
Energy and Execution Time Analysis of a Software-based Trusted
Platform Module ∗

Najwa Aaraj†, Anand Raghunathan‡, Srivaths Ravi�, and Niraj K. Jha†

† Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
‡ NEC Laboratories America, Princeton, NJ 08540
� Texas Instruments R&D Center, Bangalore, India

†{naaraj, jha}@princeton.edu ‡anand@nec-labs.com �srivaths.ravi@ti.com

Abstract
Trusted platforms have been proposed as a promising approach to en-
hance the security of general-purpose computing systems. However, for
many resource-constrained embedded systems, the size and cost over-
heads of a separate Trusted Platform Module (TPM) chip are not ac-
ceptable. One alternative is to use a software-based TPM (SW-TPM),
which implements TPM functions using software that executes in a pro-
tected execution domain on the embedded processor itself. However,
since many embedded systems have limited processing capabilities and
are battery-powered, it is also important to ensure that the computational
and energy requirements for SW-TPMs are acceptable.

In this work, we perform an evaluation of the energy and execution
time overheads for a SW-TPM implementation on a Sharp Zaurus PDA.
We characterize the execution time and energy required by each TPM
command through actual measurements on the target platform. In addi-
tion, we also evaluate the overheads of using SW-TPM in the context
of various end applications, including trusted boot of the Linux oper-
ating system (OS), secure file storage, secure VoIP client, and secure
web browser. Furthermore, we observe that for most TPM commands,
the overheads are primarily due to the use of 2048-bit RSA operations
that are performed within SW-TPM. In order to alleviate SW-TPM over-
heads, we evaluate the use of Elliptic Curve Cryptography (ECC) as a
replacement for the RSA algorithm specified in the Trusted Computing
Group (TCG) standards. Our experiments indicate that this optimiza-
tion can significantly reduce SW-TPM overheads (an average of 6.51X
execution time reduction and 6.75X energy consumption reduction for
individual TPM commands, and an average of 10.25X execution time
reduction and 10.75X energy consumption reduction for applications).
Our work demonstrates that ECC-based SW-TPMs are a viable approach
to realizing the benefits of trusted computing in resource-constrained
embedded systems.

1 Introduction
Security is emerging as an important consideration in the design of many
embedded systems. Embedded systems are often used to perform safety-
critical functions or financial transactions, and capture or store our per-
sonal data. On the other hand, they feature increasing software complex-
ity, and are often deployed in physically insecure spaces or connected to
public networks, exposing them to the same, if not greater, risk factors
and security threats faced by PCs and the Internet. Our experiences with
general-purpose computing systems indicate that conventional reactive
approaches to security, such as anti-virus and anti-spyware tools, OS and
application patches, etc., are not effective in preventing security attacks
(the number of reported attacks as well as newly discovered vulnera-
bilities continue to grow each year [1]). Therefore, it is important to
build-in security during various stages of the embedded system design
process [2].

Trusted computing is an emerging paradigm that addresses informa-
tion security concerns in a wide variety of computing systems. Trusted

∗Acknowledgments: This work was supported by NSF under Grant No. CCR-
0326372.

computing standards are driven by the computing and communications
industries through the TCG [3]. The conventional approach to trusted
computing requires several hardware and software enhancements to the
target system, including the addition of a separate chip called the TPM
that is affixed within the target system.

The TPM acts as a root of trust for the system that contains it,
providing capabilities for secure storage, secure reporting of platform
configuration measurements, and cryptographic key generation, among
other functions (an overview of TPM functions is provided in Sec-
tion 2.1). In addition to the above functions, the TPM chip implements
tamper-resistance techniques to prevent a wide range of physical and
hardware-based attacks. TPM chips are being produced by several ven-
dors, and have been incorporated into several desktop and laptop PCs,
and servers [4, 5]. It is predicted that by 2010, worldwide shipments of
TPM modules in PC client systems will reach more than 250 million [6].
In addition to the use of the TPM envisioned by the TCG, researchers
have demonstrated its use in enhancing the security of a variety of soft-
ware applications and services [7, 8, 9, 10, 11, 12].

Given the benefits and growing use of trusted computing in general-
purpose systems, it is natural to explore the application of these concepts
and technologies to enhance the security of embedded systems. Recent
efforts to adapt trusted computing standards to resource-constrained en-
vironments include the TCG’s Mobile Phone Working Group [13] and
the Trusted Mobile Platform Alliance [14]. However, the hardware en-
hancements, including the addition of the TPM chip, may impose an
unacceptable overhead in the context of cost- and size-constrained em-
bedded systems. For such systems, we propose the use of a software
implementation of the TPM functions (referred to as software TPM or
SW-TPM) in order to enable the adoption of trusted computing tech-
niques. Although not completely equivalent to a conventional TPM chip
in terms of protection against physical and hardware attacks, SW-TPM
can be executed within protected or isolated execution domains that are
increasingly provided by embedded CPUs (e.g., ARM TrustZone [15]),
and can utilize on-chip storage in order to provide a reasonable degree of
tamper-resistance. However, one issue that remains is whether the com-
putational and energy requirements to perform the TPM functions are
acceptable. In this work, we address this question by analyzing and op-
timizing the energy and execution time overheads imposed by SW-TPM.
Our work makes the following contributions:

• We perform a comprehensive characterization of SW-TPM run-
ning on a battery-powered handheld device (Sharp Zaurus PDA),
and measure the execution time and energy requirements for vari-
ous TPM commands.

• We evaluate the overheads imposed by using TPM functions in
end applications, including trusted boot of the Linux OS, secure
file storage utility, secure VoIP client, and secure web browser.

