
An Area Optimized Reconfigurable Encryptor for AES-Rijndael

Monjur Alam Sonai Ray Debdeep Mukhopadhayay† Santosh Ghosh
Dipanwita RoyChowdhury Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
† Indian Institute of Technology, Madras

{monjur, sonai, santosh, drc, isg}@cse.iitkgp.ernet.in
† {debdeep}@cse.iitm.ernet.in

Abstract

This paper presents a reconfigurable architecture of the
Advanced Encryption Standard (AES-Rijndael) cryptosys-
tem. The suggested reconfigurable architecture is capa-
ble of handling all possible combinations of standard bit
lengths (128,192,256) of data and key. The fully rolled
inner-pipelined architecture ensures lesser hardware com-
plexity. The work develops a FSMD model based con-
troller which is ideal for such iterative implementation of
AES. S-boxes here have been implemented using combi-
national logic over composite field arithmetic which com-
pletely eliminates the need of any internal memory. The de-
sign has been implemented on Xilinx Vertex XCV1000 and
0.18µ CMOS technology. The performance of the architec-
ture has been compared with existing results in the literature
and has been found to be the most compact implementations
of the AES algorithm.

1 Introduction
Rijndael block cipher algorithm [2] has been chosen by

NIST as the new Advanced Encryption Standard (AES).
It is a symmetric block cipher that can process 128, 192
and 256 bits message blocks and 128, 192, and 256 bits
key lengths. Hardware implementation of AES is attractive
since software implementation [1] is relatively slow. It is
desirable to have reconfigurable AES architectures that can
work under various combinations of block and key lengths.

Many FPGA [4, 9, 11] and ASIC [3, 5, 13, 14, 16] imple-
mentations for Rijndael have been reported to date. With-
out exploiting composite field arithmetic most of them have
used look up tables to implement the non-linear S-box oper-
ations in their architecture, resulting in larger area require-
ments. Moreover, these implementations can only process
blocks of 128 bits and keys of the same length. The effec-
tive application of composite field GF ((24)2) arithmetic in

S-box operation was proposed by Rudra et al. [5]. Among
those who tried to produce a really compact implementa-
tion using composite field arithmetic, the works of Satoh
at el. [6] and Wolkerstorfer et al. [7] can only process 128
bits block and key lengths. The reconfigurable AES Rijn-
dael architecture proposed in this paper can process all nine
combinations of key and data lengths. The effective use
of composite field GF ((24)2) helps to reduce the hardware
complexity of the architecture.

The remainder of this paper is organized as follows. In
Section 2, AES algorithm is briefly described. In Section
3 an overview of the architecture is presented. Section 4
discusses the encryption unit. Section 5 explains how round
keys are generated. Section 6 explores the FSMD model to
generate the control signals. Section 7 analyzes the results,
followed by concluding remarks in section 8.

2 AES-Rijndael Algorithm
AES-Rijndael [2] can support variable block and key

lengths of 128, 192 or 256-bits. The round transforma-
tion consists of four different transformations: ByteSub,
ShiftRow, MixColumn and AddRoundKey. They are per-
formed in this order with the exception of the final round
which is slightly different. All transformations are based
on byte-oriented operations. AddRoundKey consists of bit-
wise XOR operations. The transformations operate on the
intermediate result, which is called the State. The ByteSub
transformation is a non-linear byte substitution, also called
S-box. The S-box is invertible and consists of the following
two operations:

• Inversion in the GF (28) field, modulo the irreducible
polynomial m(x) = x8 + x4 + x3 + x + 1.

• Affine transformation defined as: Y = AX−1 + B,
where A is an 8 × 8 fixed matrix and B is an 8 × 1
vector-matrix.

