
Utilization of SECDED for Soft Error and
Variation-Induced Defect Tolerance in Caches

Luong D. Hung, Hidetsugu Irie, Masahiro Goshima, Shuichi Sakai
Graduate School of Information Science and Technology, The University of Tokyo

Hongo 7-3-1, Bunkyo, Tokyo 113-8656, Japan
{hung,ern,goshima,sakai}@mtl.t.u-tokyo.ac.jp

Abstract

Combination of SECDED with a redundancy technique
can effectively tolerate a high variation-induced defect rate
in future processes. However, while a defective cell in a
block can be repaired by SECDED, the block becomes vul-
nerable to soft errors. This paper proposes a technique to
deal with the degraded resilience against soft errors. Only
clean data can be stored in defective blocks of a cache.
This constraint is enforced through selective write-through
mechanism. An error occurring in a defective block can
be detected and the correct data can be obtained from the
lower level caches.

1 Introduction

SRAM designs are confronted with two serious prob-
lems: soft errors and variation-induced defects. Radiation-
induced soft errors cause bit flips in memory caches [4].
Soft error rate (SER) per bit of SRAM is expected to stay
steady over process generations [3][1]. However, device
scaling allows the number of bits that can be integrated on a
chip to increase exponentially, rising the total SER rapidly.
Tolerance against soft errors is highly required. To provide
high reliability, Error Correcting Code (ECC)–particularly,
Single Error Correction Double Error Detection Hamming
code (SECDED)– is widely employed to detect and correct
soft errors in SRAMs. Moreover, interleaving of multiple
ECC codewords can effectively tolerate spatial multi-bit er-
rors [9].

Process variation causes spreads in the electrical charac-
teristics of devices. Particularly, fluctuations in the num-
ber and locations of dopant atoms in the channel region of
a transistor can result in a large within-die threshold volt-
age (Vth) variation in scaled processes [8][13]. Variation
effect is pronounced in SRAMs where minimum-geometry
transistors are used. Large variation can lead to a cell fail-

ure. Mechanisms of various types of cell failures (e.g., read,
write, and access failures) and dependency of failure prob-
abilities to Vth variation have been investigated [2][6]. The
results indicate that the defect rate of a SRAM cell can reach
10−3 or even higher in future processes.

Redundancy techniques have been widely used to mit-
igate manufacturing defects. Spare elements are included
in the design and are used to replace defective elements.
Coarse-grain redundancy (e.g., spare rows/columns) cannot
tolerate high defect densities. Fine-grain redundancy (e.g.,
spare words, bytes) [10][5] leads to efficient usage of redun-
dancy resources but significantly increases the complexity
of repair circuitry. For instance, assuming the defect rate
of 10−3, a 512KB SRAM will have roughly 5K defective
words. The Built-In Self Repair (BISR) and decoder cir-
cuitry supporting the replacement of such a high number
of defective words is complex. Particularly, the Content-
Addressable Memory, which is usually used by BISR to
store the addresses of the defective words, becomes exces-
sively large and degrades the access latency. Stand-alone
redundancy techniques therefore are not scalable defect-
tolerance solutions.

Combination of a redundancy technique with ECC can
tolerate high defect rates [11][12]. A hardware block con-
taining a single defective can be repaired by ECC. At much
lower probability, a block may contain multiple defective
cells exceeding the error detection/correction capability of
ECC. Only such a block is replaced by a redundancy ele-
ment. With such a combined approach, a small number of
redundancy elements can be sufficient.

