
�������� ����	��
�� ��� �� ���	�� ��� 
�
��� �	�	���

������� ������� ��	� 
�������	 ����� ���� ������ ��	���	��	����

������� �������� ���� 
����	

�������� ��	
��� ���������� ���
��������� �� ��������� ��� ���� �� �����

{�����������������	�
���	������	������
����	�
�}���
������

��������

Extreme transistor scaling trends in silicon technology are
soon to reach a point where manufactured systems will suffer
from limited device reliability and severely reduced life-time,
due to early transistor failures, gate oxide wear-out, manu-
facturing defects, and radiation-induced soft errors (SER).
In this paper we present a low-cost technique to harden a
microprocessor pipeline and caches against these reliabil-
ity threats. Our approach utilizes online built-in self-test
(BIST) and microarchitectural checkpointing to detect, di-
agnose and recover the computation impaired by silicon de-
fects or SER events. The approach works by periodically
testing the processor to determine if the system is broken.
If so, we reconfigure the processor to avoid using the bro-
ken component. A similar mechanism is used to detect SER
faults, with the difference that recovery is implemented by
re-execution. By utilizing low-cost techniques to address de-
fects and SER, we keep protection costs significantly lower
than traditional fault-tolerance approaches while providing
high levels of coverage for a wide range of faults. Using
detailed gate-level simulation, we find that our approach
provides 95% and 99% coverage for silicon defects and SER
events, respectively, with only a 14% area overhead.

�� �	��
�����
	
The advent of silicon technologies below 65nm, has cre-

ated a widely held concern for the reliability of transistors
and interconnects. Leading technology experts have voiced
predictions that overall system reliability will be severely
compromised by a number of burgeoning failure mechanisms,
including radiation-induced transient errors, transistor wear-
out, early failure, and manufacturing defects [23]. They
warn that without the addition of fault-tolerant design tech-
niques, overall system reliability will be significantly im-
pacted, resulting in shorter times to first failure and reduced
manufacturing yield. In this paper, we detail a low-cost
technology to harden a microprocessor pipeline and cache
memory system against these reliability threats.

Below 65nm, a number of silicon failure modes are sharply
accentuated, creating a hostile operating environment ripe
with a variety of transient and permanent failure mecha-
nisms. Transient faults, or soft errors as they are often
called, are the result of energized alpha or neutron parti-
cles striking logic components, creating logic glitches which
can potentially corrupt latch inputs or memory cells. While
there are a number of situations that can mask SER faults
(e.g., microarchitectural or logical masking), significant con-
cerns remain that SER effects will grow with decreasing pro-

cess technologies and shortening clock cycles.
More recently, focus in the computer architecture and

VLSI research communities has started to turn toward the
problem of silicon defects. These failures are the result
of transistors and interconnects that are either defective
when manufactured, or fail in the field due to operational
stresses. A number of important silicon failure mechanisms
have emerged, in particular:
Silicon Wear-out: Extreme device scaling results in ex-
tremely small device structures, with only 10’s of atoms
of thickness in the dimension of critical structures. If ex-
posed to prolonged voltage or temperature stresses, these
fragile structures can fail. Many failure modes are possible,
including metal electro-migration, hot carrier degradation,
and gate breakdown.
Early Transistor Failures: Deep submicron scaling in-
creases the probability of early transistor failures, due to
the reduced effectiveness of component burn-in. Small leaky
transistors can induce thermal runaway, a side-effect of burn-
in which can destroy robust components that would other-
wise pass burn-in testing.
Device Defects: A number of fabrication factors, such as
optical proximity effects, airborne impurities, and processing
material flaws can result in defective transistors and inter-
connect. Additionally, the gate oxides used in deep submi-
cron have thinned to the point where process variation can
lead to currents penetrating the gate, rendering a transistor
broken.

Classic fault-tolerant techniques are available which can
tolerate many of these faults, including parity or error cor-
rection codes (ECC), dual or triple-modular redundancy,
time-redundant computation or checkers [22]. However, these
techniques suffer from large overheads that start at 100%
and quickly rise if the design must accommodate high avail-
ability. In contrast to traditional techniques, the design pre-
sented here leverages domain-specific fault-tolerance tech-
niques that significantly reduce the performance and area
overheads of providing high-coverage support for fault de-
tection, diagnosis, recovery and repair.