• In order to alleviate the overheads imposed by SW-TPM, we pro-
pose and evaluate the use of ECC as a replacement for the RSA al-
gorithm specified in the TCG standards. Our experiments indicate
that this results in a substantial reduction in SW-TPM overheads.

In a broader sense, our work demonstrates the feasibility of using SW-
TPM to realize the benefits of trusted computing in resource-constrained

978-3-9810801-2-4/DATE07 © 2007 EDAA

embedded systems.
The rest of the paper is organized as follows. Section 2 presents back-

ground material on TPM functions. Section 3 introduces the concept of
SW-TPM, and details the different characterizations of SW-TPM com-
mands. Section 4 discusses different applications, their trusted imple-
mentations, and the incurred energy and execution time overheads. For
the ease of presentation and comparison, experimental results are in-
cluded in Sections 3 and 4 for both the original SW-TPM and the opti-
mized SW-TPM that uses ECC-based asymmetric cryptography.

2 Background
In this section, we provide an overview of the functions performed by
the TPM and summarize its various commands.

2.1 TPM Overview
Three roots of trust lie at the core of a trusted platform: (i) a Root of
Trust for Measurement (RTM), which is responsible for taking platform
integrity measurements, (ii) a Root of Trust for Storage (RTS), which
securely stores different integrity measurements, and (iii) a Root of Trust
for Reporting (RTR), which is responsible for reliably reporting values
stored in the RTS. The TPM chip includes the RTR and RTS functions,
and depending on the implementation, it may also include parts of the
RTM. The TPM also supports other functions such as cryptographic key
generation, and data sealing and binding.

Figure 1 describes the various layers of a trusted platform, and out-
lines the different components of the TPM.

The protected storage in a TPM includes the Platform Configuration
Registers (PCRs), and limited volatile and non-volatile storage spaces.
Protected storage is accessible only within the TPM, and is shielded
from physical attacks. Each PCR is 20 Bytes in length, and can store
an SHA-1 digest that represents the platform integrity measurements.
PCR values are updated by concatenating their original values with the
new measurements, followed by an SHA-1 operation (performed by the
TPM’s SHA-1 engine) whose output is written back to the PCR.

TPM’s Random Number Generator, Key Generator and RSA Engine
components support the generation of RSA keys as well as symmetric
keys, and RSA cryptographic operations, such as signing and encryp-
tion/decryption. TPM keys can be classified into different categories.
Each TPM is shipped with a 2048-bit RSA key stored inside it. This
key, known as the Endorsement Key (EK), is generated by the vendor or
manufacturer, and stored in the non-volatile memory within the TPM.
EK should never be disclosed and is only used for establishing the TPM
ownership, i.e., creating the Storage Root Key (SRK), and for issuing
Attestation Identity Keys (AIKs). The SRK is the root of a hierarchy
of TPM keys, and is used for encrypting other migratable keys that are
stored outside the TPM. AIKs are special-purpose 2048-bit RSA keys;
their private portion is securely stored by the TPM and their public part,
along with an AIK certificate, is used for platform attestation and au-
thentication, and for key certification. The TPM is also capable of gen-
erating an arbitrary number of user keys that can be classified as either
migratable or non-migratable.

Protected storage and cryptographic functions are crucial for platform
attestation and integrity checking. Whenever a platform is challenged to
prove its integrity or the integrity of any application running on it, the
RTR (together with the software that uses it) is responsible for reading
relevant PCR values, signing them with the private portion of an AIK,
and sending the signatures, along with the public portion of the AIK
and necessary credentials, to the challenger. The challenger verifies the
authenticity of the platform by checking the credentials and comparing
the measured values with expected ones.

The path between applications and the TPM is handled by a set of
software components called the TPM Software Stack (TSS). The main
objective of the TSS is to manage TPM resources as well as provide
access to the TPM. The different components of the TSS are listed in
Figure 1. We refer interested readers to [13] for further details.

2.2 TPM Commands
A number of commands control the activities performed within the
TPM, and enable software running on the platform to benefit from the
set of security features that it provides. We divide these commands into
eight categories, each of which is summarized below (a full listing of
TPM commands can be found in [13]).

User
application

U
se

r
m

od
e

K
er

ne
l m

od
e

TCG Service Provider
(TSP)

TCG Core Services
(TCS)

TCG Device Driver
Library (TDDL)

Provides a C interface for user
applications. Manages TPM
authorizations

Manages platform keys
and measurements

Provides transition between
user and kernel modes

TSS

TPM

SHA-1 RSA
Random
number

generator
HMAC PCRs

EK
AIKs
SRK

Migratable keys
K1
:
:

Kn

Execution
engine

Core
RTM

 TPM Device Driver
(TDD)

Non-migratable
keys

H
ar

dw
ar

e
&

 F
irm

w
ar

e

Figure 1: Modules and interfaces of a trusted platform

• Authentication commands: used for creating session authenti-
cations that allow interactions with the TPM (TPM_OIAP and
TPM_OSAP).

• Capability commands: used for getting TPM information
(TPM_GetCapability).

• Cryptographic commands: used for digital signatures (TPM_Sign)
and random number generation (TPM_GetRandom).

• Identity commands: used for creating AIKs (TPM_MakeIdentity),
and decrypting AIK credentials (TPM_ActivateIdentity) obtained
from a trusted third party (TTP).

• Measurement commands: used for reading PCR contents
(TPM_PcrRead), signing (TPM_Quote) and extending PCR val-
ues (TPM_PcrExtend).