978-3-9810801-2-4/DATE07 © 2007 EDAA

DataBlock Row1 Row2 Row3
128 1-Byte 2-Byte 3-Byte
192 1-Byte 2-Byte 3-Byte
256 1-Byte 3-Byte 4-Byte

Table 1. Shift offsets for different blocks

In ShiftRow, the rows of the State are cyclically shifted
over different offsets (Table 1 [2]); row 0 is not shifted.

The MixColumn transformation operates on each column
of State individually. Each column of the State matrix is
multiplied by a fixed matrix M and it is defined as:

M =




2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


 (1)

3 Design Overview

UnitUnit

>> >>

256

256

8

8

8

Control Encryption

>>

DataScheduler

DataConverter

KeyScheduler
256

256

TextDatain
Plain

Data Dispatch

Cipher
Text

256

Dataout

GF(28)

GF(28)

GF((24)2)

GF((24)2)

δ

δ−1

Figure 1. Top-Level Architecture

In the proposed work, some novel techniques are in-
troduced for the implementation. The two main parts of
AES algorithm, namely encryption and key scheduling, are
considered for optimization. The major optimization cri-
teria considered are maximization of hardware reduction
and path delay reduction. For maximizing hardware reduc-
tion we focus on two things. Firstly, computation of non-
linear operations like sub-bytes are implemented by combi-
national logic which makes sure that no internal memory is
required. Moreover all computations involving S-boxes are
done inGF ((24)2) which reduces hardware and power con-
sumption without imposing much penalty on the through-
put [7]. The DataScheduler converts an 8-bit input element
inGF (28) to an element inGF ((24)2) using an isomorphic
function δ, while DataConverter does the reverse mapping
(Figure 1). Secondly, reutilization of precomputed blocks
are made as much as possible. For maximizing path delay
reduction the architecture has adopted the concept of inner-
pipelining. All operations in the KeyScheduler and the En-
cryption Unit are performed in GF ((24)2).

4 Encryption Unit

BUFFER 1

BUFFER2

Plain Text

clock

Data_enable

Addkey_ enable

Cipher Text

256

256

256

256

256

256

ByteSub

ShiftRow

MixColumn

MUX

BUFFER 3
Last_round

256

AddRoundKey

Cipher Key

256

AddRoundKey

Inner−pipelining

RoundKey

Figure 2. The Encryption Unit

During encryption, the data are organized conceptually
in an 4x8 matrix of bytes. This organization is used for data
block sizes of 256 bits. For smaller data block sizes (128
or 192 bits), the leftmost columns of the matrix are unused.
The encryption unit is fully rolled which ensures a reduction
in hardware. It has been implemented with inner pipelin-
ing technique for reduction of the combinational path delay.
The encryption data path processes 32-byte block in paral-
lel. A complete round transformation executes in two clock
cycles. Each transformation is optimized appropriately for
maximal performance. The data flow through various parts
of the unit are controlled by three control signals, namely
Data enable, Addkey enable and Last round, that are gen-
erated by the control unit. Due to its rolling technique the
design can support all standard modes of encryption opera-
tion including CBC, OFB etc.

4.1 S-box Design on Composite Fields
The major computation inside S-box is to find out

the multiplicative inverse of an element in the finite field
GF (28). It is the most costly operation in terms of hardware
and power [16]. For reducing cost associated with this op-
eration, several authors have designed AES S-boxes based
on composite field techniques [6, 7, 10]. The techniques use
three-stage strategy (Figure 3):
• Map the element X ∈GF (28) to a composite field F ∈
GF (24)2) using an isomorphic function δ [6].

• Compute the multiplicative inverse over the field F ∈
GF (24)2).

• Finally map the computation result back to the original
field using the inverse function δ−1.