��� ����������� � ���� �����
We present a low-cost technology to protect a processor

pipeline and its cache memory system from both transients
faults and permanent silicon defects. To keep costs low, we
only provide guarantees for the first silicon defect (although
it is likely that the design presented could tolerate additional
defects). Given this fault model, we exploit a novel combi-
nation of on-line distributed checkers and microarchitectural

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



checkpointing which efficiently identify defects and recover
from their impact. The microarchitectural checkpointing
mechanism implements a capability to roll back execution
up to 1000’s of cycles. Using the protection of checkpointing,
we periodically exercise the on-line distributed checkers to
verify the functional integrity of the hardware. If the online
tests succeed, the underlying hardware is known to be free of
defects, and the previous checkpoint is no longer needed. If
a defect is detected, processor state is restored through the
last checkpoint, and we repair the hardware by reconfigur-
ing it to operate without the defective component, possibly
with a slight performance degradation. We utilize the nat-
ural redundancy of instruction-level parallel processors to
reduce repair costs. Finally, we employ a double-sampling
latch design to protect the pipeline from transient faults and
latch defects.

The design presented in this paper is based on our earlier
proposed reliable pipeline solution presented in [21]. We
used the same processor design as our baseline system, and
we enhanced the previously presented technology with the
following novel features:

1. We extend the resilient design methodology to toler-
ate both transient and hard silicon faults, with lower
cost and better coverage than previously published ap-
proaches. For a 14% area overhead, we provide 99%
and 95% coverage against transient faults and silicon
defects, respectively. This is a marked improvement
in coverage over our previous design [21] (which did
not have protection against transient faults or control
logic defects) and an order-of-magnitude improvement
over traditional techniques such as triple modular re-
dundancy (TMR).

2. We introduce a novel reflexive self-test technique which
allows each distributed checker to check itself. This
approach obviates the need for expensive logic to check
the functional integrity of the checkers, resulting in
higher overall fault coverage with no increases in area
costs.

3. We develop a general approach to protect arbitrary
control logic blocks from defects. Our approach, based
on dual-modular redundancy, provides high coverage
of control logic block defects with moderate cost. We
demonstrate through detailed physical design analysis
that protection of control logic is vital to achieve high
overall fault coverage.

A key aspect of our work is the observation that online
testing techniques provide high levels of resiliency at much
lower cost than traditional redundant computation tech-
niques. Approaches such as triple-modular redundancy and
N-version hardware exercise redundant hardware on each
cycle, with area and power overheads of 100% or more [22].
With the online testing-based solutions used in this work,
computation is not checked, rather, the underlying hardware
is periodically verified. If a faulty component is detected, the
computation is repaired by restoring the last known-good
checkpoint and disabling the broken resource.

The remainder of this paper presents our resilient pro-
cessor design approach, and assesses its impact on fault
coverage, design cost, and system performance. Section 2
overviews the proposed design technique, including support
for online testing and microarchitectural checkpointing. Our
soft-error detection scheme is described in Section 3. In Sec-
tion 4 we present a detailed simulation-based evaluation of

IF
/I
D

 l
a
tc

h
e
s

ID
/E

X
 l
a
tc

h
e
s

E
X

/M
E

M
 l
a
tc

h
e
s

M
E

M
/W

B
 l
a
tc

h
e
s

MEM

stage

EX

stage

ID

stage

IF

stage

WB

stage

IF
checker

MEM
checker

EX
checker

ID
checker

WB
checker

scan chain

w
it
h
 S

E
U

 
d
e
te

c
ti
o
n

w
it
h
 S

E
U

 
d
e
te

c
ti
o
n

w
it
h
 S

E
U

 
d
e
te

c
ti
o
n

w
it
h
 S

E
U

 
d
e
te

c
ti
o
n

D
 -

C
A

C
H

E

I 
-

C
A

C
H

E

Figure 1: Fault-tolerant pipeline architecture.

