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Abstract

Future microprocessors will be highly susceptible to transient er-
rors as the sizes of transistors decrease due to CMOS scaling. Prior
techniques advocated full scale structural or temporal redundancy to
achieve fault tolerance. Though they can provide complete fault cov-
erage, they incur significant hardware and/or performance cost. It is
desirable to have mechanisms that can provide partial but sufficiently
high fault coverage with negligible cost.

To meet this goal, we propose leveraging speculative structures
that already exist in modern processors. The proposed mechanism
is based on the insight that when a fault occurs, it is likely that
the incorrect execution would result in abnormally higher or lower
number of mispredictions (branch mispredictions, L2 misses, store
set mispredictions) than a correct execution. We design a simple
transient fault predictor that detects the anomalous behavior in the
outcomes of the speculative structures to predict transient faults.

1. Introduction

As the scaling of CMOS technology continues, the reduced voltage
and noise margins, high integration levels and high clock speeds
will increase the susceptibility of transistors to transient faults (also
known as soft errors) due to cosmic rays and electrical noise [6].

Most of the transient fault tolerance techniques that exist today ei-
ther resort to structural redundancy [17, 2] where the same program is
executed on two different processors and their outputs are compared;
or resort to temporal redundancy [13, 15] where the same program
is again executed twice but on the same processor time multiplexing
for the available resources. While these techniques provide very high
fault coverage, structural redundancy increases the cost of the system
while temporal redundancy causes severe performance overhead. Re-
dundancy either in the form of structural or temporal is required only
in the highly specialized servers and mission critical applications that
require complete protection against transient faults. But for the rest
of the desktop and commodity servers, processor manufacturers tend
to trade off performance/hardware cost with reliability. For such sys-
tems that do not require complete fault tolerance, it is desirable to
provide partial fault coverage with very low hardware cost and per-
formance overhead, which is the goal of this paper.

To provide partial fault coverage at low cost, we propose lever-
aging the architectural structures that are commonly used in today’s
processors to predict the occurrence of a transient fault. We can re-
cover from a predicted transient fault by replaying from a past check-
point. Our prediction mechanism is based on the following insight.
Whenever a program’s behavior changes, most often it affects the
number of mispredictions in the speculative structures and the num-
ber of cache misses. Thus, if a transient fault affects the correctness
of a program’s execution, it is very likely to cause anomalies in the
behavior of processor structures.

Wang and Patel [19] proposed a similar anomaly based approach
called ReStore to predict transient faults. However, ReStore treats
every high confidence branch misprediction as an anomaly to predict
a transient fault. We improve this basic transient fault predictor in
several ways.
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We show that it is not performance efficient to predict a transient
fault on every high confidence misprediction, which would lead to
a large number of unnecessary rollback and replays. Instead of us-
ing single misprediction event in isolation, we propose to examine an
interval of program execution. A transient fault is predicted only if
the absolute difference between the number of mispredictions seen in
the interval and the “expected” number of mispredictions is greater
than a threshold value. We determine the expected number of mis-
predictions using a simple history based predictor that is based on
the number of mispredictions observed in the past few intervals. We
also propose a mechanism to adaptively vary the threshold to bound
performance overhead. We build the transient fault predictor based
on the outcomes of caches and branch predictors. In addition, unlike
prior approaches, we consider using the outcomes of highly accurate
store set predictors [5] to predict transient faults that cause errors in
the memory address stream. Also, in our scheme we effectively com-
bine the decisions made by various predictors.

The result is an efficient transient fault predictor that does not
require structural duplication and provides better performance-
reliability design points. For example, we can detect 34% of the
silent data corruption faults for a performance overhead of less than
10%.

2. Fault Model and Methodology

We now describe our simulation methodology and the model we use
to simulate the effects of transient faults. This section also describes
the fault recovery mechanism that we used.