It is cost-effective if the same ECC resource can be used
for both defect and soft error tolerance. However, while
a defective cell in a block can be tolerated by SECDED,
the block becomes vulnerable to soft errors. A soft er-
rors occurring in the block could be left uncorrectable.
While the error tolerability can be enhanced by using ECC
codes that are more powerful than SECDED, these codes
incur significant area and latency overheads. Table 1 shows

1

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



Table 1. Number of check bits for SECDED
and BCH DEC

Information-bit length 32 64 128
SECDED 7 8 9
BCH DEC 12 14 16

the number of check bits required to implement SECDED
and Bose-Chaudhury-Hocquenghem Double-Error Correc-
tion (BCH DEC) at various information bit lengths. DEC
almost doubles the number of check bits as compared with
SECDED. Moreover, while SECDED’s encoding/decoding
circuitry can be constructed as XOR trees and is quite fast,
the powerful codes including BCH DEC are typically cyclic
codes employing multi-bit Linear Feedback Shift Registers
(LFSR) which introduce inordinate delay and are unsuit-
able for being implemented in SRAMs requiring fast ac-
cess. Previous ECC/redundancy combined work assumes
SECDED and therefore improves defect tolerance at the ex-
pense of degraded soft error tolerance [11][12].

In this paper, we propose a technique to tolerate
variation-induced defects while preserving high resilience
against soft errors. Only clean data are allowed to be stored
in the defective (but still usable) blocks of a cache. This
constraint is enforced through a selective write-through
mechanism called assurance update. Soft errors cannot
cause integrity problem in these blocks because SECDED is
still able to detect the errors and the correct data can always
be obtained from the lower level caches. The number of as-
surance updates can be effectively reduced by maintaining
data dirtiness at SECDED block level and performing data
swapping between blocks.

The rest of this paper is organized as follows. Section 2
describes the assumed cache structure and classification of
blocks based on the degree of defectiveness. Section 3 ex-
plains the mechanism of assurance update. Section 4 shows
an exemplified cache structure. Section 5 presents evalua-
tion. Finally, Section 6 concludes the paper.

2 Cache Structure and Block Classification

We assume that a cache consists of several subarrays. A
subarray has several rows. Each row is comprised of several
SECDED blocks. Each subarray has its own decoder, Built-
In Self Test (BIST), BISR, and some spare rows. BIST de-
tects the defective cells in the subarray.

SECDED blocks are classified based on the number of
defective cells they contain. A block that does not have
any defective cell is called a good block (g-block). A block
having a single defective cell is called a tolerable block (t-
block). A block having more than one defective cells is

called a bad block (b-block). The row containing at least
one b-block is a bad row. BISR replaces the bad rows with
redundancy rows. Each block is associated with a g-bit. The
g-bit of a block is set (or reset) if the block is a g-block (or t-
block). Defect analyzing and setting of g-bits are performed
by BIST.

We assume that multiple blocks in the same row are in-
terleaved to disperse the error bits of a spatial multi-bit er-
ror; a block contains as much as one error bit. We therefore
consider how to deal with a single-bit error in a block. If
the block is a g-block, SECDED can be exclusively used
for soft error tolerance. Therefore, the error is detectable
and correctable. However, if the block is a t-block, a part of
SECDED capability is used for repairing the defective cell,
leaving the reduced capability for soft error tolerance. The
error in this case is detectable, but uncorrectable. If the cor-
rupted data are clean, error detection is sufficient since the
correct data can be obtained from the lower level caches.
Data integrity problem occurs if the corrupted data are dirty
data which have no backup elsewhere. Writeback caches
are therefore susceptible to such a problem.

Given the defect rate λ, the probabilities that a block of
BS bits is a g-block, t-block, and b-block are respectively
Pg−blk, Pt−blk, and Pb−blk, and are given by

Pg−blk = (1 − λ)BS (1)

Pt−blk = BS(1 − λ)BS−1λ (2)

Pb−blk = 1 − Pg−blk − Pt−blk (3)

Figure 1 shows the distribution of three types of blocks
at different defect rates. The block size is 72 bits (64 infor-
mation bits and 8 check bits). With high defect rate, after
the b-blocks are replaced by redundancy elements, there is
a significant proportion of t-blocks that is vulnerable to soft
errors. How to overcome such a vulnerability is described
in the next section.