Epoch

testing complete

COMPUTATION

T
E

S
T

IN
G

duration is data and 

cache size dependent

COMPUTATION

T
E

S
T

IN
G

fault detected

H
A

R
D

W
A

R
E

R
E

C
O

N
F

IG

C
H

E
C

K
P

O
IN

T
R

E
S

T
O

R
E

COMPUTATION RESUMES

EPOCHS DISABLED, NO TESTING

time

Figure 2: Epoch-based execution timeline.

the approach. Finally, Section 5 reviews related works, and
Section 6 gives conclusions.

�� ������� �	
	�� ���	�����

An overview to our resilient processor design technology,
which was first introduced in [21], is illustrated in Figure 1.
The technique relies on a register and memory checkpointing
mechanism implemented transparently in the microarchitec-
ture, which creates protected epochs of computation. As
illustrated in Figure 2, an epoch is an interval of computa-
tion, usually thousands of cycles long, which can be undone
at any time for the purpose of recovering from potentially
erroneous results created by a silicon defect or transient SER
fault. The amount of computation within an epoch is vari-
able and it is determined by the temporary storage capacity
of the processor’s data cache and the occurrence of inter-
rupts. As shown in Figure 2, the processor runs unfettered
for an entire epoch, after which the built-in self-testing in-
frastructure fully tests the underlying hardware. This is in
contrast with [21] where the testing was concurrent with the
processor’s execution. The main benefit of employing this
approach compared to the work in [21] is that it eliminates
the need for storing two checkpoints and two-phase state
commits, and in case of an error, the recovery can be done
by simply reloading the previous checkpoint. This approach
leads to greater area savings, due to smaller checkpointing
state, at the expense of a slightly larger performance over-
head.

If the built-in self-tests pass, the hardware is known to be
free of defects, and the computational epoch can be safely
retired to non-speculative storage. In the event that the
tests fail, the underlying hardware has been found to be
defective due to a silicon defect. In this case, the compu-
tation in the previous epoch may have been corrupted by
the defect. Consequently, the speculative results must be
invalidated and the state of the processor restored to the
beginning of the previous epoch, which is the last known
correct state as the pipeline had just passed a successful on-



mux

known 
correct

FSM 

combinational logic

BIST
CHECKER

(compare)
Testing clk

Testing
mode

FSM 

combinational logic

Figure 3: Control logic checker network.

line test battery. Before the mainstream computation can
advance, however, the faulty component must be repaired.
In a processor with instruction-level parallelism (ILP), we
can rely on multiple copies of nearly all resources, hence, we
repair the system by disabling the defective component and
by reconfiguring the processor so that to avoid utilizing that
unit. Once repaired, the processor will continue to run in a
performance-degraded mode.

In the remainder of this and the following section we de-
tail the enhancements made to the resilient processor design
of [21], focusing on improving fault coverage through better
protection of the system’s control logic and new support for
transient faults. Details of the BIST techniques employed
in other parts of the processor can be found in [21].

Protecting Control Logic. To achieve high fault cov-
erage it is critical to protect the control logic, since this
logic constitutes a non-trivial fraction of the area in most
processor designs. For the pipeline’s control logic of our
prototype design, we employ a dual-modular redundancy
(DMR) based approach, as illustrated in Figure 3. We run
two copies of the pipeline control logic in parallel, each with
the same set of inputs. Every cycle, the outputs of the con-
trol blocks are compared and if any difference occurs, a fault
is flagged. To localize the fault, we use BIST to determine
which of the two control block copies is defective. Once
identified, the defective control logic block is permanently
disabled. Note that this approach can only tolerate defects
to the extent that they occur in only one of the two control
logic blocks. This technique has area-cost advantages over
triple-modular redundancy because checker and BIST logic
are typically smaller than a third copy of control logic as re-
quired to implement TMR. Note also that we protect each
control logic block individually, leading to smaller overhead
in the interconnect and higher resiliency.

Checker, Check Thyself. The checkers constitute a
non-trivial portion of the processor’s area – more than 10%
of the area of our prototype design. Consequently, if the
checkers themselves were not checked, they would severely
limit overall design fault coverage. To keep area costs low,
checkers are checked using the same component they mon-
itor, a technique we call reflexive self-test. In other words,
our online test harnesses are designed such that they pro-
duce a correct result only when both the unit-under-test and
the checker are free of silicon defects and other faults. For
example, a BIST-vector generator and a 9-bit adder is used
to check the processor’s adder. At the same time, the pro-
cessor’s adder is used to test the functional integrity of the
BIST-vector generator and the 9-bit adder.