2.1 Simulation Methodology

We used the SimpleScalar/Alpha 3.0 tool set [4] to quantify the fault
coverage and the performance overhead of our technique, and ran the
integer benchmarks from the SPEC2000 suite. We simulated a sam-
ple interval of 100 million instruction for each benchmark which was
chosen using Simpoint [16]. Also, the processor structures (caches,
branch predictors, store set predictors) were warmed up by simulat-
ing them for 1 million instructions before the simulation interval.
This is important to accurately analyze the faults that we inject at
the beginning of the interval. To get deterministic re-execution of the
program across various simulation runs, we used EIO (External I/O)
checkpoint traces in SimpleScalar, which consist of the input values
from the external system. The configuration of our out-of-order pro-
cessor model is presented in Table 1.

2.2 Fault Model

The fault model we assume is the single event upset (SEU) model,
in which only a single bit can get corrupted at a time. We assume
that the caches are protected through ECC. Our goal is to detect and
recover from the transient faults that occur in the processor pipeline.

When a transient fault occurs in the processor pipeline, it can get
masked (that is, outcome of the program execution is not affected).
If a transient fault is not masked, then it propagates to the registers
and/or the program counter before it can corrupt the memory sub-
system. Our focus is to detect these unmasked faults. Therefore, in



| Simulation Configuration |

Fetch Width | 8 inst
Issue Width | 4 inst
Func Units 4-ialu, 1-imult, 2-mem, 3fpalu, 1-fpmult
Reorder buf | RUU: 64, LSQ: 64
L1D 64KB, 2 way, 64B Block, 3 cycle latency
L1I 64KB, 2 way, 64B Block, 3 cycle latency
L2 Unified 2MB, 16 way, 64B Block, 20 cycle latency
DTLB 128 entry, 30 cycle miss penalty
ITLB 64 entry, 30 cycle miss penalty
Memory 275 cycle latency
Branch Pred | 16K meta chooser between gshare (8K entry)
and bimodal table (8k entry);
16 Return Address Stack; 1024 BTB (4-way);
12 cycle misprediction penalty
Store Sets Last Fetched Store Table (128)
Store Set ID Table (4096)

Table 1. Simulation model.

order to model a transient fault, we randomly choose an instruction
in the 100 million simulated sample interval and toggle the value
in instruction’s output register after executing the instruction. In our
experiments, we analyze 1000 random faults. Such a method is ex-
pected to have an overall error margin of less than 0.9% at a 95%
confidence level [19]. A similar approach was used by earlier works
such as SWIFT [15].

Like in [20], we declare that a fault is masked if the addresses
and outputs of store instructions for the 10,000 instructions executed
after the fault injection matches with that of the correct execution.
This would also require that the branch decisions match as well. For
the faults we injected, 13% of faults are masked and about 11.7% of
faults lead to an exception. Masked faults are not a cause of concern,
and the faults causing exceptions can be easily caught and recovered.
Therefore, in the results that we report in the later sections we focus
on the 75.3% of faults, which cause data corruption.

2.3 Fault Recovery Model

When a transient fault is predicted, the execution is rolled back to
a previous checkpoint and replayed from thereon. Akkary et al. [1]
proposed a hardware checkpointing mechanism to improve perfor-
mance by increasing the instruction window size. We assume similar
checkpointing support. In our approach, recovery is initiated after a
fault prediction event. The cost of recovery (cycles spent in roll-back
and re-execution) is often overlapped with misprediction penalties
and stalls due to cache misses, etc.

We need to know if a recovery was due to a false prediction. This
is required to implement our adaptive approach that we describe in
Section 4. It is also required to make sure that the re-execution is
not affected by a transient fault. We determine a false trigger by
maintaining a running signature that is a hash of the output of store
instructions executed since the beginning of the last checkpoint [18].
When the execution is rolled back and re-executed, we compare the
signature generated during replay with the signature generated from
the previous execution. If they match, then it is a false trigger. Also,
the replay is guaranteed to be free of transient faults. However, if they
don’t match, then we cannot be sure which of the two executions is
correct. Hence, we re-execute once more for a third time. If the third
execution’s signature match that of the second execution, then the
original prediction is determined to be correct. Note that the third
execution will be initiated only rarely when a transient fault has
occurred.

