the effects of process variation such
as destructive readout failures [8]. So, cache blocks can be
characterized as either low latency blocks or high latency
blocks through such a test that captures access time failures
before the operational phase of a microprocessor and rear-
range the cache blocks using our techniques. If cache block
i is characterized as a low latency block, we consider fi=0,
otherwise, fi=1. We pass this block-wise information to the
address decoder to perform required rearrangement.

In this paper, we consider a 4-way set associative cache
with one decoder for each way. Figure 2 shows a part of the
last three stages of a decoder used in CAS. Though this type



Figure 3. Decoder configuration in Paired-
BRT. Here fi indicates whether or not the ith

block is affected by process variation.

of decoder may not be used in performance-critical circuits,
we consider it here because it makes illustration of our tech-
nique easier. Note that the same procedure can be applied to
gates instead of pass transistors as shown in [24]. Based on
the values of a0, a1, and a2, one of the eight blocks can be
selected. The modified decoder which is used in PairedBRT
is shown in Figure 3. PairedBRT rearranges blocks of ad-
jacent sets. The block characterization values fi, which are
obtained from the March test, are used in combination with
the values a0 and a0 to modify the control inputs of the pass
transistors. For example, if we consider block 0 and block 1
with f0 = 1, then block 0 is mapped to block 1 and block 1
is mapped to block 0. In PerfectBRT, we need to program at
all levels. Though we have not calculated the area overhead
due to programmable address decoder, it is expected to be
small as demonstrated for a similar design in [24].

3 Experimental Validation

3.1 Experimental Setup

We validate our technique by simulating 19 SPEC2000
CPU benchmarks [2] using the Simplescalar 3.0 simulator
[1]. For each benchmark, we fast forward 100 million in-
structions and then simulate next 300 million instructions.
The baseline processor configuration is given in Table 1. We
assume two-stage pipelined data cache. In the ideal scenario
where there is no process variation, the data cache access
takes two cycle latency. On the other hand, if process varia-
tion influences the pipeline stages of cache access, the delay
of either pipeline stage can exceed that of the nominal cy-
cle time. Note that clock period for a stage is determined by
the worst-case pipeline stage hence even if process variation
increases the latency of one of the cache pipeline stages to

Issue width 8 instructions/cycle (out-of-order)
RUU size 128 instructions
LSQ size 64 instructions

L1 data cache 64KB, 4-way (LRU), 64B blocks,
2 cycle latency (no process variation),

4 cycle latency (with process variation),
25% of cache sets have 4 cycle latency,
and the remaining have 2 cycle latency

L1 Inst. cache 64KB, 4-way (LRU)
32B blocks, 1 cycle latency

L2 cache Unified, 512KB, 8-way (LRU)
128B blocks, 12-cycle latency

Memory 160 cycles
ITLB 16-entry, 4KB block, 4-way

30-cycle miss penalty
DTLB 32-entry, 4KB block, 4-way

30-cycle miss penalty

Table 1. Base processor configuration.

two cycles, this results in four cycle latency for a two stage
pipeline. In the baseline configuration we assume 25% of
cache sets are affected by process variation and hence they
take 4 cycle latency and the remaining cache sets take two
cycle latency. As part of sensitivity analysis, we conduct ex-
periments by assuming different percentages of cache sets
are being affected by process variation. In our experiments
we also consider the worst-case design scenario where the
cycle time of the entire pipeline is doubled.

3.2 Experimental Mechanism

In order to exploit access latency variations, we predict
the latency of a given load operation ahead of time by using
a prediction technique. In this paper, as we work at set-level
granularity, we consider a 2-delta stride-based address pre-
dictor [10] for set prediction. In our experiments, we use a
predictor with 16K entries. We also consider a latency table
which maintains the access latencies at a cache set granular-
ity (assuming that each cache set has a single latency which
is the largest latency among all its ways). The latency table
can be initialized through the March test [7] that captures
access time failures before the operational phase of a mi-
croprocessor. The memory locations where access failures
can be removed through operating at a slower frequency are
provided a bit value of 1 in the latency table, whereas those
that can complete within a single cycle with no access fail-
ures are initialized to 0. Note that the March test also marks
other bits to indicate permanent failures. This includes tim-
ing failures that cannot be compensated by even doubling
access latency. It also needs to be mentioned that the latency
table itself may be subject to process variations. However,
due to the reduced wordline capacitance offered by a single
cell used in our look-up table, even with process variation,



Figure 4. Benchmark-wise IPC degradation
for different techniques w.r.t. the base case.
Note that here we assumed 25% of cache sets
are being affected by process variation.

the cycle time never exceeds the sum of the decoder and
word line delay of the cache.

