
Performance Aware Secure Code Partitioning ∗

S. H. K. Narayanan and M. Kandemir
The Pennsylvania State University

{snarayan,kandemir}@cse.psu.edu

R. Brooks
Clemson University

rrb@acm.org

Abstract
Many embedded applications exist where decisions are made us-

ing sensitive information. A critical issue in such applications is to
ensure that data is accessed only by authorized computing entities.
In many scenarios, these entities do not rely on each other, yet they
need to work on a secure application in parallel to complete ap-
plication execution under the specified deadline. Our focus in this
paper is on compiler-guided secure code partitioning among a set of
hosts. The scenario targeted involves a set of hosts that want to ex-
ecute a secure embedded application in parallel. The various hosts
have different levels of access to the data structures manipulated
in the application. Our approach partitions the application among
the hosts such that the load imbalance across hosts is minimized to
reduce execution time while ensuring that no security leak occurs.

1. Introduction
Many embedded as well as distributed applications exist where

decisions are made using sensitive information [6, 9, 18]. The ex-
ecution environment of such applications is among hosts that have
varying degrees of access to data such as the one outlined in [2].
In such an environment, the application is partitioned so as to take
into account the different inter-host trust levels and data sharing pat-
terns [18, 20]. Our focus, in this paper, is on performance aware
compiler-guided secure code partitioning among a set of hosts. The
scenario targeted involves a set of hosts that want to execute a secure
embedded application in parallel. The data structures manipulated
by the application can exhibit very different inter-host sharing pat-
terns. For example, while one data structure can be manipulated by
all hosts, another one can be accessed by only two hosts, and so on.
Another input to our approach is a host hierarchy that indicates the
relationships between different hosts, i.e., whether any data that can
be accessed by host hi can also be accessed by host hj , and so on.
Our compiler-guided approach partitions the application among the
hosts such that no access control violation occurs (if such a partition
is possible). At the same time, we want to finish the execution of the
application as quickly as possible. That is, we want to reduce the
execution time without compromising data sensitivity. We achieve
minimum execution time by balancing the workloads of the hosts
based on a given host hierarchy. Note that reducing execution time
brings two benefits. The first one and more obvious one is that the
overall work is completed in a shorter period of time which implies
better performance. The second benefit is that, since the program
execution takes less time, the time frame during which the program
is potentially vulnerable to security-related attacks is reduced.

The application of this work is in many fields including balanc-
ing the hosts in a multilevel security system (MLS). An MLS uses
qualifiers on the data (objects) in a system to classify them accord-
ing to their level of sensitivity and qualifiers on hosts (subjects) to
separate them according to their capability level [2, 15]. It allows
access to data with a certain sensitivity level to hosts with a corre-
sponding capability level and prevents all other accesses. MLS is
not a perfect solution to ensure the privacy of data [14] but has wide
practical usage [8].

A classic MLS lattice is shown in Figure 1(a) [2]. This lattice
shows that the most sensitive level is top-secret and the least sen-
sitive is unclassified. Further, there exists a partially ordered set of

∗This work is supported in part by NSF Career Award 0093082 and
by a grant from the GSRC.

Figure 1: Multilevel security. (a) Lattice of different security
levels (b) Categories of data (c) Host capability levels of (d) Data
sensitivity levels.

categories shown in Figure 1(b). The categories can differ depend-
ing on the nature of the objects being protected by the MLS. The
categories in this figure are several types of intelligence [13]. An
example of host subjects which are assigned different clearance lev-
els is shown in Figure 1(c). Data objects assigned various sensitivity
levels are shown in Figure 1(d). A host is allowed to access a par-
ticular data if the following two conditions are met [2, 15]:

1. the sensitivity level of the host ≥ the sensitivity level of the
data object

2. the categories of the host ⊆ the categories of the object

Figure 2(a) shows a data structure which is divided into 12 parts.
Each part corresponds to a particular category-sensitivity pair. We
see that less sensitive portions are larger. The shaded portions corre-
spond to the data objects given in Figure 1(d). The figure also shows
that host C can access all the portions accessible by host A and host
B.

Let us now consider what would happen in case a READ opera-
tion was required on all the data. In a scenario without load balanc-
ing, i.e. where sharing of data structures does not take place, host A
would read data C, host B would read data A and host C would read
data B. The finish times for this execution are shown in Figure 2(b).
It can be seen that host C, which could have performed more oper-
ations had sharing been allowed, remains idle and hence the overall
performance is not ideal. This motivates the possibility of balancing
the loads across the hosts to achieve better performance.

This paper treats the capabilities of the various hosts as ownership
rights of hosts over data. If two hosts have the capability to access
a particular data element, they are said to share that element. This
work takes the hierarchical relation between hosts into account to
produce the partitioning of computation between these hosts in such
a way so as to reduce the overall computation time without security
violations. While the inter-host relationships can be expressed as
a directed acyclic graph (DAG) [17]; in this paper we consider the
scenario in which the relationship between the hosts is described by
a tree. We expect that the proposed scheme can be modified to cater
to DAGs.

The rest of this paper is structured as follows. The next section
discusses our compiler-driven approach to secure code partition-
ing in detail. Section 3 presents an experimental evaluation using
two representative application scenarios. Section 4 discusses related
work, and Section 5 summarizes the paper.