We guarantee forward progress by suspending the fault detection
during roll-back and replay. Before a rollback, we record the roll-
back point in the program’s execution by recording the number of
instructions that are rolled back. Then during replay, no further re-
covery would be initiated until the execution gets past the rollback

point, and the only time we will roll-back twice is when there is a
difference in signatures as described above.

3. Predicting Anomalies

We next describe how we predict transient faults based by detecting
anomalies in the outcomes of different structures in the processor.

3.1 Transient Fault Predictor

We use the standard architectural structures and identify any anoma-
lous behavior in their outcomes to predict a transient fault. We con-
sider that a structure is exhibiting anomalous behavior when it pro-
duces an abnormal number of undesirable outcomes over a period of
time. For a branch predictor an undesirable outcome is a mispredic-
tion. For an L2 cache it is an L2 cache miss.

Instead of looking at each undesirable outcome in isolation, we
predict anomalous behavior by monitoring all the outcomes over an
interval of execution (called monitoring interval). The insight here is
that the number of undesirable outcomes for a structure within the
monitoring interval will differ significantly between the faulty and
the correct execution.

The monitoring interval for a structure consists of N uses of that
structure — that is, the number of times the structure is accessed. We
do not use the number of committed instructions to determine the
monitoring interval. Because in an interval determined using com-
mitted instructions, different structures have different number of uses.
For example, the number of branches executed in an interval of 1000
instructions can vary considerably depending on program character-
istics. Thus, we define the monitoring interval for branch predictor
as the number of branches executed. For the store set predictor, the
interval length is defined in terms of the number of loads executed.
For L2, each L2 access (L1-miss) is considered a use.

To predict a transient fault, we first calculate an expected number
of undesirable outcomes for a monitoring interval (which is what we
consider as normal behavior). This is calculated simply by averag-
ing the number of undesirable outcomes observed in each of the past
M monitoring intervals. We found that setting M as 10 provides an
accurate estimate of the number of events for the current monitoring
interval. At the end of a monitoring interval, we compare the number
of undesirable outcomes seen in that interval with the expected num-
ber of events. If the absolute difference is greater than a threshold
T, then we predict that a transient fault has occurred. The following
equation summarizes the predictor logic:

| (Avg # undesirable outcomes in past 10 intervals)

- (# of undesirable outcomes in current interval) | >= T

Note that we check to see if the absolute difference is greater than
the threshold value. This means that we will capture a transient fault
that results in fewer outcomes than the expected value. For example,
consider a fault that changes the control in such a way that a for loop
ends up looping indefinitely performing the same computation over
and over again. This will cause the number of branch mispredictions
(and perhaps the cache misses) in the subsequent intervals of execu-
tion to be fewer than normal. Our predictor can capture such faults as
well.

We experimented with various lengths for the monitoring interval
and found that counting 100 uses works effectively for predicting
transient faults for our benchmarks. If the monitoring interval is large,
the processor would have to roll back a large number of instructions
when a fault is predicted. If we choose the number of uses to be too
small (e.g., 10), then it would be difficult to determine the average
(normal) behavior.

3.2 Speculative Structures Used for Identifying Faults

We predict transient faults based on the outcomes of branch predictor,
store set predictor and L2 cache accesses. These structures are able
to catch faults that manifest in control and address streams. We also
analyzed TLB outcomes, but found it to add little value to these
structures.



3.2.1 Branch Predictors to Detect Faults that Change Control
Flow

Branch predictors are capable of predicting the target addresses and
directions for branches with high accuracy. The Branch Target Buffer
(BTB) provides the target addresses for branches. They are fully
tagged with the branch addresses. Thus, if a transient fault ends up
changing the control flow, then this can increase the number of BTB
misses allowing us to detect the fault.