Given the static address of a load instruction, we pre-
dict the cache set address of a data to be accessed by using
the prediction technique. The latency table is indexed us-
ing the predicted set address to obtain the predicted cache
access latency so that the dependent instructions can be is-
sued accordingly. It is important to note that, as there are
multiple pipeline stages between decode and dispatch, our
set prediction and latency table access for the predicted la-
tency do not fall into the critical path. If the set prediction
is correct, we obtain performance gains. On the other hand,
even if the set prediction is wrong, we may have correct la-
tency prediction as two different sets can have same access
latency. So, only when both the set and latency predictions
are wrong we incur performance penalty as all dependent
instructions are replayed. We replay instructions using the
instruction-based selective replay technique [15].

3.3 Experimental Results

We consider five scenarios which include a cache with-
out process variation so that each cache access takes 2 cycle
latency (base case), a pessimistic case where each cache ac-
cess takes 4 cycle latency (Worst-case), prediction with con-
ventional addressing scheme (CAS), prediction with paired
block rearrangement (PairedBRT), and prediction with per-
fect block rearrangement (PerfectBRT).

Figure 4 shows benchmark-wise IPC degradation for dif-
ferent techniques w.r.t. the base case. Note that here we as-
sume 25% of cache sets take 4 cycle latency for data cache
access and the remaining sets take 2 cycle latency. Perfor-
mance degradation of the worst-case design w.r.t. the base
case is very significant and it ranges from 0.52% (“Art”) to

Figure 5. Average IPC degradation for differ-
ent techniques w.r.t. the base case.

14.71% (“Mcf”). Even though CAS technique achieves bet-
ter performance across different benchmarks (except “Ap-
plu”, “Twolf”, and “Mesa”) as compared to the worst-case
design, its performance degradation w.r.t. the base case
ranges from 0.17% (“Art”) to 14.76% (“Mesa”). In case
of “Applu”, “Twolf”, and “Mesa”, the prediction accuracy
is very low so that we incur large number of instruction
replays and hence performance loss. Generally, when we
apply prediction based techniques on a data cache with ac-
cess latency variations, performance of these techniques de-
pends on factors such as which set (either a low latency set
or a high latency set) a load instruction is accessing and how
many times it is accessing the set. Further more, our block
rearrangement techniques rearranges blocks so that a low
access latency set in CAS (for example, set 6 in CAS part
of Figure 1) may have high access latency after applying
PairedBRT (for example, set 6 in PairedBRT part of Fig-
ure 1) which may result in better performance in CAS as
compared to the block rearrangement techniques. This fact
is evident from the results of benchmarks “Gap”, “Mcf”,
and “Mesa”. Except for these three benchmarks, PairedBRT
technique achieves significant performance benefits across
different benchmarks as compared to CAS. As PerfectBRT
can rearrange blocks any where, it reduces performance
penalty significantly. In the case of “Mesa”, PerfectBRT
incurs performance penalty of 0.37%, whereas both CAS
and PairedBRT incur more than 14% performance penalty.

Figure 5 shows average IPC degradation across all
benchmarks w.r.t. the base case for different percentages of
cache sets being affected by process variation. The worst-
case design can incur a performance penalty of 7.76%.
As long as the percentage of cache sets being affected by
process variation is low, CAS can perform better than the
worst-case design. There is a huge difference in perfor-
mance degradation values of CAS when the percentage of



Figure 6. Latency prediction accuracy in dif-
ferent cache organizations.

cache sets being affected by process variation is changed
from 25% to 50%, but from 50% to 75% variation, the dif-
ference is very small. The reasons are two fold: prediction
accuracy is high for both 25% and 75% variation cases as
either low latency group or high latency group dominates,
whereas both low and high latency groups have equal prob-
ability in the 50% variation case so that the prediction accu-
racy is low; as variation percentage increases, the number
of low latency cache sets decreases. If the prediction accu-
racy is low, mis-prediction rate can increase which in turn
increases the number of replay instances and hence we in-
cur significant performance loss. From the figure we see
that CAS is not effective w.r.t. the worst-case as variation
percentage is 50% or more. On the other hand, PairedBRT
can produce better results as compared to CAS. Finally, Per-
fectBRT brings the performance penalty close to 2%.