• Ownership commands: used for establishing ownership of the
TPM, and creating the SRK (TPM_TakeOwnership).

• Start-up commands: used for starting, enabling, resetting, and sav-
ing the state of a TPM (tpm_init_data and TPM_Startup).

• Storage and key management commands: used for key gener-
ation (TPM_CreateWrapKey), key loading into TPM memory
space (TPM_LoadKey), key eviction (TPM_EvictKey), data bind-
ing/unbinding (TPM_UnBind), i.e., encrypting/decrypting data
with a key managed by the TPM, data sealing (TPM_Seal), i.e.,
encrypting data and associating it with specific PCR values, and
data unsealing (TPM_Unseal), i.e., decrypting data if the PCR val-
ues match those at the time of sealing. These commands operate
on TPM keys of sizes up to 2048 bits.

3 Characterization of the Software TPM
The TPM security features outlined in Section 2.1 are very useful in
many embedded systems. However, due to area and cost constraints,
some embedded systems cannot be augmented with a conventional TPM
chip. Therefore, we explore the feasibility of a SW-TPM, which per-
forms the same functions as a hardware TPM, i.e., supports all the three
roots of trust, as well as other cryptographic capabilities.

Although SW-TPM does not provide the same security level as a TPM
chip, particularly with respect to physical attacks, executing the SW-
TPM in a protected execution domain of the CPU (e.g., ARM Trust-
Zone), and using on-chip memory, provides resistance to software at-
tacks, including compromises of the OS, and a limited number of physi-
cal attacks. In fact, this is suggested in [14] as an acceptable implemen-
tation of the TPM.

This section describes our implementation of the SW-TPM and all
supporting software running altogether on an embedded platform. It also
describes the experimental set-up used to perform energy and execution
time characterization of SW-TPM, and the results obtained therefrom.

3.1 SW-TPM Implementation
Our SW-TPM implementation is adapted from the public domain TPM
emulator [16]. This emulator provides basic TPM functions, such as

RSA cryptography and HMAC and SHA-1 hashing functions, and pro-
vides several TPM commands, some of which were listed in Section 2.2.
Our changes to the emulator include the following:

• Random number generation: We use a hash-complemented
Mersenne Twister (MT) random number generator [17], i.e., we
run the output of MT through SHA-1.

• ECC: SW-TPM supports ECC in the binary field GF(2m). The de-
ployment of ECC on our embedded platform is due to its small key
sizes for offering the same security robustness as RSA. Hence, it
requires less resources such as processor cycles and energy.
ECC-enabled SW-TPM supports key generation and validation,
digital signature generation and verification, encryption, and de-
cryption. ECC key sizes supported are 224 bits (equivalent to
2048-bit RSA keys), 192 bits (although 192 bits do not represent
an equivalent to any RSA key size, we choose to study its per-
formance when used with SW-TPM because it is widely used in
security applications), and 160 bits (equivalent to 1024-bit RSA
keys).

• AES_CBC cryptography: SW-TPM supports the Advanced En-
cryption Standard (AES) algorithm, running in Cipher Block
chaining (CBC) mode. This engine is specifically used for ECC
encryption and decryption, and for decrypting AIK credentials.

For brevity, we do not delve further into the details of the TPM emulator
Linux implementation, and we refer interested readers to the documen-
tation available in [16].

3.2 SW-TPM Characterization
This section first describes the experimental set-up used for evaluating
SW-TPM’s execution time and energy requirements. It then reports re-
sults obtained for various TPM commands performed using SW-TPM.

3.2.1 Experimental Set-up
The experimental set-up used in our experiments is shown in Figure 2.

A) Hardware: The embedded system used is a Sharp Zaurus SL-
5600 [18] running Embedix and Qtopia. It is equipped with a 400MHz
Intel Xscale processor (PXA-250), with a 32MB SDRAM and 64MB
Flash ROM. Energy measurements were performed using an Agilent
34401A digital multimeter interfaced with a 3.2GHz Intel Pentium IV
PC running Windows. Throughout the execution of the program of inter-
est on the PDA, we probed the voltage drop across a 0.1Ω sense resistor
that is connected in series with the 5V DC power supply cord to the
PDA. A data acquisition program, written in Visual C++ on Windows,
controlled the multimeter to sample the voltage drop across the resis-
tor at 25Hz. A MATLAB script calculates the energy consumption by
integrating the power time-series using the trapezoidal rule.

B) Software: SW-TPM commands are adapted from the open-source
software-based TPM emulator [16], which is implemented as a Linux
kernel module. The code was ported from the x86 architecture and Red-
hat Linux to the PXA-250 processor and Embedix (changes were re-
quired due to the differences in the kernel, as well as architectural pa-
rameters such as endianness). We also ported the GNU MP library onto
the system, in order to use the RSA, HMAC, and SHA-1 functions pro-
vided by the emulator. In order to implement the ECC-enabled SW-
TPM, we (i) developed an ECC engine that uses the Big Number (BN)
library provided by OpenSSL [19], and the Montgomery [20] based
point multiplication module integrated into OpenSSL by Sun microsys-
tems [21], and (ii) changed the command processing code in SW-TPM
in order to interact with the ECC engine instead of the RSA engine.
We also used two other open-source software packages: TrouSerS and
Testsuite [22]. TrouSerS is an open-source implementation of the TSS,
and Testsuite provides different test cases that exercise a TPM through
the TSS. We installed the two packages, along with the TPM emula-
tor, on an x86 Linux PC. We ran different test cases, and probed the
input and output parameters being fed to and generated from the TPM
emulator (input parameters are arguments necessary for the execution
of a command, and output parameters are the results of command ex-
ecution). The input parameters were then applied to the SW-TPM im-
plementation running on the PDA, and the execution time and energy
measurements were performed. For commands not supported by Test-
suite, such as TPM_MakeIdentity and TPM_ActivateIdentity, we had to

provide our own parameters. In order to exercise the ECC Engine, RSA-
dependent input parameters were changed to the corresponding ECC
counterparts.