We implement McFarling’s [11] combined predictor to predict the
branch directions. It consists of a gshare and a bimodal predictor,
and has a meta predictor to choose between the two. The configura-
tion for the predictor is listed in Table 1. We call this configuration
as “BNC” (Branch-No-Confidence), which counts the branch mis-
predictions for the monitoring interval without using confidence. For
BNC, any misprediction is considered an undesirable outcome.

We also consider branch predictors with different levels of confi-
dence. Similar to the JRS predictor [10] we associate a 4-bit saturat-
ing counter with each entry in the bimodal predictor and the gshare
predictor. The misprediction penalty for the confidence counters is 7,
while the bonus for correct prediction is set to 1. We examine two
configurations suggested by Grunwald et al. [9]. The first is “Branch
Both Strong” (BBS), where both the bimodal and gshare predictor’s
confidence counters have to be 15 to make a high confidence predic-
tion. The second is “Branch Either Strong” (BES), where only one of
the two predictor’s confidence counters needs to be 15 to make a high
confidence prediction. For BBS and BES we define a high confidence
misprediction as the undesirable outcome.

For all the branch prediction structures we define a monitoring
interval based on the number of branches executed. We then count the
number of undesirable outcomes during that interval. We found that
BNC, without any confidence counters, performs comparable to BBS
and BES. Because, for our fault predictor, accuracy of the predictor
is not as important as being able to accurately estimate the number of
mispredictions for a monitoring interval.

3.2.2 Detecting Faults Causing Memory Address Errors

We employ two techniques to capture faults that affect the memory
addresses. The first technique is based on the principle that if the fault
propagates to the address stream, then it is highly probable that the
requested memory address does not exist in the cache. Therefore, we
can potentially treat a cache miss as a predictor of faulty behavior.
This method is attractive especially for the reason that on a cache
miss, the processor will have more idle cycles at its disposal [21, 8],
which can be utilized for rolling back and replaying execution with-
out severely degrading performance. We monitor L2 cache accesses
over a monitoring interval and consider an L2 cache miss as an unde-
sirable outcome. We could have used L1 cache’s outcomes, but our
predictor’s estimate for the L2 cache misses for an interval is more
accurate than it is for L1 misses.

To capture faults in the address stream, we also use store sets [5].
Store sets are used for memory disambiguation, and they have been
implemented in the Alpha 21264 processor. The purpose of store
sets is to predict if a load will be dependent on the stores that were
dispatched before the load, even if we do not know the addresses
that the prior stores will access. If one can predict that the load
is independent of all the stores dispatched before, then it can be
executed aggressively out-of-order.

‘We count the number of loads with incorrect store set predictions
within the monitoring interval. An incorrect prediction could mean
either that the load was incorrectly predicted to have no dependen-
cies, or that the load was incorrectly predicted to be dependent on a
specific store set and it received a forwarded store value. If the num-
ber of incorrect store set predictions for loads varies significantly in
the current monitoring interval in comparison to the expected value,
we predict that there was a transient fault. We define the monitor-
ing interval for the store set as the number of load instructions. The
store set predictor that we used (see its configuration in Table 1) can
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Figure 1. Number of additional undesirable outcomes
observed in the faulty executions.

predict the load-store dependency with 99.3% accuracy. We call this
transient fault predictor based on the store set as “SSP”.

3.2.3 Combined Predictor

We examine predicting a transient fault by combining the BNC, BTB,
SSP and L2 together. That is, if any of those four predictors predicts
a fault, then a fault will be predicted. We call this configuration as
“COMB?”. For a given threshold value, a “COMB” predictor can give
rise to more false triggers than any of the other single predictor, but
we solve the issue by adaptively increasing the threshold for this
predictor as necessary. The technique we use to choose the threshold
will be described in Section 4.