1
978-3-9810801-2-4/DATE07 © 2007 EDAA

(a) (b)

Figure 2: (a) Data accessible to the different hosts. (b) Normal-
ized execution time for the hosts without load balancing.

ThreadThreadThreadThread ThreadThreadThread

7h

Thread

2
h

Hierarchy
Host

Decompositions
Data

Application
Input

Compiler

h 6h5h4h3h
0

h 1

h5 h6

h7

h1

h4

h
2

h
0

h3

(i) (iii)

(a) (b)

h h

h h h

h h

0 1

24

0

1 2

(ii)

Figure 3: (i) Secure code partitioning. (ii) Two different data
decompositions. (iii) An example host hierarchy tree (HHT).
2. Code Partitioning

2.1 Overview
The approach proposed in this work takes two inputs in addition

to the program to be partitioned: data decomposition information
for each data structure and a host hierarchy (see Figure 3(i)). The
output is a partitioned code across the hosts. The data decompo-
sition information indicates which parts of each data structure can
be accessed by which hosts. Note that, each data structure in the
application can have a different type of decomposition and can be
accessed by (potentially) different sets of hosts. For example, Fig-
ure 3(ii) illustrates how two different data structures (in this case,
two-dimensional arrays) are decomposed between hosts. It must be
emphasized that what we mean by data decomposition here is not
physical partitioning of data across hosts; it just indicates the por-
tions of the data structure that can be manipulated by different hosts.
Another important point is that, when a data region is marked with
a host name (say hi), it means that this region can be accessed by
hi, or any other host hj that has the privilege of accessing any data
that can be accessed by hi.

The host hierarchy, indicates how data can be shared among the
hosts. Specifically, hi �hj means that any data that can be accessed
by host hi can also be accessed host hj . In this case, we also say
that host hj dominates host hi. Our framework uses this information
to balance the workloads of the hosts to reduce program execution
time. A host hierarchy can also be expressed using a host hierarchy
tree (HHT). In this tree, each node represents a host, and a directed
edge from hi to hj indicates that hi � hj . Figure 3(iii) shows an
example HHT that involves 8 hosts. Note that, in this HHT, h0

can access any data that can be accessed by other hosts; h1 can
access any data that can be accessed by h3; and so on. Finally, it
is important to note that, in a given decomposition, an array region
can be marked by multiple host names. That is, it is possible that an
array region can be marked with both hi and hj , where neither hi �
hj nor hj � hi holds true. This allows the programmer to indicate
those sharings that are not implicit in the HHT. For example, the
programmer can indicate that h3 and h4 can access a given array
region, while there is no dominance relationship between these two
hosts in the HHT shown in Figure 3(iii).

Our goal in this work is to partition the input code across the
hosts in a secure manner. Our focus is on embedded codes that are
structured as a series of loops accessing array data. Consequently,

Table 1: Notations used in the paper.
Notation Brief Explanation

hi host i
�I a loop iteration point
�d a data (array) index point

Ik loop nest k and the set of iteration points in it
Aj data structure (array) j

S(Ik) set of data structures that are accessed by loop nest Ik

R(Aj , Ik) set of references to data structure Aj in loop nest Ik

Navg average number of loop iterations per processor in
the ideal case

our unit of workload distribution is a loop iteration, and code parti-
tioning in our context means distributing loop iterations across the
available hosts based on data space decomposition and the host hi-
erarchy. That is, each host can only execute the loop iteration points
that it is allowed to, and at the same time, we want minimize over-
all execution cycles. Note that, for a given application code, per-
formance aware secure code partitioning may or may not be possi-
ble depending on data decomposition and the host hierarchy under
question. However, when it is possible, our approach will return a
solution. As far as minimizing execution cycles is concerned, we
evaluate two metrics in this study:

1. The Execution time measured in terms of loop iterations of
the the host that finishes its portion of iterations last.

2. The Standard deviation (STD) between the execution times of
the hosts. STD is used to indicate how evenly the workload
has been spread across the different hosts.

2.2 Representation of Data and Iteration Sets
To identify loop iterations that access data in a particular array

region, we use Presburger formulas [10]. Presburger formulas are
those formulas that can be constructed by combining affine con-
straints on integer variables with the logical operations ∨ (or), ∧
(and), and ¬ (not), and the quantifiers ∃ (existential) and ∀ (uni-
versal). The affine constraints can be either equality or inequality
constraints.

Table 1 gives some of the notation used in this paper; the rest
of the notation is more involved and explained in the text. Let
D(hi, Aj) represent the data from data structure (array) Aj that can
be accessed by host hi. We use I(hi, Ik, Aj) to denote the set of
loop iterations from loop nest Ik that can be executed by host hi

when considering only the data structure Aj (and the HHT). In for-
mal terms:

I(hi, Ik, Aj) = {�I : ∃�r ∈ R(Aj , Ik) ∃�d ∈ Aj

such that [�r(�I) = �d] ∧ [�d ∈ D(hi, Aj)] ∧ [�I ∈ Ik]}.