TPM emulator

Testsuite

TrouSerS

SW-TPM
running on PDA

Other
testbenches

Input
param-
eters

Software
running
on x86

Linux PC

Data acquisition
program running on

Pentium IV PC

Agilent
multimeter

Figure 2: Hardware and software experimental set-up

3.2.2 Measurement Results
In this section, we present the execution time and energy consumed by
SW-TPM on the PDA in order to execute various TPM commands. Re-
sults are presented for the original RSA-based SW-TPM, as well as
the proposed ECC-based SW-TPM. For some commands, namely, the
commands categorized as the storage and key management commands,
and TPM_Sign, several measurements were performed for different key
sizes (we give results for the 2048-224 and 1024-160 equivalent RSA-
ECC key sizes, as well as for 512-bit RSA keys, and 192-bit ECC keys).
Also, for commands that process user data, the data size is varied. The
results of our experiments are reported in Table 1. Column 1 repre-
sents the command executed. Columns 2-3 give the key size (K) and
data size (D). K (D) is indicated as n/a for commands that do not in-
volve cryptographic operations (do not process user data). Column 4
gives energy measurements in milliJoules (mJ), and column 5 reports
the execution times for the TPM commands in milliseconds (msec.). The
results indicate that commands involving RSA operations, particularly
private key operations, which require manipulation of large numbers,
and a resource-consuming modular exponentiation, impose a high exe-
cution time overhead. For instance, the TPM_MakeIdentity command,
which involves 2048-bit RSA key generation and validation, as well as
encryption of the private AIK using the SRK, in addition to other crypto-
graphic functions, takes 29.63 sec. and consumes 70.94 J of energy. Sim-
ilarly, large execution times and energy consumptions are required for
TPM_TakeOwnership, TPM_CreateWrapKey, TPM_Unseal, etc. How-
ever, this overhead is reduced by using ECC: execution time and energy
requirements for the TPM_MakeIdentity command are reduced to 2.43
sec. and 5.86 J, respectively. In fact, by using ECC, we could achieve
an average reduction of 6.51X and 6.75X for execution time and energy,
respectively, across all commands.

Table 2 presents macromodels that capture the energy for the
TPM_Sign and TPM_Seal commands as a function of the key size K
and data size D. K can vary up to 2048 (224) bits for RSA (ECC), and D
assumes values up to 144 Bytes. As can be concluded from the macro-
models, and the numbers reported in Table 1, energy and execution time
requirements vary more significantly with the key size rather than with
the data size (especially when RSA cryptography is used).

Note that, in order to account for uncontrollable variables, such as the
randomness of the keys, and to minimize measurement error for com-
mands that require small running times, the results presented are based
on the average of several executions of each command (an average of 16
executions for a single command).

While the data presented in this section are useful for evaluating the
requirements of SW-TPM in isolation, it is also important to place these
overheads in the context of actual applications. In the next section, we
propose trusted extensions for several applications and study the impact
of using SW-TPM on their execution time and energy consumption.

4 SW-TPM in User Applications
This section considers the usage of SW-TPM in the context of four dif-
ferent applications. We describe the trusted extensions of these applica-
tions, and evaluate the effect of these extensions in terms of energy and
execution time. The results of our experiments are presented in Table 3.

Column 1 indicates whether RSA-enabled SW-TPM or ECC-enabled
SW-TPM is used. Columns 2-3 report energy and execution time for the
untrusted application, and the total overhead required by the trusted ver-
sion of this application, respectively. Columns 4-5 give the energy and
execution time overheads due to the executed SW-TPM commands. The
results, discussed in the context of each application in the rest of this
section, indicate that the executed SW-TPM commands, within the ap-
plications, require an average of 10.75X less energy and an average of
10.25X less execution time when ECC, instead of RSA, is enabled.

4.1 Trusted Boot
Trusted boot of the OS is one of the most common applications of trusted
platforms [3]. We extend the standard booting sequence of the Embedix
OS on the Sharp Zaurus PDA into a trusted version in order to monitor
its integrity. We implement a simplified version of the trusted boot se-
quence suggested for enhancing the Linux bootloader GRUB [23]. This
application is not fully implemented yet, however, the fine-grained anal-
ysis of the SW-TPM commands in Section 3.2 helps us estimate the
execution time and energy overhead of the final application.

• The PDA’s bootloader is divided into two stages for the purpose of
trusted boot. At power on, stage 1 of the bootloader executes. This
stage is assumed to be trusted, i.e., it acts as the Core Root of Trust
for Measurement (CRTM). It sets SW-TPM to the active state, and
performs a TPM_Startup command. Stage 1 hashes stage 2 after
loading it, and PCR 4 is extended.

• Stage 2 of the bootloader loads the kernel and performs an integrity
measurement of its image, i.e., it hashes the kernel image. PCR 5
is extended using the resulting hash value.

• The kernel hashes the pre-installed kernel modules, kernel con-
figuration files, and pre-installed application programs. PCR 8 is
extended using the resulting hash value.

Once the PCRs are extended, boot integrity can be achieved by compar-
ing PCR values with previous integrity measurements (i.e., hash compu-
tations) taken under an untampered normal boot sequence.