3.3 Results
3.3.1

In this section, we first quantify how much the number of undesir-
able outcomes for a faulty execution deviates from the correct exe-
cution. For an architectural structure, the deviation for a monitoring
interval is the absolute difference between the number of undesirable
outcomes observed in the faulty execution and the number of undesir-
able outcomes observed in the corresponding monitoring interval in
the correct (golden) execution. For each injected fault, we calculate
the maximum deviation for each architectural structure. The maxi-
mum deviation is calculated as the maximum of the deviations for
all the monitoring intervals that was executed after the fault injection
point (we perform our analysis for up-to 10,000 instructions after the
injection of the fault). This analysis is used for guiding the selection
of prediction thresholds. We want to choose a threshold that it is close
to the maximum deviation. To examine the maximum deviation, we
use a monitoring interval of length 100. Out of the 1000 faults that
we experimented with, masked faults (not important) and faults that
cause exceptions (trivially detected) are excluded from our analysis.

Figure 1 shows the maximum deviations for different structures
that we considered. The x-axis in Figure 1 shows the magnitude of
deviation. The y-axis shows the cumulative percentage of faults. For
example, the point 0 along x-axis refers to a deviation of at-least
0, and as a result the y-axis value for this point is 100% for all the
structures.

Note that higher the deviation, the better we can predict the tran-
sient faults, as we can use a higher threshold and still detect transient
faults. For the “COMB?” configuration, for about 60% of faults we
see a difference of at least two mispredictions in one of the monitor-
ing intervals executed after the fault injection. The results show that
the “BNC” (branch predictor without confidence) can achieve higher
coverage as expected, and that the "BTB” result achieve similar cov-
erage to the “BES” technique. The results also show that in using the
store set predictor, we have the potential to capture a large number of
faults. For example, about 35% of faults encounter deviation of 2 or
greater for store set predictions.

“COMB?” configuration works well because the predictors and the
caches capture faults that are complementary to one another. Branch
predictors reflect faults in the control stream. Store set mispredictions
and cache misses indicate faults in the address stream. Combining
these orthogonal predictors’ behavior yields good results.

Magnitude of Anomalies
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able outcomes for a given monitoring interval in Section 3.1. The
accuracy of this predictor is shown in Figure 2.

We determine the accuracy by calculating the difference between
the predicted (estimated number of undesirable outcomes) and the
actual observed number for each monitoring interval executed in the
program. If the difference for an interval is zero, then we have ac-
curately predicted the number of undesirable outcomes for that in-
terval. The differences between the prediction and the actual number
are shown along the x-axis in the Figure 2. For each difference, the
y-axis shows the percentage of predictions. (There is one prediction
for each monitoring interval). Again, for these results we used a mon-
itoring interval of length 100.

We can see that for about 50% of the monitoring intervals, we
can accurately predict the number of BTB misses (that is, for 50%
of intervals, the difference between the predicted and the actual num-
ber of undesirable outcomes is zero). For about 20% of monitoring
intervals, we predict one less than the actual number of BTB misses
and for about 10% of monitoring intervals, we predict one more than
the actual number of BTB misses. Predicting the BTB misses is the
toughest as we are able to predict the number of undesirable out-
comes for other structures more accurately.

To improve the confidence of our prediction, we can use an appro-
priate threshold value. It can be observed in Figure 2 that if we use a
threshold of 4, then the fault misprediction rate is less than 0.5% for
all the structures. If we use a threshold of 2, then the misprediction
rate is less than 5% for all the structures except BTB, for which it
is about 6%. Earlier, in the Figure 1 we showed that it is possible to
capture about 60% of faults with a threshold of 2 and about 20% of
faults with a threshold of 4.

An important precaution we take to maintain accuracy is to avoid
counting the undesirable outcomes and uses for speculative instruc-
tions — that is our transient fault predictor is updated only for com-
mitted instructions.