In traditional testing the BIST vectors are selected so that
they have a high probability to detect defects in the unit un-
der test. In reflexive testing we add the additional constraint
that the test vectors must also expose defects in a broken
checker (assuming that the unit under test is still working).
Consequently, assuming a single-defect fault model, a BIST
test will fail if there is a defect either in the unit-under-test
or in the checker. If the defect is in the checker, the end re-
sult will be the disabling of the working unit and its broken
checker, hence the desired result of disabling the defective
checker component is achieved as a byproduct.

Checkpointing and Recovery. We employ a microar-
chitectural checkpointing and rollback mechanism to restore
correct program state in the event of a defect or transient
fault. This mechanism is similar to the one described in [15].
Within each computational epoch’s execution, register and
memory updates are buffered in speculative state to prevent
any external memory corruption. At the end of each epoch,
online tests are run to verify that the underlying hardware
is functionally correct. In case the hardware is found fault
free, the speculative state is committed and the processor
continues with the next epoch; otherwise, the program state
is rolled back to the beginning of the epoch, the hardware
is repaired, and program execution continues unimpaired.
Figure 1 shows the boundary between speculative and com-
mitted (non-speculative) state.

A single-port SRAM is used to store the registers state at
the beginning of each epoch. Memory updates are held spec-
ulatively by adding a volatile bit to each cache line. These
bits are reset at the beginning of an epoch. Subsequently,
when a store operation is executed, the value is stored to a
cache line and the corresponding volatile bit is set to indi-
cate that the contents are speculative in the current epoch.
The extent to which the cache can buffer speculative mem-
ory updates determines the length of each epoch. Therefore,
a cache miss on a set in which all lines are marked as volatile
terminates the computational epoch and forces the processor
to either commit the state (if end-of-epoch hardware tests
pass) or rollback to the previous checkpoint (in the event
of a failure). Committing of state is done by clearing all
volatile bits from the cache lines and thereby moving all for-
merly speculative state to non-speculative. Rollback of the
state is implemented by flushing the pipeline and restoring
architectural registers from the backup register file. Addi-
tionally, all volatile cache lines are invalidated to prevent
any corrupted memory update.

Sequential Elements. We achieve coverage for the de-
sign’s sequential elements as a byproduct of our transient
fault protection technique which is presented in the follow-
ing section.

�� ��������� 	�
�� ��������

We propose a novel circuit for transient fault detection,
based on a double-sampling scan flip-flop. Figure 4 depicts
the proposed fault-tolerant scan cell detecting soft errors in
both sequential and combinational logic. In addition, it can
detect hard failures in sequential elements. The figure also
lists different operating modes of the cell and their corre-
sponding input configurations.

Our SER-tolerant flip-flop is composed of a main FF block
and a scan FF block where each block includes a master and
a slave latch. In addition the scan FF block contains an XOR
gate detecting when the two master-slave FFs have latched



PROTECT SCANDATA_EN MAINDATA_EN AUX_CLK

Normal op. – with protection

Normal op. – no protection

Shift out SI or error signal

Main FF data to scan chain

Test FF for hard failure

0 000

1 011

0 001

0 010

0 11 Single pulse

INPUT CONFIGURATIONS FOR CELL USE

Nominal power

Power @error cycle

Area

CLK-Q delay

ENERGY-DELAY CHARACTERISTICS (normalized to a regular scan cell)

1.96

2.69

1.5

1.12

D1

C1

D2

C2

D1

C1

PROTECT

clk_b

SCANDATA_EN

MAINDATA_EN

SO

Q
Q

D

CLK clk_b

clk_b

SI

SCAN_CLK

AUX_CLK

Q

SCAN FF

MAIN FF

SA

SB

Output 

Latch

Q

MA

D1

C1

Q

MB

D1

C1

D2

C2

AND1
XOR1

D1

C1

Q

QMB

QSB

Figure 4: SER-Tolerant flip-flop.