In summary, the SW-TPM commands executed during the trusted
boot process are: TPM_TakeOwnership, tpm_init_data, TPM_Startup,
and TPM_PcrExtend. In addition, further overhead is incurred by in-
tegrity measurements performed at each stage of the booting process.
The energy and execution time measurements for trusted boot are re-
ported in Table 3, rows 1 and 2.

4.2 Secure Storage
The secure storage capability provided by the TPM, in particular the
sealed storage capability, is especially attractive for securing sensitive
data, such as passwords, pins, biometric information, etc., and prevent-
ing their usage by corrupted programs. In this section, we identify the
execution time and energy needed for sealing a 500 Bytes file F contain-
ing biometric templates, which are used by an authentication program.
The sealing operation proceeds as follows:

• Create a 2048-bit RSA key (224-bit ECC key) and load it into the
SW-TPM memory space.

• Seal the biometric templates data to PCR 15: prior to sealing the
data, the OS hashes the executable binary of the biometric authen-
tication program, and its digest is placed in PCR 15. Then, the
biometric data is sealed (144 Bytes at a time). Before unsealing
the data, PCR 15 is reset and extended with a new hash value of
the authentication program binary. The data can be retrieved only
if PCR 15 values at the time of sealing and the time of unsealing
match, i.e., if the authentication program has not been corrupted
from the time the data was sealed.

The SW-TPM commands executed are: TPM_OSAP,
TPM_CreateWrapKey, TPM_OIAP, TPM_LoadKey, TPM_Terminate
-Handle (this command has not been included in Table 1 because
its execution time on the PDA is insignificant), TPM_PcrExtend,
TPM_PcrRead, and TPM_Seal. In addition, further overhead is incurred
by integrity measurements of the authentication program. The energy
and execution time measurements for the secure storage application are
given in Table 3, rows 3 and 4.

4.3 Secure Voice over Internet Protocol (VoIP)

VoIP is a technology that uses a broadband Internet connection to place
phone calls. Voice information is compressed using a Compressor/De-
compressor (Codec) and sent in network packets over the Internet. VoIP
can become the target of many security attacks, such as spam, call hi-
jacking, denial of service attacks, etc. Hence, VoIP security measures are
critical. Commercial VoIP security solutions have been deployed, and an
end-to-end solution based on the TPM can be found in [8].

Table 1: Energy and execution time for TPM commands
Command K (bits) D (Bytes) PDA measurements

ECC/RSA Energy(mJ) Time(msec.)
Authentication commands

TPM_OIAP n/a n/a 0.61 0.21
TPM_OSAP n/a n/a 2.38 0.82

Capability commands
TPM_GetCapability

(Key info.) n/a n/a 0.10 0.04
(Manufacturer info.) n/a n/a 0.10 0.04

(PCR info.) n/a n/a 0.20 0.07
Cryptographic commands

TPM_GetRandom n/a 20 0.55 0.19
TPM_Sign 224/2048 20 450/2210 191/902

224/2048 50 492/2221 204/926
224/2048 100 531/2394 216/970
160/1024 20 210/806 90/343
160/1024 50 242/930 114/388
160/1024 100 319/1006 131/409
192/512 20 321/626 136/265
192/512 50 350/656 148/274
192/512 100 361/760 153/305

Identity commands
TPM_ActivateIdentity 224/2048 n/a 598/12824 348/5239

TPM_MakeIdentity 224/2048 n/a 5859/70943 2425/29634
Measurements commands

TPM_PcrRead n/a n/a 17.32 6.69
TPM_PcrExtend n/a n/a 32.28 12.46

TPM_Quote 224/2048 n/a 762/2475 381/1239
Ownership commands

TPM_ReadPubek 224/2048 n/a 0.31/3.10 0.12/1.22
TPM_TakeOwnership 224/2048 n/a 5619/66777 2391/28619

Start-up commands
tpm_init_data 224/2048 n/a 1.71/25.39 0.69/10.52
TPM_Startup 224/2048 n/a 0.48/1.46 0.19/0.58

Storage and key management commands
TPM_CreateWrapKey 224/2048 n/a 5558/42582 2322/16938

160/1024 n/a 4128/12133 1813/4594
192/512 n/a 4419/8395 1880/3025

TPM_EvictKey 224/2048 n/a 8.36/37.08 3.31/14.78
160/1024 n/a 6.70/16.62 2.71/6.62
192/512 n/a 6.72/7.73 2.79/3.10

TPM_GetPubKey 224/2048 n/a 640/10592 229/4388
160/1024 n/a 471/1504 157/567
192/512 n/a 516/852 172/453

TPM_LoadKey 224/2048 n/a 810/14547 336/5367
160/1024 n/a 593/4557 261/1796
192/512 n/a 737/2092 301/841

TPM_Seal 224/2048 20 1103/3751 463/1476
224/2048 50 1125/3785 472/1564
224/2048 100 1313/4271 530/1761
160/1024 20 769/1898 322/796
160/1024 50 806/2195 334/967
160/1024 100 819/2965 342/1178
192/512 20 1001/1019 420/427
192/512 50 1026/1063 431/481
192/512 100 1093/1326 444/551

TPM_Unseal 224/2048 256 1444/14056 585/5520
160/1024 256 952/4679 391/1880
192/512 256 1279/1778 525/714

TPM_UnBind 224/2048 256 1459/10480 576/4103
160/1024 256 974/4269 384/1699
192/512 256 1284/1616 524/669

In this section, we describe a simple security scheme for VoIP that
utilizes the TPM to authenticate the client to the server, ensure that
the client application has not been corrupted, and exchange the sym-
metric key used for bulk (voice) data encryption. In order to illustrate
this scheme, we consider the set-up shown in Figure 3. We installed the
open-source Private Branch eXchange (PBX) server Asterisk [24] on a
Linux machine, and two VoIP clients, based on the Inter-Asterisk eX-
change (IAX) protocol, on a PDA and a laptop.