Here, �r corresponds to a reference (in Ik) and �r(�I) gives the array
index vector accessed by iteration vector �I. We can write such a set
for each data structure that is referenced in loop nest Ik, and then
obtain:

I(hi, Ik) =
\

∀j:Aj∈S(Ik)

I(hi, Ik, Aj),

that is, the set of iterations from loop nest Ik that can be executed
by host hi considering all the data structures that appear in loop nest
Ik. Note that, the set I(hi, Ik) just indicates the potential iterations;
host hi may or may not execute all loop iterations in I(hi, Ik). In
fact, assuming that I ′(hi, Ik) is the set of loop iterations that are
assigned to host hi (after the workload balancing), we may have
I ′(hi, Ik) ⊆ I(hi, Ik) or I(hi, Ik) ⊆ I ′(hi, Ik). Also, an iteration
point �I can belong to multiple I(hi, Ik) sets as, in determining the
I(hi, Ik) sets, we consider the HHT. Specifically, if �I can be ac-
cessed by hi and if hi � hj , then �I will be in both I(hi, Ik) and
I(hj , Ik).

2.3 Initial Iteration Assignment and Determining
Workloads

2

One can employ two different strategies for the initial iteration
assignment across hosts. In the first strategy, we start with the host
that dominates all the other hosts in the system (e.g., h0 in the HHT
in Figure 3(iii)), and assign all the iterations to it (since we assume
that it can execute all iteration points). Then, we iteratively dis-
tribute some of the iteration points across the other hosts in order to
reach a workload distribution as balanced as possible. The second
strategy adopts an opposite approach. We start by partitioning the
iterations across the least powerful hosts that can execute them (i.e.,
across the leaves of the HHT depending on the decomposition). For
example, if an iteration point can be executed by hosts hi, hj , or hk

and we have hi � hj � hk, we give that iteration point to host hi.
After this initial assignment, we iteratively pass some of the loop
iterations from these hosts to the others to balance the inter-host
workload. The first strategy is called the most powerful host policy
(MP), while the second one is referred to as the least powerful host
policy (LP). In this paper, we focus only on LP, and postpone the
treatment of MP to a further study.

For an iteration point �I ∈ Ik, the least powerful host that can
execute �I, denoted hmin(�I, Ik) is determined by the formula,

hmin(�I, Ik) = hi iff �I ∈ I(hi, Ik)

∧ [¬∃hj such that hj � hi ∧ �I ∈ I(hj , Ik)].

Based on this, we define Iinit(hi, Ik), the set of iterations from
loop nest Ik initially assigned to host hi, as follows:

Iinit(hi, Ik) = {�I : hi = hmin(�I, Ik)}.

In the LP policy, the Iinit(hi, Ik) sets collectively define the ini-
tial iteration assignment, over which the rest of the process (our al-
gorithm) tries to improve, in terms of balancing the workload. How-
ever, before starting to re-distribute iteration points in Ik, we first
need to check how severe the workload imbalance is. In order to
do this, we need to be able count the number of elements in each
Iinit(hi, Ik) set. Our approach to this problem is based on the solu-
tion proposed by Pugh [16]. In the rest of the paper, |Iinit(hi, Ik)|
is used to refer to the number of elements in set Iinit(hi, Ik).

It must be observed, at this point, that for a leaf node hi in the
HHT, Iinit(hi, Ik) = I(hi, Ik), that is, their initial iteration set is
the same as the set of iterations that they can potentially execute. On
the other hand, for a non-leaf node hj , we may have Iinit(hj , Ik)
⊆ I(hj , Ik).

2.4 Workload Balancing Algorithm

2.4.1 High-Level View
This subsection provides a high-level view of the load balancing

algorithm, which is explained in more detail in the following subsec-
tions. The work balancing algorithm starts with the |Iinit(hi, Ik)|
counts (as determined using the procedure explained in Section 2.3)
and operates on the HHT under consideration. Its goal is to re-
distribute the loop iterations across the hosts such that each host
takes more or less the same number of iteration points.

Our algorithm operates in two steps: bottom-up and top-down. In
the bottom-up step, the traversal of the HHT in question proceeds
from the leaves to the root (in post-order fashion). In this traversal,
each host passes some portion of its workload to its parent (in the
HHT), if its initial load is larger than the targeted average (which is
Navg). At the end of this bottom-up step, the root holds the itera-
tions passed to it from the rest of the tree. The top-down step, on the
other hand, consists of a sequence of top-down traversals (in pre-
order fashion). At each traversal, the host re-distributes some of the
iterations passed to it across the rest of the hosts to reach a balanced
load assignment. Algorithm 1 gives the code for our workload bal-
ancing scheme. The rest of this section discusses the details of this
code and the two functions invoked within it. In the explanation of
the algorithm, we use the terms “host” and “node” interchangeably.