different values (as it is the case when an SER hits) and
an additional latch storing this information permanently.
The two blocks are fed with two distinct clocks, the main
clock and a skewed clock. In our case the skewed clock is
the inverse of the main clock and is indicated in the Fig-
ure as clk b. The main FF latches the incoming data signal
on the positive edge of the clock, while the scan FF sam-
ples the same signal on the skewed clock’s positive edge.
We made the assumption that transient faults manifest as
glitches of less than half clock cycle duration (which is a safe
assumption up to designs operating at several GHz) [17, 26].
Hence, if an incorrect value is latched in the main FF due to
an SER, the glitch will subdue before the signal is latched
again half a clock cycle later by the scan block. When this
situation occurs the XOR gate outputs a 1, which is stored
in the Output Latch right away. In addition, the output
signal SO is fed back to the XOR1 gate, which forces the
input of the scan FF to always observe the complement of
the data signal, continuously forcing an ”SER-detected” sit-
uation. Figure 5 shows a timing diagram of the situation
just described. The protect, scandata en and maindata en
are enabling signals which are always active during the nor-
mal protected operation. Note that for our flip-flop design
to work, we must enforce a minimum path delay constraint
of 50% of the clock cycle.

At the end of each computation epoch all error signals
(SO) are shifted out through the scan chain (using our shift
out configuration). We partitioned the latches into zones to
speed up this process, and we can collect all the error sig-
nals within 40 cycles, which is below the time required by
the BIST testing process. If an error is detected, each cell
within the zone is evaluated to discern between an SER or
a permanent latch failure. We do so using the si, scan clk
and aux clk signals. If the error does not repeat, we as-
sume an SER occurred and we simply trigger the rollback
mechanism to restore the previous known correct state be-

D

SO

Main output (QMB)

XOR1 output

CLK

glitch

Incorrect output due

to the glitch

Fault Detected

Skewed CLK

(clk_b)

Scan output (QSB)

Q

skew

different

Figure 5: Timing diagram for a transient fault.

fore proceeding. Otherwise, we derive that the latch has
failed permanently and we detect which of the scan FF or
the main FF is faulty and disable it. To contain the amount
of interconnect, we designed our system so that we can dis-
able the scan FF block or the main FF block for all flip-flops
within the same zone.

The bottom of Figure 4 shows the results of timing and
power simulations on the error trapping cell with skewed
input clock. The output latch and the extra gates we used
for implementing the correct functionality account for the
increase in power, area and delay in our design, compared
to a simple latch. The overall area overhead of using this
cell instead of ordinary scan cells is about 1.64% of the total
processor area, which is a nominal amount compared to the
amount of coverage improvement. By using this approach,
we can cover nearly all soft errors in combinational and se-
quential logic.

�� ���������	
� ��
�
	���

In this section we present a detailed physical design of a 4-
wide VLIW processor including 32KB instruction and data
cache, enhanced to include our low-cost protection against
SER faults and silicon defects. We examine the performance
of the design, using both circuit timing simulation and archi-
tectural simulation to assess the impacts of fault protection.
We also examine the cost of the defect protection technology
by measuring area overhead of the testing logic (e.g., vec-
tor generation and checkers). Finally, we evaluate our fault
coverage, i.e., what fraction of defects randomly placed are
protected, by carefully measuring the portion of silicon area
protected.

Evaluation Framework. Circuit-level evaluation was
performed on the prototype 4-wide VLIW prototype, speci-
fied in Verilog, and synthesized for a 0.18um TSMC process
using Synopsys Design Compiler. Architectural evaluation
was done using the Trimaran tool set, a re-targetable com-
piler framework for VLIW/EPIC processors [24], and the
Dinero IV cache simulator [8]. We evaluate our designs by
running benchmarks from SPECint2000, MediaBench [11]
and MiBench [7] benchmark suites.

Self-test BIST vectors were generated using carefully hand-
selected vectors, or by randomly cycling through random
vector sets until a small group of effective vectors was lo-
cated. Once the test vector set is identified, it is encoded
into an on-chip ROM storage unit, created using Synopsys
design tools. Coverage analysis simulation is performed by



Design Total Checker % of Protected % of
Block area area Total area Area

(mm2) (mm2) Area (mm2) (Coverage)

IF 0.127 0.008 6.6 0.114 89.8
ID 0.278 0.023 8.2 0.261 93.6
RF 2.698 0.133 4.9 2.635 97.7
EX 2.993 1.166 39.0 2.896 96.8
WB 0.171 0.007 4.2 0.158 92.7
Latches 0.164 0.122 1.4 0.164 99.9
Overall
Core

6.431 1.459 22.7 6.228 96.8

I-cache 2.033 0.009 0.5 1.881 92.5
D-cache 2.044 0.009 0.5 1.892 92.6
Overall
System

10.508 1.477 14.1 10.001 95.2

Table 1: Area costs of individual design components
and overall system.

injecting faults into a logic simulation of the detailed VLIW
processor gate-level design.