We assume that the PBX server is secured from tampering and plays
the role of an authentication agent (AA), i.e., it maintains a log of differ-

Table 2: Energy macromodels for the TPM_Sign and TPM_Seal
Command Crypto type Energy model (C + A*D + B*D2 + X*K + Y*K2(mJ))
TPM_Sign ECC 31.269 + 1.434*D - 0.004*D2 - 0.642*K + 0.011*K2

RSA 29.994 + 10.389*D - 0.061*D2 + 0.349*K + 0.00029*K2

TPM_Seal ECC 6.415 - 0.067*D + 0.012*D2 + 3.980*K + 0.005*K2

RSA 5.766 - 10.033*D + 0.142*D2 + 2.435*K - 0.00026*K2

Wireless access point

Wired interface
performing Network
Address Translation (NATing)
with wireless interface

Wireless interface

Ethernet switch

IAX client (Z)
running on PDA

IAX client (C)
 running on laptop

PBX server

Figure 3: VoIP application set-up
ent trusted configurations of its clients. We also assume that each VoIP
client runs on a platform containing SW-TPM. The security scheme for
a trusted and secure VoIP registration and communication session pro-
ceeds as follows:
Trusted registration of the VoIP client with the PBX server:

• Before any client registers with the server, the platform on which
this client is running generates an AIK, and certifies its public por-
tion with respect to its EK, i.e., it obtains an AIK certificate from a
Trusted Third Party (TTP). The TTP checks that the AIK has been
generated by a valid TPM by using the Endorsement Credential
to verify the public part of the EK, and then using the EK to ver-
ify the AIK. The TTP then generates an AIK certificate, which is
encrypted using a symmetric key S, where S in turn is encrypted
using the public portion of the EK. SW-TPM decrypts S, activates
and decrypts the AIK credential, and uses it to authenticate itself
to a verifier.

• Upon registration, the OS running on the client platform hashes
the binary of the VoIP client. The obtained digest is used to extend
a specific PCR (PCR 11), which is signed by the generated AIK.
The content of PCR 11, corresponding signature, AIK certificate,
and platform credentials are sent to the server.
The server checks the certificates and signature sent, compares
PCR 11 to valid VoIP client configurations, and accordingly either
registers the client or rejects it.

Once a client has registered with the server, secure VoIP sessions pro-
ceed as illustrated in Figure 4 and described below.
Trusted communication between two VoIP clients:

• Client (Z) is launched, and a request is sent to the server for estab-
lishing a VoIP session between (Z) and (C). Upon launching client
(Z), PCR 11 is reset, and the OS performs a new hashing of the
client binary, used to update PCR 11. (This is essential in order to
detect any tampering that could have happened between the time
of the client registration and the VoIP communication request.)

• If both clients are registered with it, the server sends challenge re-
quests to both (Z) and (C), including a freshness nonce (the nonce
is necessary to help prevent replay attacks), request for platform
attestation credentials, and integrity measurements.

• Client (C) is launched and PCR 11 is updated using the same
method as (Z). SW-TPM of each of the clients signs the value of
PCR 11, concatenated with the nonce, using the AIK generated
at registration time. Platform credentials, AIK certificate, PCR 11
content, and the corresponding signature are sent to the server.

• The server checks the authenticity of the platform, verifies the sig-
nature and its freshness, and AIK credentials, and checks if the
PCR values match trusted configurations of VoIP clients. If so, (i)
a connection is established between (Z) and (C), and (ii) a 128-
bit AES_CBC symmetric session key is generated, encrypted with
both (Z)’s and (C)’s AIKs, and sent to them.

• (Z) and (C) decrypt the session key with the private portions of
their respective AIKs.

• Once the session key is established, network traffic can be en-
crypted using the AES_CBC algorithm.

The SW-TPM commands executed are: TPM_MakeIdentity,
TPM_ActivateIdentity, TPM_PcrExtend, and TPM_Quote. These
SW-TPM commands are executed concurrently on both clients. In
addition, SW-TPM decrypts the AIK certificate using its AES_CBC
engine. Further overhead is imposed by the integrity measurements of
the VoIP clients and the symmetric encryption and decryption of the
data traffic between the two clients.

PBX Server and
Authentication agent (AA)

Client (Z)

Client (C)

1- (Z): Request for VoIP session with (C).

2- (AA): Attestation challenge for (Z).

2- (A
A

): A
ttestation challenge for (C

).

4- (Z): Challenge response: PCR || nonce
& signature, and platform & AIK credentials.

4- (C
): C

hallenge response: P
C

R
 || nonce

&
 signatures, and platform

 &
 A

IK
 credentials.

5- (AA): Platform authentication and
integrity established.

5- (A
A

): P
latform

 authentication and integrity
established.

6- (AA): Send session key encrypted with
 (Z)’s public AIK. VoIP session granted.

PCR1

:
PCR16

Session key 1

Session key 2
Session key 3

7- (Z): Decrypt session key, place it in STPM secure storage.

6- (A
A

): S
end session key encrypted w

ith
(C

)’s public A
IK

.

7- (C): Decrypt session key, place it in STPM secure storage.

8- Exchange secure voice data.