0%

20%

40%

60%

80%

100%

0.0001 0.0005 0.001 0.005 0.01

Defect rate

D
is

tr
ib

ut
io

n 
of

 b
lo

ck
s

g-block t-block b-block

Figure 1. Distribution of blocks at different
defect rates

2



3 Assurance Update
The data integrity problem caused by soft errors can be

prevented by allowing only clean data to be stored in t-
blocks. Whenever a t-block of a cache is updated, the up-
dated data are also sent to the lower level cache. Such an
update is referred to as an assurance update. An assurance
update is also necessary if the update goes to a cache line
which the block holding the tag of the cache line is a t-
block. It is because if the tag is corrupted by a soft error, we
cannot reclaim the correct address to which the cache line
originally belonged.

Assurance updates increase the number of accesses to
the lower level cache. Conventionally, there is a writeback
buffer sitting between a cache and its lower level cache.
Data updated to the lower level cache are temporarily stored
in the writeback buffer and will be written back later when
the bus is free. Thanks to writeback buffer, an assurance up-
date can be mostly removed from the critical path of a cache
access. However, if the writeback buffer is full, the access is
stalled for the writeback buffer to retire its entries to make
room for the coming data. Assurance updates also consume
power. We next describe methods to efficiently perform as-
surance updates to limit their impacts on performance and
power consumption.

Maintaining dirtiness at block level
In conventional caches, the dirtiness of data is maintained
at cache line level; a cache line usually consists of multi-
ple SECDED blocks. When a dirty cache line is written
back, all the constituent blocks are written back no matter
whether the blocks have been modified or not. By main-
taining the dirtiness of data at the block level, unnecessary
writebacks of clean blocks can be eliminated. Each block is
associated with a d-bit. The d-bit of a block is set (or reset)
if the block stores dirty (or clean) data. When a cache line
is written back, only those blocks having their d-bits set are
sent to the lower level cache. The d-bits are then reset to
indicate that the data in the blocks are now clean. By reduc-
ing the number of blocks updated to the lower level cache,
the probability of assurance update triggered by the lower
level cache can also be reduced.

Data swapping between blocks
The clean data stored in a g-block are “over-protected” by
SECDED since single error detection capability is suffi-
cient in this case. On the other hand, the dirty data stored
in a t-block are “under-protected” since an error occurring
in the block drives the data into unrecoverable state. For
other two combinations–clean data stored in t-block or dirty
data stored in the g-block–the data are just sufficiently pro-
tected. The under-protected and over-protected data can
be swapped to improve the protectiveness of the data as a
whole. An assurance update can be avoided if the number
of dirty blocks is no more than the number of t-blocks in the
cache line. Figure 2 shows an example of data swapping. In

Figure 2-a, since dirty data are stored to a t-block (the third
block), an assurance update is required. By swapping data
between the third and fourth blocks, the assurance update
can be avoided, as shown in Figure 2-b.

1 2
clean data

3 4
dirty data

21 3 4 g-block

t-block
○○×◎

require an assurance update

data

block

1 2 3 4

swapping
function

swapping
function

g-bits, t-bits

1 2 34

data
Before swapping

data
After swapping

21 3 4

○○○○

block

required no assurance update

(a) (b)

Figure 2. Example of data swapping

Overheads in terms of power and latency incur when
clean data are read from g-blocks and stored to t-blocks in
data swapping. However, we believe that performing a data
swapping in a cache consumes less power than making an
update request to the lower level cache which is typically
many times bigger and slower. This is particularly true if
the lower level cache is an off-chip memory.

Swapping is executed based on the information of t-bits
and d-bits. There could be several ways to implement the
swapping function. Instead of focusing on the detail imple-
mentation of swapping function, this paper concentrates on
investigating the potential of data swapping in reducing the
number of assurance updates.