Fault Coverage. In this section we examine the coverage
of our fault-tolerant mechanisms, by measuring the fraction
of faults covered through fault injection experiments. This
fraction represents the overall design defect coverage. Ta-
ble 1 lists the coverage of the overall design, as well as the
coverage of individual processor components. Overall de-
sign coverage is 95%, meaning that 95 out of 100 defects
randomly placed into the processor are covered in our fault-
tolerant design.

The unprotected area of the design mainly consists of re-
sources that do not exhibit inherent redundancy in the de-
sign such as glue logic blocks. We are currently developing
system-level protection solutions to provide defect tolerance
for these miscellaneous resources. Our ultimate future goal
is to push overall coverage to 99% while keeping area costs
low.

Area Overheads. The addition of test vector ROMs,
where test vectors are stored, plus the checkers and check-
pointing infrastructure bears a cost on the overall size of
the design. Table 1 lists the total area of the defect tol-
erant component (Total area), the defect protection infras-
tructure area (Checker area), and the area that is covered
by the test harness (Protected area). As shown in Table 1,
area overheads for defect protection are quite modest, with
most overheads less than 10%. The overheads within the
caches are even lower, less than 1% for the prototype. Con-
sequently, the overall overhead for defect protection is quite
low. Adding support for defect and transient fault protec-
tion increased the total area of the design by only 14%.

Performance Implications. As the system runs, it will
periodically pause to run online self-tests. These pauses con-
stitute a down-time and a potential performance loss if they
occur with too much frequency. We examined the impact
of our defect protection mechanism on the performance of
programs running on the defect-tolerant prototype design.
Table 2 lists the number of vectors to fully test each compo-
nent, showing that only few vectors are required to test each
unit. The bandwidth requirements of testing are the num-
ber of vectors needed to fully test components for stuck-at-0
and stuck-at-1 faults. The caches are not listed in Table 2
because they use parity bits to allow for continuous detec-
tion of defects. Clearly, the time required to fully test the
hardware is quite small, only 128 cycles, with the register
file taking the longest time to complete its test.

Table 3 lists statistics about computational epoch lengths
for a variety of programs. Note that the processor is equipped

Component # of test vectors
ALU 20
MUL 55

Decoder 63
Register File 128

Pipeline Control 12
Memory Control 13

Table 2: Number of test vectors to achieve 100%
coverage for stuck-at-0 and stuck-at-1 faults.

Benchmark Avg. epoch Testing
size (cycles) Overhead (%)

175.vpr 50499 0.51
181.mcf 120936 0.21
197.parser 106380 0.24
256.bzip2 162508 0.16
unepic 33604 0.76
epic 196211 0.13
mpeg2dec 1135142 0.02
pegwitdec 169617 0.15
pegwitenc 304310 0.08
FFT 23145 1.11
patricia 139952 0.18
qsort 1184756 0.02
Average 302254 0.30

Table 3: Epoch size statistics and testing overheads.

with a 32 KByte 4-way set-associative data cache and an
eight entry fully associative volatile victim cache. We re-
port the average epoch size in cycles and the testing over-
head in each benchmark. The fact that testing only takes
at most 128 cycles explains why the performance impact
figures listed in the table are quite small.

�� ��������	�


Several approaches for providing SER and defect toler-
ance have been proposed in the past few years. The concept
of using time redundancy methods for mitigating soft errors
has been explored in [2], [20] and [16]. In [16], three samples
of the input are taken at different clock edges and the final
output is determined using a majority voter. In [18], the au-
thors propose reusing scan chain resources for transient fault
detection in flip-flops. They introduce two different scan cell
designs which are based on blocking and trapping transient
faults at the output of each flip-flop. While their approach
is efficient in terms of area, power and delay overhead, it
does not detect transient faults in combinational logic. The
solution in [19] proposes a time-redundancy based scheme
with scan-path reuse in which a time-shifted version of the
input is given to the scan flip-flop. The C-element which
was introduced in [18] is then used to block the error at the
flip-flop’s output.