3- Make and
activate AIK,
extend and
 sign PCR

3- Make and
activate AIK,
extend and
 sign PCR.

PCR1

:
PCR16

Session key 1

Session key 2
Session key 3

 Secure Storage
 STPM

 Secure Storage
 STPM

Figure 4: VoIP communication security scheme
In order to identify the overhead imposed by the security scheme,

we executed VoIP sessions of varying lengths (one, two, five, and ten
minutes) between the PDA and the laptop. In Table 3, rows 5-20, we
report the PDA energy and time measurements results as follows: rows
5-12 report measurements for a VoIP session where traffic is protected
against eavesdropping attacks only (i.e., data traffic is encrypted before
transmission), and rows 13-20 report measurements for a session where
traffic is also protected against spoofing attacks (i.e., data traffic is en-
crypted and hashed before transmission). Figure 5 illustrates the varia-
tion of energy consumption and breakup with respect to the VoIP session
duration.

4.4 Secure Web Browsing
The Secure Sockets Layer (SSL) is a protocol that provides an authenti-
cated end-to-end communication between a client (e.g., a web browser)
and a server (e.g., a web server). It provides mechanisms for mutual au-
thentication of the peers and ensures the confidentiality and integrity of
data exchanged between them. SSL, in the context of web browsers, is
located between the HyperText Transfer Protocol (HTTP) and Trans-
mission Control Protocol (TCP) layers. SSL consists of multiple proto-
cols, notably: (1) the SSL handshake protocol, which involves a client’s
authentication of the server, optionally a server’s authentication of the
client, cipher suite negotiation, and session key exchange, and (2) the
Record protocol, which is used to exchange a series of handshake mes-
sages and is also responsible for bulk data transfer. It divides the data
into manageable blocks, applies the hashing and encryption algorithms
established during handshake, adds a header, and transmits the resulting
SSL record as a TCP packet.

A security flaw in this protocol is pointed out in [25] – whereas the
client can trust a server based on its certificate, it cannot know whether
this server is providing the intended service. A solution for tackling this
problem is outlined in [7]: (i) binding the SSL private key to the provided
application as well, and (ii) storing this bound form in shielded storage,
which can be provided by a TPM.

In this work, we use a slightly different procedure to authenticate not
only the identity of the server, but also the application that it executes.
In addition to sending the server certificate, SW-TPM provided at the
server end generates an AIK, obtains an AIK certificate (as described
in Section 4.3), and sends it to the client alongside the server certifi-
cate. The client checks the AIK certificate as well, and if the certificate

0% 20% 40% 60% 80% 100%

Energy (%)

1

2

3

4

5

6

7

8

S
es

si
on

 d
ur

at
io

n
(m

in
)

Energy breakup for VoIP sessions

S e r ie s 1

Series2

Series3
10
 5
 2
 1

10
 5
 2
 1

R
S

A
E

C
C

Data exchange

SW-TPM Commands
Other security
features

Figure 5: VoIP session energy breakup
is judged trustworthy, it requests a proof of application integrity, i.e., a
proof showing that the application that is about to be executed is un-
tampered. This proof consists of integrity measurements of application
code (such as security-critical HTML code snippets), signed by the pri-
vate part of the certified AIK. Once integrity measurements are verified,
application data can start to be sent through the SSL Record protocol.

The SW-TPM commands used are: TPM_MakeIdentity,
TPM_ActivateIdentity, TPM_PcrExtend, and TPM_Quote (server
side). Other overheads are caused by integrity measurements, and the
SW-TPM symmetric decryption of the AIK certificate (server side).

Figure 6 shows the secure web browsing scheme we propose, and
how the steps required fit in a traditional SSL protocol.

SSL version number and certificates request

Server certificate, AIK certificate

Server and AIK certificates checked, request of
application measurements signed by AIK

(Application code || nonce) measurements + signature

 Session key signed by SSL server public key

Web Client Web Server

SSL handshake finished

Application started

Make and
activate AIK.
Extend and
sign PCR

Application ended

Encrypted messages exchanged

OR OR

SSL handshake started

Application code checked

Negotiation of cryptographic suite

Figure 6: Trusted web browsing scheme
The SSL application running on our handheld device was adapted

from OpenSSL, cross-compiled, and patched in order to run on an ARM
platform. We consider two cases in which the PDA acts as a client or
a server. In each case, we perform server authentication, and server’s
application authentication in the handshake session using the RSA-
AES256-SHA cipher suite, and a 1024-Byte long session (L = 1024).

The energy and execution time measurements for the trusted exten-
sions to the web brower are reported in Table 3. Rows 21-22 report re-
sults for a trusted SSL session on a PDA acting as a server, and rows
23-24 report results for a trusted SSL session with the client running on
the PDA.

5 Conclusion
Trusted computing is a promising paradigm that has applicability to a
wide range of embedded systems. For embedded systems in which the
cost and size overheads of a separate TPM chip cannot be justified, a
sofware-based implementation of TPM functionality (SW-TPM) is an
interesting alternative. In this work, we analyzed the execution time
and energy overheads for SW-TPM through detailed characterization
and measurements on a handheld PDA. In addition to presenting data
for individual TPM commands, we also studied the effect of SW-TPM
in the context of typical applications. Our results demonstrate that the
overheads may be acceptable for some applications, e.g., applications
where the TPM functions are used only in the set-up phase, without af-
fecting the dominant data transfer phase. We proposed the use of ECC-
based SW-TPM in order to reduce the execution time and energy over-

Table 3: Energy and execution time for trusted applications
Cryptographic Untrusted application/ SW-TPM commands

algorithm Overall trust overhead overhead
Energy(J) Time(sec.) Energy(J) Time(sec.)