3.3.3 False Triggers and Performance Overhead

Even when the program execution is fault free, it is possible for our
predictor to incorrectly predict a transient fault if the estimated num-
ber is different (by a threshold) from the actual observed number of
undesirable outcomes. This can occur when there are phase or work-
ing set changes. Such false positive triggers results in unnecessary
rollbacks and re-executions and thereby degrades performance. Next
we discuss the performance cost due to these false triggers.

A key variable that controls the false positives is the threshold that
we use to predict a transient fault. A higher threshold will result in
less number of false triggers but at the same time might fail to detect
some transient faults. (We discuss the fault coverage in more detail
in the next section). Figure 3 and Figure 4 show the performance
overhead of using each of our fault predictors for fixed thresholds of 2
and 4 respectively. In these results, when a transient fault is predicted

Figure 4. Performance overhead while using predictors
with a static threshold of 4 to predict the number
of mispredictionms.

we rollback and re-execute 1000 instructions using the fault recovery
model we described in Section 2.3.

Clearly, using threshold 4 results in less performance degradation
than using threshold 2. For example, let us consider the “COMB”
configuration. For threshold 4, we experience only 6% performance
overhead whereas the overhead is 16% if we use a threshold of 2.

It should be noted that the performance degradation for a given
threshold is not uniform across different programs or across different
structures. For applications such as art and mcf, it is desirable to
use a lower threshold as the performance impact is not severe even
for a lower threshold of 2. However, for programs such as gzip and
vortex, the slowdowns seen are 26% and 12% respectively, even
for a threshold of 4. The reason for this is that, for programs with
low IPC such as mcf, we incur less penalty from rollback and re-
execution. In addition, the cycles spent in re-execution overlaps with
the idle cycles due to mispredictions or cache misses. Therefore,
when a program behaves poorly, there is more opportunity for us to
do “cheap” rollback and re-execution.

Since the performance overhead for a given threshold signifi-
cantly differs across different programs, it motivates the need for us-
ing an adaptive threshold based on the number of false triggers ob-
served. In the next section, we discuss a scheme to adaptively modify
the threshold value so that the number of false triggers is maintained
within a target value irrespective of the variability in the program and
the predictor characteristics. This allows us to limit the performance
loss.

Finally, the number of false triggers caused by the outcomes
of a structure is not directly correlated with the accuracy of that
structure. For example, crafty is a control intensive application, and
it experiences a high number of branch mispredictions. However, in
our scheme this does not translate to a high number of false triggers
for crafty (which can be seen from the low performance overhead
that we see for crafty in comparison to other programs like gzip for
the “BNC” configuration). The reason for this is that, even though the
number of mispredictions for the structure is high, as long as we can
correctly predict the number of mispredictions, we will experience
less number of false triggers. The same argument holds for mcf,
which experiences a high number of cache misses.

4. Adaptive Threshold

In this section, we describe a mechanism to adaptively change the
threshold value to meet a target false positive rate. Then we analyze
the performance overhead and the percentage of faults detected (that
is, fault coverage) using our techniques and compare it with previous
low cost solutions [19, 21].



The goal of adaptively changing the threshold is to limit the per-
formance overhead by using a higher threshold when necessary, but
still achieve as much coverage as possible by using a lower threshold
when the performance is within the tolerable limits. The threshold
value of each structure for achieving a low fault misprediction rate
varies across the execution of program phases, as well as for dif-
ferent applications. We therefore adapt the threshold value for each
predictor during program execution.

The threshold is initialized to 2 for each predictor. Thus, if the
number of undesirable outcomes observed in the current interval
differs from estimated value by 2 or more, then a fault is predicted.
When a fault is predicted, we remember which predictor triggered
the fault prediction. We then rollback and re-execute. In Section 2.3,
we described how we can determine if a fault prediction is a false
trigger or not. For each predictor (BNC, BES, BBS, BTB, L2, SSP),
we keep track of the number of fault triggers for the last N thousand
instructions executed. If the percentage of false trigger (hereafter
referred to as false trigger rate) goes above X% for a given predictor,
then we increase the predictor’s threshold by 1. We examined a
number of values for this target false trigger rate, but here we report
results only for 0.01% and 0.001% due to space constraints. Using a
target rate of 0.01% means that the threshold would be increased by
1 if a structure has more than 1 false trigger per 10,000 instructions
executed. Using target rate of 0.001% means that the threshold is
increased until there is no more than 1 false trigger every 100,000
instructions executed.