The NanoBox project [10] distributes error detection and
correction to the low level logic blocks, by proposing a self-
correcting logic block consisting of a lookup table with ap-
propriate error detection and correction entries. In [6] the
design of a defect-tolerant chip multiprocessor switch is ex-
plored, analyzing the resulting tradeoff between defect toler-
ance and area overhead. In [3], the authors present (SRAS),
a Self-Repairing Array Structures hardware mechanism for
on-line repairing defected microprocessor array structures,
such as a reorder buffer and a branch history table. The
proposed mechanism detects faults by employing dedicated
check rows. DIVA [25], an on-line checker component in-
serted into the retirement stage of a microprocessor pipeline,
fully validates all computation, communication, and control
exercised in a complex microprocessor core. Finally, the



work in this paper is based on the BulletProof pipeline de-
sign of [21]. The design presented herein includes a num-
ber of significant enhancements, including support for SER
fault tolerance, defect tolerant control logic and self-checking
checkers.

There have been a number of research efforts focused at
providing defect tolerance in finite-state automatons. As a
result, numerous techniques are devised to detect and cor-
rect faults in the output state bits [4, 9, 12, 13]. Many
of these techniques establish specific patterns for the next
state bits with a checker constantly monitoring the correct-
ness of the pattern. Therefore, any fault that changes the
pattern can be detected [1, 5, 14]. The main problem of
these detection techniques is that if the pattern is simple,
a defect can propagate to the output while still abiding the
pattern’s rules. As an example, if the next state bits use one-
hot encoding, a bidirectional fault which changes a bit from
1 to 0 and another from 0 to 1 can still abide the one-hot
pattern. It is possible to design more complex patterns, but
the corresponding overhead is not always tolerable. Another
problem with these techniques is that they can only protect
next state bits, since the primary outputs of the control logic
block do not necessarily follow a specific pattern.

�� �����������

In this paper we presented a low cost technology that
protects a microprocessor pipeline and caches against tran-
sient faults caused by natural radiation-induced single-event
upsets (SER) and hard silicon defects. The approach we
take is notably different from traditional approaches to fault
tolerance. A microarchitectural checkpointing mechanism
creates speculative epochs of computation after which dis-
tributed, domain-specific on-line tests verify the integrity of
the underlying hardware. Additionally, a double-sampling
latch design is used to detect transient fault logic glitches
which have corrupted the pipeline state. If, at the end of an
epoch, the hardware is fault-free, the epoch computation is
allowed to retire to non-speculative state. In the event that
a fault is exposed, the program state is rolled back to the
last known good program state at the beginning of the last
epoch. If the fault is due to a transient fault, the epoch is
re-executed, otherwise, the defective component is disabled,
thereby allowing the processor to continue correct execution
in a degraded-performance mode.

We have implemented a physical model of a prototype 4-
wide VLIW processor which employs our low-cost solution
for fault tolerance support. Analysis of this design indicates
that area overheads are quite modest, providing transient
and hard silicon fault protection with only a 14% increase
in total area. This is a remarkable improvement over tradi-
tional redundancy-based techniques, such as triple-modular
redundancy, which incurs overheads starting at 200%. Addi-
tionally, we demonstrated through gate-level fault injection
studies that fault-detection coverage is very high: 95% of all
hard silicon defects and 99% of all transient faults are cov-
ered. Additional simulation studies confirmed that periodic
online testing has negligible impact on the overall system
performance.

	� 
���
�����

[1] D. Anderson and G. Metze. Design of totally self-checking
check circuits for m-out-of-n codes. IEEE Transaction on
Computers, 22:263–269, March 1973.

[2] T. Austin, D. Blaauw, T. Mudge, and K. Flautner. Making
typical silicon matter with razor. IEEE Computer,
37(3):57–65, 2004.

[3] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin. Tolerating
hard faults in microprocessor array structures. In Proc. of Int’l
Conf. on Dependable Systems and Networks (DSN), 2004.