2.4.2 ReassignHHT()
The code given in Algorithm 1 calculates Navg , the ideal num-

Algorithm 1 ReassignHHT ()

1: Navg :=Totalnumberofiterations ÷ Totalnumberofhosts

2: BottomToTop(hroot, Navg)
3: while carryout(hroot, Ik) > 0 do
4: Navg := Navg + Navg * 0.1
5: TopToBottom(hroot, Navg , 0)
6: end while

ber of iterations each host hi should perform, as the quotient of the
total number of iterations and the total number of hosts. We de-
fine carryout(hi, Ik) as the number of iterations passed by node
hi to node hd that dominates hi as hi is unable to execute all of
them. The BottomToTop procedure is called with the most power-
ful host (denoted hroot) and Navg as arguments. This call, when it
returns, causes the initial iterations to be adjusted, such that each
node performs at most Navg iterations, which potentially causes
carryout(hroot, Ik) to be a value greater than 0, which is an indica-
tion that not all the iterations passed to the root can be executed by
it (due to load balance concerns). In an attempt to balance the work-
load, Navg is increased by 10% of its present value (which is a pa-
rameter that can be set to different values if desired), and the proce-
dure TopToBottom is invoked with Navg and the root as arguments.
The parameter by which Navg is increased can change the results
obtained. If the value of Navg is made too high, then the algorithm
will terminate quickly but good load balance might not be achieved,
where the level of goodness is determined by the criteria mentioned
in Section 2. If Navg is too small, then the algorithm may not fin-
ish quickly but finer load balancing can be achieved. The procedure
TopToBottom tries to reassign the iterations of hosts in the HHT
according to the new value of Navg such that carryout(hroot, Ik)
becomes zero. Once the while loop condition in statement 3 in Al-
gorithm 1 fails, the HHT is considered to be load balanced, and both
TopToBottom and ReassignHHT return.

2.4.3 BottomToTop()
Algorithm 2 gives the recursive BottomToTop procedure which

works with the initial assignment of iterations, |Iinit(hi, Ik)|. The
goal of the procedure is to assign to each host the maximum num-
ber of loop iterations that it can execute without exceeding Navg .
The iterations in excess of Navg are passed on to the host hd that
dominates host hi. In a recursive post-order fashion, the proce-
dure proceeds to the deepest node, which will initially be a leaf.
carryin(hi, Ik) is defined as the sum of the iterations passed to
hi by all the hosts dominated by hi. Intuitively, carryin(hleaf , Ik)
should be zero. After calculating carryin(hi, Ik), if the initial num-
ber of iterations assigned to host hi is greater than Navg , this means
that hi cannot accept iterations from any other node. Consequently,
hi is assigned Navg iterations, and the carryout(hi, Ik) is initial-
ized to the sum of the remaining iterations and carryin(hi, Ik), i.e.,
these iterations are passed to the host dominating hi, and the proce-
dure returns.

On the other hand, if hi can absorb the loop iterations passed to
it from the nodes it dominates, then |I ′(hi, Ik)| is given the value
of |Iinit(hi, Ik)|. Note that in the context of this paper, an assign-
ment to |I ′(hi, Ik)|, means the iterations are being added to or re-
moved from the set I ′(hi, Ik). If hi is a leaf, carryout(hi, Ik) is
set to zero as Navg > |Iinit(hi, Ik)|. If hi is not a leaf, then it
might have to potentially absorb iterations from nodes that it dom-
inates. The variable Temp in Algorithm 2 is assigned the differ-
ence between Navg and |Iinit(hi, Ik)|. This value of Temp repre-
sents the number of iterations that hi can absorb from the nodes it
dominates. Next, all the children are examined in turn. For a child
node, hchild, of hi, if carryout(hchild) > 0, then loop iterations
of hchild need to be absorbed. Next, it is checked to see whether
Temp ≥ carryout(hchild, Ik), which means that hi can completely
absorb the iterations passed to it by hchild. Subsequently, Temp is
reduced by carryout(hchild, Ik), and following this, |I ′(hi, Ik)| is
increased by carryout(hchild, Ik). Finally, carryout(hchild, Ik)

3

Algorithm 2 BottomToTop(hi, Navg)

1: for all hi in HHT visited in post-order fashion do
2: calculate carryin(hi, Ik)
3: if |Iinit(hi, Ik)| > Navg then
4: |I’(hi, Ik)| := Navg

5: carryout(hi, Ik) := |Iinit(hi, Ik)|Navg + carryin(hi, Ik)

6: else
7: |I’(hi, Ik)|:= |Iinit(hi, Ik)|
8: if hi is a leaf then
9: carryout(hi, Ik):= 0
10: else
11: Temp:=Navg - |I’(hi, Ik)|
12: for all hchild such that hchild � hi do
13: if carryout(hchild, Ik) > 0 then
14: if Temp ≥ carryout(hchild, Ik) then
15: Temp := Temp-carryout(hchild, Ik)
16: |I’(hi, Ik)| := |I’(hi, Ik)| + carryout(hchild, Ik)
17: carryout(hchild, Ik) := 0
18: else
19: |I’(hi, Ik)| := |I’(hi, Ik)| + Temp
20: carryout(hchild, Ik) := carryout(hj, Ik) - Temp
21: Temp := 0
22: end if
23: end if
24: end for
25: calculate carryin(hi, Ik)
26: calculate carryout(hi, Ik)
27: end if
28: end if
29: end for

is set to zero. If, however, Temp < carryout(hchild, Ik), then
carryout(hchild, Ik) is reduced by Temp, |I ′(hi, Ik)| is increased
by Temp, and subsequently, Temp is set to zero. carryin(hi, Ik) is
re-calculated to reflect the changes in the ”carryout” value of hosts
that hi dominates, following which the value of carryout(hi, Ik) is
readjusted. The procedure then returns.