4 Example Cache Structure

Figure 3 shows a structure of a 512KB, four-way set-
associative cache. The cache line size is 64B. The cache is
constructed from a tag subarray and eight 64KB data subar-
rays. Each data subarray has 1024 rows, each row is com-
prised of eight 72b blocks. The tag subarray has 512 rows,
each row is comprised of sixteen 44b blocks. A tag entry
has a tag, some state bits (for LRU replacement and cache
coherency), and g-bits and d-bits of all blocks belonging to
the corresponding cache line. Tag access usually proceeds
the data access in a typical cache. By storing the g-bits and
d-bits of the blocks of the data array in the corresponding
entry of the tag array, the decisions of 1) whether an as-
surance update is needed or not upon a cache write, and 2)
which blocks are dirty that are needed to be written back
upon a line eviction or an assurance update, can be deter-
mined at the end of the tag access. Accesses to clean blocks

3



144b 144b 144b 144b

72b

64 info bits 8 check bits

1024 rows

a SECDED block

a row

576b

176b 176b 176b 176b

37 info bits

13-b tag 9 g-bits

512 rows

a tag entry

a row

704b

7 check bits

6 state bits 9 d-bits

spare rows spare rows
BIST

BISR

d
eco

d
er

sub-cachelines

tag 
subarray

data 
subarray

#0

d
eco

d
er

BIST

BISR

data 
subarray

44b 44b 44b 44b
tags of the 
same set 72b

144b 144b 144b 144b

72b

64 info bits 8 check bits

1024 rows

a SECDED block

a row

576b

176b 176b 176b 176b

37 info bits

13-b tag 9 g-bits

512 rows

a tag entry

a row

704b

7 check bits

6 state bits 9 d-bits

spare rows spare rows
BIST

BISR

d
eco

d
er

sub-cachelines

tag 
subarray

data 
subarray

#0

d
eco

d
er

BIST

BISR

data 
subarray

44b 44b 44b 44b
tags of the 
same set 72b

Figure 3. Structure of a 512KB cache

in a cache line can be skipped, thereby saving power con-
sumption.

5 Evaluation
5.1 Evaluation Methodology

The simulated system is an out-of-order superscalar pro-
cessor. Table 2 lists the configuration parameters. The pro-
cessor has 16KB instruction and data caches, and a 512KB
unified L2 cache. The data cache and L2 cache are write-
back caches, each equipped with a four-entry writeback
buffer.

SECDED is maintained for every 64 information bits in
the L1 caches and L2 cache. We assume that all bad rows
in the caches are replaced by redundancy rows. The prob-
ability that a block is a t-block or g-block is derived from
Equation 1 and 2. The g-bits are randomly initialized at the
beginning of the simulation based on such a probability. We
consider defect tolerance only in SRAM caches and assume
the memory to be fault-free.

The following target systems are evaluated:

• Baseline: The data cache and L2 cache do not perform
assurance update

• AsLine: The caches perform assurance updates and
maintain dirtiness at cache line level.

• AsBlk: The caches perform assurance updates and
maintain dirtiness at block level.

• AsBlkSwap: The caches perform assurance updates at
block level and data swapping.

Simulation is performed using SimpleScalar [7].
SPEC2000 benchmarks are used in the simulation. For each
benchmark, we skip the first one billion instructions and
simulate the next four billion instructions.

We assume that the soft error rate of an unprotected
SRAM equal to 1.6 KFIT1 per megabit [3], and soft errors
follow an uniform distribution. Timestamps of accesses to
the cache lines and blocks of the caches are recorded. Such
information allows us to calculate the error rates.

5.2 Evaluation Results

Figure 4-a shows the normalized performance when the
defect rate λ is equal to 0.005. AsLine degrades perfor-
mance significantly for some applications (e.g., lucas, gcc).
However, the performance degradation is reduced signifi-
cantly for AsLine and becomes extremely small for AsBlk-
Swap. The same trend is also observed in Figure 4-b which
shows the performance degradation averaged for all bench-
marks as λ is varied.