For a particular transient fault predictor, we adapt the threshold by
increasing it by 1, whenever the target false trigger rate is not met. We
check the false trigger rate and update the threshold at the end of each
monitoring interval. The execution may become more predictable
after we have increased the threshold. Hence, we periodically (after
every 10 million instructions) reset the threshold to a base value of 2.

For the combined predictor (COMB), we do not want to equally
penalize every predictor that it uses, because some of them might
be predicting accurately for the current threshold value. Instead, we
independently keep track of the false trigger rate for each predictor
used by the combined predictor. We penalize only the predictor with
the highest false trigger rate by increasing its threshold by 1 until all
of the structures’ false trigger rates are below the target rate.

4.1 Coverage and Performance Analysis

Figure 5 shows the performance overhead and Figure 6 shows the
coverage for the various transient fault predictor configurations we
examined. All results for our technique presented in this section use
the “COMB” configuration, which is our best performing predictor.

We show results for two prior schemes. Weaver et al [21], pro-
posed to flush the pipeline on an L2 miss to avoid entries in the
queues getting affected by a transient fault. We present results, la-
beled as Prior — L2, which correspond to re-executing a certain
number of instructions (we analyze various rollback window lengths)
on an L2 miss.

ReStore [19] proposed using branch mispredictions as symptoms
of transient faults. In their scheme, they initiate rollback and re-
execution, whenever there is a high confidence misprediction. The
confidence scheme they use is similar to our “BES” configuration.
We call this result as Prior — J RS and this constitutes the baseline
comparison to prior work. Note that, unlike Restore, in our work,
we study only the silent data corruption faults. We exclude the faults
that are masked (harmless) and the ones that cause exceptions (trivial
to detect and recover) from our analysis. Also, we do not consider
faults that affect the cache subsystem, which can be protected using
ECC. Hence the absolute percentages reported here are lower than in
Restore.

In addition to the above baseline results, we show results for our
proposed techniques. We provide results for using a static threshold
of 2 and 4. We also show results for adaptively changing the threshold
with a false trigger rate target of 0.01% and 0.001%.
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Figure 5. Performance overhead while using prior
techniques in comparison to interval-based anomaly
prediction.

~——Prior - JRS
~&—Prior - L2

==+ Non-Adaptive-
Thresh-2

== Non-Adaptive-
Thresh-4

—t—Adapt - 0.01%

% Faults

=O—Adapt - 0.001%

0+ T T T T

T T T T T T !
100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Rollback window length

Figure 6. Fault coverage obtained using prior
techniques in comparison to interval-based anomaly
prediction. Normalized to all the faults (including
masked and faults causing exception.

When a fault is predicted we rollback to the last checkpoint and
re-execute the program execution from thereon. Fault coverage also
depends on how far back we rollback, which we refer to as the roll-
back window length. In Figures 5 and 6 we vary the rollback window
length on the x-axis. Figure 5 shows the performance overhead. The
performance overhead is caused by false triggers. Figure 6 shows the
percentage of silent data corruption faults captured by various detec-
tion techniques for different rollback window lengths.

The results show that while Prior — L2 and Prior — JRS
achieve fault coverage comparable to our techniques, the perfor-
mance overhead is severe. For example, Prior — L2 with a roll-
back window length of 1000 achieves 34% coverage but incurs 35%
performance overhead. However, in order to achieve the equivalent
coverage (37%), we need to incur only about 9% overhead using our
adaptive technique with a target rate of 0.01% (using a rollback win-
dow of length 2000).