2.4.4 TopToBottom()
Algorithm 3 gives pseudo-code for TopToBottom. The procedure

receives as input, from ReassignHHT, the new value of Navg , the
HHT via hroot, and carry reduce which is the number of itera-
tions host hd, that dominates hi, can absorb from carryout(hi, Ik).
Note that the procedure ReassignHHT uses zero as the value of
carry reduce while calling TopToBottom as the root node, hroot,
as there are no further nodes that dominate hroot. The HHT is tra-
versed in pre-order fashion. For the current node being visited (hi),
the value of carryout(hi, Ik) is checked to see whether it is zero.
If it is, then the sub-HHT rooted at hi is considered to have the ideal
number of iterations assigned to all its nodes, i.e., it is not possible
to further balance load distribution for the nodes in the sub-HHT
rooted at hi. If, however, carryout(hi, Ik) is greater than zero, then
the sub-HHT rooted at host hi is considered to have iteration assign-
ments that are not ideal. As a result, tot minus act is calculated to
be the difference between |Iinit(hi, Ik)| and |I ′(hi, Ik)|. This value
is used later to determine whether hi can absorb loop iterations from
the hosts that it dominates. If carryout(hi, Ik) < carry reduce,
this indicates that host hd that dominates hi can completely absorb
carryout(hi, Ik), in which case, carryout(hi, Ik) is set to 0 so that
this host is considered balanced in future passes of the procedure.
This is different from the other possible case discussed below.

If carryout(hi, ik) ≥ carry reduce, this means that host hd

cannot completely absorb carryout(hi, Ik). In this case, the value
of carry reduce is set to zero to indicate that it is exhausted. It
is important to note that carryout(hi, Ik) remains unaffected since
these iterations are being executed by hd and not by hi. If the value
of carryout(hi, Ik) is reduced, this means that hi has been assigned
more iterations, not that the extra iterations are performed by hd.
Contrast this with the case when carryout(hi, Ik) < carry reduce,
where we need to indicate somehow to hd that carryout(hi, Ik) has
been accounted for and that, hd, in future passes of the procedure,
does not need to take into account host hi while absorbing iterations

Algorithm 3 TopToBottom(hi, Navg, carry reduce)

1: for all hosts in the HHT in pre-order fashion do
2: if carryout(hi, Ik)=0 then
3: Return
4: end if
5: tot minus act := |Iinit(hi, Ik)|-|I’(hi, Ik)|
6: if carryout (hi, Ik) - carry reduce ≤ 0 then
7: carryout(hi, Ik) := 0
8: return
9: else
10: carry reduce := 0
11: if Navg -|I’(hi, Ik)| > carryout(hi, Ik) then
12: |I’(hi, Ik)| := |I’(hi, Ik)|+carryout(hi, Ik)
13: carryout(hi, Ik) := 0
14: return
15: else
16: carryout(hi, Ik) := Navg -|I’(hi, Ik)|
17: adjust reduced carryout recursively to hj s.t. hi � hj

18: tot red:= Navg -|I’(hi, Ik)|
19: if ((tot minus act > 0) && (|Iinit(hi, Ik)| > Navg)) then
20: tot red := tot red-tot minus act
21: end if
22: if tot red < 0 then
23: tot red := 0
24: end if
25: call TopToBottom recursively for all hj s.t. hj � hi and absorb tot red

number of iterations proportionally from them
26: end if
27: end if
28: end for

from the hosts it dominates.
If the difference between Navg and |I ′(hi, Ik)| is greater than the

value carryout(hi, Ik), this indicates that the increased number of
iterations available to host hi is sufficient to let hi execute all the
iterations that it is expected to execute, and thus, carryout(hi, Ik)
should be reduced to zero. This is done by increasing |I ′(hi, Ik)|
by carryout(hi, Ik) and reducing carryout(hi, Ik) to 0. This re-
duction is then recursively propagated to hd since carryout(hd, Ik)
could be affected by the reduction in carryout(hi, Ik). carryout
(hd, Ik) is set to the difference between carryout(hd, Ik) and the
reduction in the value of carryout(hi, Ik), if it is greater than zero,
or to zero otherwise. Following this, hd propagates the reduction, to
the host dominating it, until hroot is reached. If, however, the differ-
ence between Navg and |I ′(hi, Ik)| is not greater than carry reduce,
it is an indication that the increased iterations reduce the value of
carryout(hi, Ik) partially. Consequently, carryout(hi, Ik) is re-
calculated as the difference between |I ′(hi, Ik)| and Navg . As in
the earlier case, this reduction is propagated recursively to host hd

that dominates hi. The value of tot red is calculated as Navg -
|I ′(hi, Ik)|. If tot minus act < 0 and |Iinit(hI , Ik)| > Navg ,
then tot red is reduced by the value tot minus act. If tot red <
0, then hi cannot absorb iterations form its children, and therefore,
tot red is set to 0. Finally, TopToBottom is called recursively for
all the nodes dominated by hi with the carry reduce argument be-
ing a proportional portion of tot red that depends on the values of
carryin(hi, Ik) and carryout(hj , Ik) of all hj that are immediate
children of hi in the HHT.