Trusted Boot
RSA 95.542/198.759 48.281/89.495 66.806 28.657
ECC 95.542/137.699 48.281/63.280 5.746 2.442

Secure Storage
RSA 0.057/75.251 0.023/29.732 75.059 29.661
ECC 0.057/12.026 0.023/4.932 11.823 4.859

VoIP: Voice data encrypted
RSA 159.243/97.353 60/40.752 88.778 37.376
ECC 159.243/9.446 60/4.213 8.034 3.579
RSA 318.081/98.228 120/41.240 88.778 37.376
ECC 318.081/10.324 120/4.602 8.034 3.579
RSA 804.246/100.867 300/42.356 88.778 37.376
ECC 804.246/12.961 300/6.524 8.034 3.579
RSA 1614.909/105.343 600/44.001 88.778 37.376
ECC 1614.909/17.366 600/7.712 8.034 3.579

VoIP: Voice data encrypted and hashed
RSA 159.243/98.893 60/40.971 88.778 37.376
ECC 159.243/9.795 60/4.522 8.034 3.579
RSA 318.081/100.121 120/41.508 88.778 37.376
ECC 318.081/11.034 120/4.900 8.034 3.579
RSA 804.246/103.612 300/43.121 88.778 37.376
ECC 804.246/14.708 300/7.237 8.034 3.579
RSA 1614.909/108.879 600/45.630 88.778 37.376
ECC 1614.909/20.861 600/9.191 8.034 3.579

SSL: Server running on PDA
RSA 0.530/92.455 0.213/38.707 86.271 36.124
ECC 0.530/7.652 0.213/3.387 7.250 3.186

SSL: Client running on PDA
RSA 0.707/2.449 0.284/1.175 n/a n/a
ECC 0.707/0.259 0.284/0.124 n/a n/a

heads without compromising security. We believe that this is a practi-
cal approach to realizing the benefits of trusted computing in resource-
constrained embedded systems.

References
[1] “CERT research 2005 annual report.” [Online]. Available:

http://www.cert.org/archive/pdf/cert_rsch_annual_rpt_2005.pdf
[2] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in embedded sys-

tems: Design challenges,” ACM Trans. on Embedded Computing Systems, vol. 3, pp.
461 – 491, Aug. 2004.

[3] TCG Glossary. TCG, 2004. [Online]. Available: https://www.trustedcomputinggroup
.org/groups/TCG_Glossary.pdf

[4] “IBM thinkpad.” [Online]. Available: http://www.pc.ibm.com/us/thinkpad
[5] “Lifebook S7000 notebook.” [Online]. Available: http://www.computers.us.fujitsu

.com
[6] “R. Kay, How to implement trusted computing.” [Online]. Available:

https://www.trustedcomputinggroup.org/news/Industry_Data
[7] S. W. Smith, Trusted Computing Platforms, Design and Applications. Springer, 2005.
[8] R. Sandhu and X. Zhang, “Peer-to-peer access control architecture using trusted com-

puting technology,” in Proc. ACM Symp. on Access Control Models and Technologies,
June 2005, pp. 147 – 158.

[9] E. Shi, A. Perrig, and L. V. Doorn, “BIND: A fine-grained attestation service for secure
distributed systems,” in Proc. IEEE Symp. Security and Privacy, May 2005, pp. 154–
168.

[10] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A virtual
machine-based platform for trusted computing,” in Proc. ACM Symp. Operating Sys-
tems Principles, Oct. 2003, pp. 193–206.

[11] “IBM research report.” [Online]. Available: https://www.trustedcomputinggroup.org
/news/articles/rc23363.pdf

[12] G. Xu, C. Borcea, and L. Iftode, “Satem: Trusted service code execution across trans-
actions,” in Proc. IEEE Int. Symp. Reliable Distributed Systems, Oct. 2006.

[13] Trusted Computing Group, “TCG Specification Architecture Overview,” Apr. 2004.
[14] “Trusted Mobile Platform.” [Online]. Available: http://www.trusted-mobile.org
[15] “Secure extensions to the ARM architecture.” [Online]. Available: http://www.arm.

com/trustzone
[16] “M. Strasser, TPM Emulator.” [Online]. Available: http://developer.berlios.

de/projects/tpm-emulator
[17] “Mersenne Twister Random Numbers Generator.” [Online]. Available:

http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/ewhat-is-mt.html
[18] “Sharp Zaurus SL-5600.” [Online]. Available: http://www.linuxjournal.com/

article/6792
[19] “OpenSSl Project.” [Online]. Available: www.openssl.org
[20] D. Hankerson, J. L. Hernandez, and A. Menezes, Software Implementation of Elliptic

Curve Cryptography Over Binary Fields. Lecture Notes in Computer Science, 2000.
[21] “Sun’s elliptic curve technology contribution to the OpenSSL.” [Online]. Available:

http://research.sun.com/projects/crypto/FrequenlyAskedQuestions.html
[22] “TrouSerS-an open-source TCG Software Stack implementation.” [Online]. Available:

http://sourceforge.net/projects/trousers
[23] “GRUB TCG Patch to support Trusted Boot.” [Online]. Available:

trousers.sourceforge.net/grub.html
[24] “Asterisk | the open source PBX.” [Online]. Available: http://www.asterisk.org
[25] M. Broekman, End-To-End Application Security Using Trusted Computing,

2005. [Online]. Available: http://www.cs.ru.nl/onderwijs/afstudereninfo/scripties
/2005/MichielBroekmanScriptie.pdf

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