We know that in case of set misprediction, the latency
prediction can still be correct for the cache set accesses. The
probability of this correctness is influenced by the number
of bits and locations that vary in the set prediction and the
rearrangement technique. In CAS, both low and high la-
tency cache sets can be distributed across the entire cache,
whereas in PerfectBRT, all low latency blocks are moved
to one end of a cache way and all high latency blocks are
moved to the other end of the same cache way. So, in CAS,
even if the actual set address differs in one bit position w.r.t.
the predicted set address, we may incur a latency mispre-
diction, whereas in PerfectBRT, as long as the predicted set
address is within a range of the actual set address, we get
a latency hit. Figure 6 shows the average latency predic-
tion accuracy across all benchmarks in CAS, PairedBRT,
and PerfectBRT, respectively. In the figure, notation (a, p)
indicates that a is the actual latency and p is the predicted la-
tency. We consider latency prediction as hit if the predicted
latency is greater than or equal to the actual latency. With

respect to the worst-case design, performance improves in
case of (2, 2), whereas there is no change in performance in
case of (4, 4) and (2, 4). In case of (4, 2), we incur perfor-
mance penalty as dependent instructions are replayed. From
the figure, it is clear that PerfectBRT improves the latency
prediction accuracy. As block rearrangement in PairedBRT
is limited to adjacent sets, its prediction accuracy is less than
that of PerfectBRT but it is more than that of CAS.

Note that the results presented in the paper are based on
the prediction accuracy of 2-delta stride based predictor.
Any high accuracy set-predictor can improve the latency
prediction accuracy which inturn helps in further reducing
the performance penalty due to process variation.

4 Related Work

It has been shown that both inter-die [20] and intra-
die [19] process variations have significant impact on both
performance and power consumption of a chip [5, 6, 26].
The impact of process variation on memory has been ana-
lyzed by previous works [3, 8, 18]. Analysis of the emerg-
ing SRAM failure mechanisms due to process variations is
made in [8]. In [3] SRAM cell failures under process vari-
ation is analyzed and a variation-aware cache architecture
suitable for high performance applications is proposed. The
proposed architecture adaptively resizes the cache to avoid
faulty cells, thereby improves yield. For a small size em-
bedded SRAM, as the decoder and wordline drivers are re-
sponsible for the majority of the delay and energy variation,
techniques for variable tapered buffer design for embedded
SRAM decoder are proposed in [21], so that the decoder
configuration can be changed at run-time. There have also
been recent efforts [11, 12] that deal with process variation
in other components of a processor.

As load latencies are unpredictable, several techniques
have been proposed to minimize the effects of unpredictable
load latencies. Prediction techniques predicts the load ad-
dresses in the front end of the pipeline and accesses data
cache speculatively. Value prediction [14, 23] predicts the
values that would be brought by load operations early in
the pipeline. Memory dependence prediction [9, 16] pre-
dicts dependence between a load and prior stores to reduce
load issue delay and improves performance. Transient value
cache [17] captures recently-used data and employs mem-
ory dependence prediction to steer memory accesses. Load
reuse [25] compares the operand values of a previous dy-
namic load instruction stored in its reuse table with the val-
ues read from the register file of the current dynamic load.

Earlier works indicate that mechanisms related to our
techniques are proposed for different purposes. A scheme
called block permutation is proposed [13] in the context
of power density minimization. It permutes cache blocks
to maximize the distance between blocks with consecutive



addresses. As distance between consecutively addressed
blocks increases, the area of a working set increases and
hence power density minimizes. A technique called padded
cache is proposed [24] for providing fault-toleranance to
cache memories. In order to provide fault-tolerance, they
proposed a special programmable address decoder which
can disable faulty blocks to re-map their references to good
blocks. Our technique is different from these two tech-
niques in the following ways: 1) unlike the static rearrange-
ment of cache blocks as suggested in [13], our technique
rearranges cache blocks based on whether or not the blocks
are affected by process variation; 2) unlike disabling cache
blocks as suggested in [24], the programmable address de-
coder in our technique swaps different blocks.

5 Conclusion

In this paper, by considering a process variation aware
data cache design which works at set-level granularity, we
proposed block rearrangement technique to minimize per-
formance penalty due to access latency variations in data
caches. By validating our technique using SPEC2000 CPU
benchmarks, we showed that our technique can significantly
reduce performance penalty incurred by a conventional ad-
dressing scheme. As future work, we are planning to exploit
block rearrangement concept to reduce leakage energy over-
head due to process variation. We are also interested to see
the effect of block rearrangement technique on conventional
load address prediction techniques.
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