2.5 Example
In this subsection, we explain the working of our load balanc-

ing algorithm through the example code, based on the Gauss Seidel
method [3], shown below written in a pseudo language. The HHT
considered for this example is shown in Figure 4(a). The data space
decompositions for arrays A and B given in Figure 4(b), and Fig-
ure 4(c) shows the initial workloads for the hosts. Figure 4(d) shows
the snapshot of the HHT after the BottomToTop procedure oper-
ates. As the tree is unbalanced, procedure TopToBottom is called.
Figure 4(e) shows the snapshot of the HHT after the first pass of
TopToBottom. As the first pass of TopToBottom does not enough to
reduce the complete load imbalance in this example, TopToBottom
is run repeatedly until the HHT is balanced. The results of further

4

h

h

h

h
h

h

h
4 h

1

2 0

5

3

6

7

h

h

h

h
h

h

h
4 h

1

2 0

5

3

6

7

40 40 40
hhh4h

h h h

h
30

80 80

70

20

0

1 2 3

5 6 74

h

h7h6h5

h1

h0

2

h

h3

Array BArray A

(d) HHT after the
 BottomToTop

(b) Data Space (c) Initial Iteration
 (WorkLoad)
 Assignment pass

 Decomposition
(a)HHT

40 40 40
hhh4h

h h h

h

20

0

1 2 3

5 6 7

50

50

50

50

10
50

0

0 20 0 0

60

(e) HHT after the
 first pass of

TopToBottom

(f) HHT after the (g) HHT after the
 second pass of

TopToBottom TopToBottom
 third pass of

(h) HHT after the
 fourth pass of

TopToBottom

40 40 40
hhh4h

h h h

h0

1 2 3

5 6 7

68

66 66

66

20

0 0 0

00
18

 4
40 40 40

hhh4h

h h h

h

20

0

1 2 3

5 6 7

66

66

66

60

0

000

18

 4

2

0

40 40 40
hhh4h

h h h

h

20

0

1 2 3

5 6 7

60

60 60

60

 0
30

0 10 0 0

0

40 40
hhh4h

h h h

h0

1 2 3

5 6 7

55

55 20

55 40

0

55

40

 0 0150

 5 0

2040 0

Figure 4: (a) An example HHT. (b) Example data decompositions. (c) Initial workload assignment. (d) Situation after BottomToTop.
(e-h) Situation after different passes of TopToBottom. The numbers within the nodes denote the current loads (in terms of loop
iterations) and the numbers along the arrows indicate carryouts.

passes of the procedure are shown in Figures 4(f), (g), and (h).

for(i = 2 to N − 1)
for(j = 2 to N − 1)
B[i, j] := (A[i − 1, j]+ A[i + 1, j] + A[i, j − 1]+ A[i, j + 1]) * 1/α ;

endfor
endfor

2.6 Locality Concerns
While balancing the workload across the hosts is important, this

itself does not guarantee fast execution. This is because even if the
load is perfectly balanced (in terms of loop iterations): different it-
erations can have different execution times (cycles). This can occur
due to at least two reasons: the conditional control flow within the
loop body and cache memory behavior. The first of these means that
if there is an IF statement within the loop body, different loop itera-
tions can take different branches of this statement, and this can lead
to different loop iterations taking different amounts of time to fin-
ish the loop body as different branches can take different execution
times. Branch prediction could be used to make control flow deci-
sions based on which the computation times of different iterations
could be determined. We currently do not address this problem as
our experience with different embedded applications show that this
case is very uncommon. The second reason, however, is more likely
to occur, and originates from the possibility that different loop iter-
ations access different data, and depending on the current locations
of these data (e.g., cache versus main memory), data access time
(hence, loop body execution time) can be different. Therefore, in
our context, from the perspective of a particular host, it is most ben-
eficial if this host accesses the data with reuse, i.e., the loop itera-
tions that are assigned to it (after our workload balancing algorithm)
use the same set of data as much as possible. One place in our algo-
rithm that this can be taken care of is when we a host passes some
iteration points to another host to balance the workload. By being
selective about which iterations to pass, we can achieve better exe-
cution times.

Let E(hi, Ik) denote the current set of iterations from loop nest
Ik that are assigned to host hj . The set of data items from array Aj

that are accessed by the iterations in E(hi, Ik) can be expressed as:
G(hi, Ik, Aj) = {�d : ∃�r ∈ R(Aj , Ik)

such that [�r(�I) = �d] ∧ [�I ∈ E(hi, Ik)]}.

As before, �r corresponds to a reference and �r(�I) gives the array
index vector accessed by iteration vector �I. Let us now assume
that host hl wants to pass a subset of its current set of iterations,
E(hl, Ik), to host hi. Assume further that the size of this subset
needs to be R, where R ≤ |E(hl, Ik)|. The idea is to select the most
beneficial R iterations such that data locality is improved. Let us use
K(hl, hi, Ik) denote the subset of iterations that will be passed from
hl to hi. The data elements from array Aj that will be accessed by
the iteration points in K(hl, hi, Ik) can be expressed as:

H(hl, hi, Ik, Aj) = {�d : ∃�r ∈ R(Aj , Ik)

such that [�r(�I) = �d] ∧ [�I ∈ K(hl, hi, Ik)]}.