Figure 5-a shows number of accesses from L2 cache
to memory per one thousand instructions with λ equal to
0.005. The breakdowns of the accesses are also shown in
the figure. The number of accesses to memory for AsLine
increases considerably due to assurance updates for most

1One FIT (Failure In Time) corresponds to one failure per 10 9 hours

4



80

85

90

95

100

105

am
m

p
ap

pl
u

ap
si ar
t

eq
ua

ke
ga

lg
el

lu
ca

s
m

es
a

m
gr

id
sw

im
w

up
w

is
e

bz
ip

2
cr

af
ty

eo
n

gc
c

gz
ip

m
cf

tw
ol

f
vo

rt
ex vp

r

N
or

m
al

iz
ed

 I
P

C

Baseline AsLine AsBlk AsBlkSwap

95
96
97
98
99

100
101

0.0005 0.001 0.005 0.01

defect rate

N
or

m
al

iz
ed

 I
P

C

Baseline AsLine AsBlk AsBlkSwap

(a) (b)

Figure 4. Normalized performance at λ=0.005 in (a) and at different λ in (b)

Table 2. Parameters of Simulated Architecture
Processor Parameters

Frequency 1 GHz
Functional Units 4 integer ALUs, 4 FP ALUs

1 integer multiplier/divider
1 FP multiplier/divider

LSQ size 32 instructions
RUU size 64 instructions

Issue Width 4 instructions/cycle
Memory Hierarchy Parameters

L1 i-cache 16KB, direct-map, 32B line, 1 cycle latency
72b SECDED block

L1 d-cache 16KB, 4-way, 32B line, 1 cycle latency, writeback
72b SECDED block, 4-entry writeback buffer

L2 cache 512KB, unified, 4-way, 64B line, 6 cycle latency
72b SECDED block, 4-entry writeback buffer

Memory 100 cycle latency

benchmarks. Since assurance updates can have the effect
of early writing back the dirty cache lines, some normal
writebacks (upon cache replacements) are converted to as-
surance updates which can be observed through the reduc-
tion in the number of writebacks for AsLine as compared
with baseline. The number of assurance updates and write-
backs are reduced greatly for AsBlk. Data swapping allows
further significant reduction in the number of assurance up-
dates. The same trend can also be observed when λ is var-
ied, as shown in Figure 5-b. The reduction in the number
of assurance updates reduces the stalled cycles caused by a
full writeback buffer and results in very small performance
degradation that we noticed earlier in Figure 4.

Figure 6 shows the number of written back blocks
to memory per one thousand instruction averaged for all
benchmarks as λ is varied. The figure clearly confirms
the effectiveness of maintaining data dirtiness per block

0

100

200

300

400

500

600

700

0.0005 0.001 0.005 0.01
defect rate

W
ri

te
nb

ac
k 

bl
oc

ks
 to

 m
em

or
y

pe
r 

1,
00

0 
in

st

assurance

writeback

Figure 6. Number of written-back blocks to
memory per 1,000 instructions

Table 3. Uncorrectable error rate of L2 caches
Cache Uncorrectable Error Rate (FIT)

Baseline 631
Assurance update 3.84e-14

for eliminating unnecessary block updates and improving
power efficiency.

Table 3 shows the uncorrectable error rate of the base-
line L2 cache and the L2 cache performing assurance up-
date. For the baseline cache, an uncorrectable error occurs
if a strike occurs on a t-block of a dirty cache line and the
cache line is read later. For the cache performing assurance
update, an uncorrectable error occurs if two strikes occur
on the same t-block between two consecutive accesses to
the block. The error rate of the cache performing assurance
update is many orders of magnitude lower than that of the
baseline cache.

5



0

30

60

90

120

150

am
m

p
ap

pl
u

ap
si ar
t

eq
ua

ke

ga
lg

el
lu

ca
s

m
es

a
m

gr
id

sw
im

w
up

w
is

e

bz
ip

2
cr

af
ty

eo
n

gc
c

gz
ip

m
cf

tw
ol

f
vo

rt
ex vp

rM
em

or
y 

ac
ce

ss
es

 p
er

 1
,0

00
 in

st L2 miss L2 writeback L2 assurance

0

10

20

30

40

50

0.000 0.001 0.005 0.01

defect rate

M
em

or
y 

ac
ce

ss
es

 p
er

 1
,0

00
 in

s l2 misses l2 writeback l2 assurance

(a) (b)