[4] D. Bradley and A. Tyrrell. Immunotronics - novel
finite-state-machine architectures with built-in self-test using
self-nonself differentiation. IEEE Transactions on
Evolutionary Computation, 6(3):227–238, June 2002.

[5] F. S. C. Bolchini, R. Montandon and D. Sciuto. A state
encoding for self-checking finite state machines. Proceedings of
the ASP-DAC, pages 711–716, August 1995.

[6] K. Constantinides, J. Blome, S. Plaza, B. Zhang, V. Bertacco,
S. Mahlke, T. Austin, and M. Orshansky. Bulletproof: A
defect-tolerant CMP switch architecture. In Proc. of the Int’l
Symp. on High-Performance Computer Arch., Feb. 2006.

[7] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In IEEE Annual
Workshop on Workload Characteristics, pages 3–14, 2001.

[8] M. D. Hill and A. J. Smith. Evaluating associativity in CPU
caches. IEEE Trans. on Computers, 38(12):1612–1630, 1989.

[9] N. Jha. Separable codes for detecting unidirectional errors.
IEEE Transaction on Computer-Aided Design, 8, May 1990.

[10] A. J. KleinOsowski and D. J. Lilja. The NanoBox project:
Exploring fabrics of self-correcting logic blocks for high defect
rate molecular device technologies. In IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 19–24, 2004.

[11] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A tool for evaluating and synthesizing multimedia
and communicatons systems. In Int’l Symposium on Computer
Architecture, pages 330–335, 1997.

[12] J. Lo. A hyper optimal encoding scheme for self-checking
circuits. IEEE Trans. Computers, 45(9):1022–1030, Sept. 1996.

[13] M. Marouf and D. Friedman. Design of self-checking checkers
for Berger codes. Proc. Eighth Symp. Fault-Tolerant
Computing, pages 179–184, June 1978.

[14] M. Marouf and D. Friedman. Efficient design of self-checking
checkers for m-out-of-n codes. IEEE Trans. Computers,
27:482–490, June 1978.

[15] J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic, , and
J. Torrellas. Cherry: Checkpointed early resource recycling in
out-of-order microprocessors. In Proc. Int’l Symposium on
Microarchitecture (MICRO), pages 3–14, 2002.

[16] D. G. Mavis and P. H. Eaton. Soft error rate mitigation
techniques for modern microcircuits. In Proceedings of 40th
Annual Reliability Physics Symposium, pages 216–225, 2002.

[17] N. Miskov-Zivanov and D. Marculescu. MARS-C: modeling and
reduction of soft errors in combinational circuits. In DAC ’06:
Proceedings of the 43rd annual conference on Design
automation, pages 767–772, 2006.

[18] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim. Robust
system design with built-in soft-error resilience. Computer,
38(2):43–52, 2005.

[19] S. Mitra, M. Zhang, N. Seifert, B. Gill, S. Waqas, and K. S.
Kim. Combinational logic soft error correction. In
International Test Conference, November 2006.

[20] M. Nicolaidis. Time redundancy based soft-error tolerance to
rescue nanometer technologies. In Proc. VLSI Test
Symposium, pages 86–94, 1999.

[21] S. Shyam, K. Constantinides, S. Phadke, , V. Bertacco, and
T. Austin. Ultra low-cost defect protection for microprocessor
pipelines. In Proc. of the Symp. on Architectural Support for
Prog. Languages and Operating Systems (ASPLOS), Oct.
2006.

[22] D. P. Siewiorek and R. S. Swarz. Reliable computer systems:
Design and evaluation, 3rd edition. AK Peters, Ltd, 1998.

[23] J. H. Stathis. Reliability limits for the gate insulator in CMOS
technology. IBM Journal of Research and Development,
46(2/3):265–286, 2002.

[24] Trimaran. An infrastructure for research in ILP.
http://www.trimaran.org, 2000.

[25] C. Weaver and T. Austin. A fault tolerant approach to
microprocessor design. In Proc. of Int’l Conf. on Dependable
Systems and Networks (DSN), pages 411–420, 2001.

[26] B. Zhang, W.-S. Wang, and M. Orshansky. FASER: Fast
analysis of soft error susceptibility for cell-based designs. In
ISQED ’06: Proceedings of the 7th International Symposium
on Quality Electronic Design, pages 755–760, 2006.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