For temporal data locality, sets H(hl, hi, Ik, Aj) and G(hi, Ik, Aj)
should have common elements, and for spatial data locality they

(a) (b)

(c) (d)

Figure 6: STD and EXE results.
should access the elements that reside on the same cache line. To
be general, let 	[hl, H(hl, hi, Ik, Aj), G(hi, Ik, Aj)] give the es-
timated number of misses (due to accesses to array Aj) that would
be experienced by host hl when the iteration points in question
are passed from host hl to host hi. Similarly, let us use the term
	[hi, H(hl, hi, Ik, Aj), G(hi, Ik, Aj)] to denote the number of es-
timated misses that would be experienced by host hi as a result of
this iteration transfer. The goal must be to select the K(hl, hi, Ik)
set in such a way that 	[hi, H(hl, hi, Ik, Aj), G(hi, Ik, Aj)] +
	[hl, H(hl, hi, Ik, Aj), G(hi, Ik, Aj)] is minimized. To achieve
this, our approach works as follows. We first identify the iterations
in E(hl, Ik) that do not exhibit any temporal reuse in hl but would
lead to temporal reuse if they are executed by hi. Let R′ denote the
number of such iteration points. If R′ ≥ R, then our job is easy
as we can pass R of these R′ iterations from hl to hi. Otherwise,
we identify the iterations in E(hi, Ik) that do not exhibit any spatial
reuse in hl but would lead to spatial reuse if they are executed by
hi. Assuming that there are R′′ such iterations, if R′ + R′′ ≥ R,
we are done. If not, then we select R − (R′ + R′′) more iterations
from E(hl, Ik) – even if they would not lead any improved locality
in hi – and move them from hl to hi.

Note that our approach minimizes the execution time of a given
application under the constraint that no security leak is allowed which
in our context means that access control is violated. If the result-
ing execution time exceed the specified execution time bound, this
means that our approach could not find a solution under this spec-
ified bound. One could also study how much security leak needs
to be allowed to satisfy the performance bounds in such situations.
However, since we assume that our application domain cannot tol-
erate any security leaks, we do not discuss this issue further here.

3. Experimental Evaluation
In this section, we present an experimental evaluation of our work-

load balancing algorithm. We focus on two example scenarios. The
first scenario deals with embedded secure image processing at real
time, where a number of hosts collectively perform a smoothening
operation on an image, but the different parts of the image can be
manipulated by different hosts. The second scenario focuses on an
encryption application. Each host interprets a portion of a given data
file using a different key (that is known only to that host). For both

5

h0

h1

h2

h4

h3

h0h0 h0

h1h1h1

h2

h2 h2h4 h4h4h3 h3

h3

h0

h1

h2

h4

h3(i) (ii) (iii) (iv) (v)
h
h

h
hh h

h
h

h

h
h h

h

h

h
h

h
h h h h h

h
h0 04 0

1

3
2

4

1

2

3

0 2

1
4

3

1
2 3 4 1 2

3

4

(i) (ii) (iii) (iv)

h h

h h

h

1 2

340

(d)HHTs(c) DefaultData Space Decomposition (b)Data SpaceDecompositions(a) Default HHT

Figure 5: Setup for the first experimental scenario: (a) and (d) HHTs. (b) and (c) data decompositions.

the scenarios, we conduct two types of experiments. First, we fix the
HHT and change the data decomposition, and then, we fix the data
decomposition and the number of hosts, and change the structure of
the HHT. We use two metrics to quantify the quality of the work-
load partitioning determined by our approach: (a) standard devia-
tion between the workloads of the hosts and (b) the largest number
of iterations assigned to a host. In the rest of this section, these two
metrics are denoted as STD and EXE, respectively. Note that, as the
load balancing step is performed once at compile time, it does add
to the runtime of the application.

Figure 5(a) shows the default HHT used for the secure image sce-
nario. In this scenario, each host processes a portion of an image.
The operation performed is smoothening, i.e., each pixel (repre-
sented by an array element) is updated using the values of its four
neighbors. The graphs in Figures 6(a) and (b) give, respectively, the
STD and EXE metrics for this scenario under the data decomposi-
tions shown in Figure 5(b). For each data decomposition, we have
two bars: one for the original (initial) workload and the other for the
optimized workload (using our approach). Our approach improves
both the metrics for all the data decompositions experimented. To
be precise, our approach improves STD and EXE by about 33% and
19%, respectively, on the average. In the next set of experiments, we
use the data decomposition in Figure 5(c) and use different HHTs
shown in Figure 5(d). The experimental results are given in Fig-
ures 6(c) and (d) for STD and EXE, respectively. Since the EXE
and STD values of the initial distribution (iteration assignment) do
not depend on the structure of the HHT, each optimized result is
given as a fraction of the original value. As in the previous set of
experiments, we observe that our algorithm improves workload dis-
tribution. Specifically, it improves STD and EXE by approximately
20% and 5%, respectively, on the average.