Figure 5. Breakdown of accesses from L2 cache to memory per 1,000 instructions at λ=0.005 in (a)
and as λ is varied in (b)

6 Conclusions
Tolerating soft errors for high reliability and tolerating

variation-induced defects for yield improvement are highly
required in advanced SRAM designs. The proposed tech-
nique can satisfy both the requirements. Combination of
SECDED with a redundancy technique can tolerate a high
defect rate. Enforcement of assurance update mechanism
aided by the newly added g-bits and d-bits efficiently elim-
inates the uncorrectable soft errors occurring in defective
(but still usable) blocks. The overheads in terms of perfor-
mance and power consumption incurred by assurance up-
dates are fairly low even when the defect rate is as high as
10−2.

Acknowledgement
This research is partially supported by Grant-in-Aid for

Fundamental Scientific Research B(2) #13480077, B(2)
#16300013 from the Ministry of Education, Culture, Sports,
Science and Technology Japan, a CREST project of the
Japan Science and Technology Corporation, and by a 21st
century COE project of the Japan Society for the Promotion
of Science.

References

[1] International Technology Roadmap for Semiconductor.
http://public.itrs.net, 2005.

[2] A. Agarwal, B. C. Paul, S. Mukhopadhyay, and K. Roy. Pro-
cess Variation in Embedded Memories: Failure Analysis and
Variation Aware Architecture. IEEE Journal on Solid State
Circuits, 40(9):1804–1814, 2005.

[3] R. Baumann. Soft Errors in Advanced Computer System.
IEEE Design and Test of Computers, 22(3):258–266, 2005.

[4] R. C. Baumann. Soft Errors in Advanced Semiconductor
Devices–Part I: Three Radiation Sources. IEEE Transac-
tions on Device and Materials Reliability, 1(1):17–22, 2001.

[5] A. Benso, S. Chiusano, G. D. Natale, P. Prinetto, and M. L.
Bodoni. A family of self-repair SRAM cores. In Proc.
IEEE International On-Line Testing Workshop, pages 214–
218, 2000.

[6] A. Bhavnagarwala, S. Kosonocky, C. Radens, K. Stawiasz,
R. Mann, Q. Ye, and K. Chin. Fluctuation Limits & Scaling
Oppoturnities for CMOS SRAM Cells. In Proc. IEEE Inter-
national Electron Devices Meeting, pages 659–662, 2005.

[7] D. Burger and T. Austin. The SimpleScalar Tool Set. Tech-
nical Report CS-TR-1997-1342, University of Wisconsin-
Madison, 1997.

[8] D. J. Frank, Y. Taur, M. Ieong, and Hon. Monte Carlo Mod-
elling of Threshold Variation due to Dopant Fluctuations. In
Proc. IEEE International Electron Devices Meeting, pages
93–94, 1999.

[9] K. Osada, Y. Saitoh, and K. Ishibashi. 16.7-fA/Cell Tunnel-
Leakage-Suppressed 16-Mb SRAM for Handling Cosmic-
Ray-Induced Multierrors. IEEE Journal on Solid State Cir-
cuits, 38(11):1952–1957, 2003.

[10] V. Schober, S. Paul, and O. Picot. Memory Built-in Self-
Repair using Redundant words. In Proc. IEEE International
Test Conference, pages 995–1001, 2001.

[11] C. H. Stapper and H.-S. Lee. Synergistic Fault-Tolerance
for Memory Chips. IEEE Transactions on Computers,
41(9):1078–1088, 1992.

[12] C.-L. Su and Y.-T. Yeh. An Integrated ECC and Redun-
dancy Repair Scheme for Memory Reliability Enhancement.
In Proc. IEEE International Test Conference, pages 81–89,
2005.

[13] X. Tang, V. K. De, and J. D. Meindl. Intrinsic MOSFET Pa-
rameter Fluctuations Due to Random Dopant Placement. In
Proc. IEEE International Electron Devices Meeting, pages
369–376, 1997.

6


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