Changing the threshold dynamically reduces the performance
overhead significantly. For example, for a rollback window length
2000, our non-adaptive scheme using threshold 4, achieves 22%
fault coverage at a cost of 13% performance overhead. However, for
a smaller overhead cost of 9.5%, our adaptive strategy with 0.01%
target achieves 37% fault coverage (for the same rollback window
length 2000).

5. Related Work

A low cost partial fault tolerant mechanism is desirable over tech-
niques that advocate full scale temporal [7, 18, 3, 17] or structural
redundancy [15, 13, 14] for the reasons that we described in Sec-
tion 1. In this section, we place our work in context with previous
works that proposed low cost solutions.

5.1 Fault Tolerance with Low Overhead

Gomaa et al. [8] proposed opportunistic fault tolerance where a
program is redundantly executed in one of the contexts in an SMT
processor only when the main thread is in a low IPC phase, such as
when the main thread is stalled due to a L2 cache miss. This approach
incurs low performance overhead. However, it assumes that a context
in a SMT is available for redundant execution. To improve the fault
coverage, they also proposed using an additional hardware structure



called the Instruction Reuse Buffer (IRB), which caches the input and
output values of previously executed instructions. Using IRB, one
can determine an output value for an instruction if its input values
match with any of the entries in the IRB. A similar technique was
also proposed by Parashar et al. [12]. However, IRB adds additional
complexity to the processor. Unlike these schemes, our proposed
technique neither assumes multi-threading support nor any additional
structures like IRB, but leverages the existing hardware structures to
predict and recover from transient faults.

Weaver et al. [21] observed that the instructions stalling in the
issue queue during an L2 cache miss are more vulnerable to single
event upsets. Therefore, they proposed flushing the instructions in the
pipeline upon encountering a L2 cache miss. This technique is simple
and has very low performance overhead. However, it protects only the
issue queue of a processor, and thus offers low fault coverage.

To our knowledge ReStore [19] is the first work that proposed pre-
dicting transient faults based on mispredictions in speculative struc-
tures. In addition to detecting faults that cause exceptions and pro-
tecting caches and registers using ECC, ReStore predicts a transient
fault when there is a high confidence branch misprediction. This is
similar to our approach in that ReStore utilizes an existing structure
in the processor, the branch predictor, to predict faults. We improve
upon this work in a number of ways. We show that predicting a tran-
sient fault for every high confidence misprediction leads to a high
number of false triggers. This results in performance overhead due to
unnecessary rollbacks and re-executions. To overcome the problem,
we propose looking at the misprediction rate or cache miss rate over
an interval of execution to predict a fault, and also adapt the predic-
tor’s parameters to the behavior of the program. In addition, unlike
Restore, we use store set [5] mispredictions to aid transient fault de-
tection. We also demonstrate that combining the outcomes of various
complimentary structures in the processor is useful in getting higher
coverage for a given performance target.

6. Conclusion

In this paper, we introduced an architectural technique to achieve par-
tial fault tolerance with low performance overhead and minimal mod-
ifications to hardware. Following the hypothesis that during faulty
execution, the control flow and address computations diverge from
the correct execution, our technique monitors the mispredictions in
branch and store set predictors, and the cache misses. We then use the
execution history to predict the number of undesirable outcomes for
the current monitoring interval. Whenever the mispredictions signif-
icantly deviate from our estimate by more than a threshold value, we
predict a fault and trigger recovery. We recover from faults through
rollback and replay.

We proposed an effective way to combine the fault symptoms
we observe in different architectural units. We presented an adaptive
approach for determining the best threshold value for predicting a
fault for each structure to reduce the false trigger rate and at the same
time achieve as much coverage as possible. We showed that for a
performance cost of less than 9.5% we can detect and recover from
37% of silent data corruption faults, and for less than 24% slowdown
we can achieve about 60% fault coverage rate.
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