The data encryption scenario consists of two data structures. The
first one is a two-dimensional array that holds the data to be pro-
tected. The second one is a key structure, and each host can access
its own key. The first data structure can be accessed in a fashion dic-
tated by the data decomposition. Our approach improves STD and
EXE by around 33% and 16%, respectively, when averaged over
different data decompositions tried. Further, when averaged over
all HHTs used, our approach improves STD and EXE by 30% and
29%, respectively.

4. Related Work
Secure code partitioning has been studied in the context of infor-

mation flow theory. Static methods as well as dynamic techniques
exist to study the flow of secure information through a system. The
initial work in using program analysis to prove that an information
flow is secure was [4]. Jif [7] and CQUAL [1] are examples of
current tools that perform static analysis of a program through anal-
ysis of the security types present in the program. SELinux [12] is
an operating system that provides support for security aware appli-
cations. Other distributed operating systems that have been pro-
posed such as [5] which execute code across multiple hosts keep-
ing performance in mind. Load balancing across different hosts in
a distributed environments is a well researched topic [3]. In con-
trast to the distributed environment, our environment does not con-
sider communication costs. [19] proposes a framework, using which
software modules can be divided into open and hidden components,
which are then executed on insecure and secure machines, respec-
tively. Prior compiler work on secure computation includes [11].
Maybe the most relevant prior work to ours is [18, 20], where the
authors present secure program partitioning to protect confidential-
ity of data. They are primarily interested in enforcing confidentiality

policies at the language level. In contrast, our goal is to automate
secure code partitioning within an optimizing compiler. In addition,
we want to minimize execution time of the parallelized application
without compromising sensitive data.

5. Concluding Remarks
Widespread use of parallel processing in the embedded comput-

ing world and increase in data/code sharing bring an important prob-
lem: ensuring proper communication between hosts that operate on
secure data. While making sure that each data structure is manipu-
lated only by authorized hosts is a must, one also wants to reduce
parallel execution time as much as possible. This paper presents a
workload distribution algorithm that partitions an embedded code
between different hosts such that data security is not compromised
and execution time is reduced as much as possible. Our approach
takes (as input) the application code to be partitioned, a host hier-
archy, and data decomposition across the hosts, and generates (as
output) the code partitions, each of which is assigned to a host. We
tested our approach using two example scenarios, namely, secure
image processing and encryption, and found that it improves work-
load balance significantly across different data decompositions and
host hierarchy trees.

6. References
[1] http://www.cs.umd.edu/ jfoster/cqual/
[2] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical

Foundations. MITRE Technical Report 2457, Volume 1, 1973.
[3] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufmann Publishers, 1999.
[4] D. E. Denning and P. J. Denning. Certification of programs for secure

information flow. Communications of the ACM, 20(7):504–513, July 1977.
[5] F. Douglis, J. K. Ousterhoutm, M. F. Kaashoek, and A. S. Tannenbaum. A

comparison of two distributed systems: Amoeba and Sprite. ACM Transactions
on Computer Systems, 4(4), Fall 1991.

[6] I. Foster, N. T. Karonis, C. Kesselman and S. Tuecke. Managing Security in
High Performance Distributed Computations. In Cluster Computing, Vol 1,
issue 1, pages 95-107, 1998.

[7] http://www.cs.cornell.edu/jif/
[8] P. A. Karger. Multi-Level Security Requirements for Hypervisors. In

Proceedings of ACSAC, 2005.
[9] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravi Security as a New

Dimension in Embedded System Design. In Proceedings of DAC, 2004.
[10] G. Kreisel and J. L. Krivine. Elements of mathematical logic. North-Holland

Pub. Co., 1967.
[11] V. B. Livshits and M. S. Lam. Tracking pointers with path and context

sensitivity for bug detection in C programs. In Proceedings of ESEC/FSE, 2003.
[12] P. Loscocco and S. Smalley. Integrating Flexible Support for Security Policies

into the Linux Operating System. In the Proceedings USENIX ’01., 2001.
[13] S. Maret. On Their Own Terms: A Lexicon with an Emphasis on

Information-Related Terms Produced by the U.S. Federal Government. 2005.
[14] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label

model. ACM Transactions on Software Engineering and Methodology,
9(4):410–442, 2000.

[15] P. G. Neumann, R. J. Feiertag, K. N. Levitt, and L. Robinson. Software
development and proofs of multi-level security. in the Proceedings of ICSE,
1976.

[16] W. Pugh. Counting solutions to Presburger formulas: how and why. In
Proceedings of PLDI, pp. 121–134, 1994.

[17] K. Thulasiraman and M.N.S. Swamy. Graphs : theory and algorithms, Wiley,
c1992.

[18] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Untrusted hosts and
confidentiality: secure program partitioning. In Proceedings of SOSP, 2001.

[19] X. Zhang and R. Gupta. Hiding program slices for software security. In
proceedings of CGO, 2003.

[20] L. Zheng, S. Chong, S. Zdancewic, and A. C. Myers. Building secure
distributed systems using replication and partitioning. In Proceedings of the
IEEE Symposium on Security and Privacy., 2003.

6

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