The primary drawback of these technique is that for pro-
cessing 128-bit data in ByteSub operations, 32 isomorphic

2

Affine
Transform

Finding
Inverse

8
Y

8

X

A

Affine
Transform

Finding
Inverse

8
Y

8

X

A

Y
8Affine

Transform
Finding
Inverse

8

X’
’

A’

Structure of Our S−box Implementation

Structure of the S−box Implemented by [6]

Structure of the S−box Implemented by [7] , [10]

GF(28)

GF(28)

GF(28)

GF(28)

GF(28)GF(28)

GF((24)2) GF((24)2)GF((24)2)

GF((24)2)

GF((24)2)

GF(((22)2)2)

GF(((22)2)2)

δ

δ

δ−1

δ−1

Figure 3. Structure of Different S-boxes

functions (δ and δ−1) are to be used parallely, 16 for map-
ping GF (28) elements to GF ((24)2) elements and 16 for
reverse conversion.

On the contrary our design uses only two isomorphic
functions δ and δ−1: one in DataScheduler and another in
DataConverter (Figure 1). The function δ converts an el-
ement x in GF (28) to an element in GF ((24)2) [8]. The
function δ is defined as δ(x) = T.x, where T is a transfor-
mation matrix and defined as:

T =




1 0 1 1 1 0 1 1
0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1
0 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1




(2)

The function δ−1 does the reverse conversion. We have
not used any transformation function (δ or δ−1) in the S-
box operation (Figure 3). The elements of standard affine
matrix used in S-box is defined over the composite field
GF (28) [2]. The ByteSub (S-box) transformation is carried
out in our design over the composite field GF ((24)2). It is
possible without imposing additional hardware overheads
using the following technique:

• As discussed at Section 2, Y = AX−1 + B. In the com-
posite field,

δ(Y) = δ(AX−1) + δ(B)
= δ(Aδ−1(δ(X−1))) + δ(B)

= A
′
X

′
+ δ(B),

where A
′

= δAδ−1 and X
′

= (δ(X))−1. A
′

becomes:

A
′
=




0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1
0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1
1 0 1 0 0 1 0 0
0 1 0 0 0 1 0 1
0 0 1 0 1 0 1 0
0 0 0 1 0 0 0 0




(3)

• EveryX ∈ GF ((24)2) can be represented as (ax+b).
The multiplicative inverse for an arbitrary polynomial
(ax+b) is given by: (ax+b)−1 = a(a2λ + ab + b2)−1x
+ (a + b)(a2λ + ab + b2)−1, where λ is a primitive
element of GF (24)

X
8

8

X[7 : 4]

X[3 : 0]

X2 Xω14

× ×

×
X−1

1 X−1

Figure 4. Structure of Inversion Calculation

Figure 4 depicts the corresponding block-diagram of three
stage inverse multiplier. The primary goal of such design
is to reduce hardware. The field polynomial used for the
computations in GF (24) is (x4 + x + 1). The multipli-
cation employs modulo arithmetic of an irreducible poly-
nomial (x2 + x + λ), where λ is a primitive in GF (24).
There are four such polynomials, for each of which there are
seven different transformation matrices (T) [5]. We choose
λ = ω14 for the best case result, where ω = (0010)2 is an
element in GF (24). The result is obtained out of logic syn-
thesis with 0.18µ technology with minimum gate-count of
273 gates and maximum latency of 2.93 ns.

In our design, the S-box table requires 32 instances in
the encryption unit and 8 instances in the key scheduling
part. This makes area optimization of a single S-box in-
stance an important factor in terms of the overall hardware
overhead. The factors controlling the size of an S-box are
a combination of the design and the logic-synthesis effort.
Elements of the transformation matrix T are changed de-
pending upon the values of λ. So, choosing the appropri-
ate values of λ is another factor to optimize the size of the
S-box. The total number of ‘1‘ entries in the fixed affine
matrix A [2] is equal to 40. The total number of ‘1‘ entries
in our new defined affine matrix A

′
is equal to 18. Imple-

menting the matrices in a straightforward way, the number
of XORs would be equal to the number of ‘1‘ entries mi-
nus the number of rows in the matrices. This would lead to
an XOR gate count of 10, which results in a reduction of
22 XOR gates. Figure 5 illustrates the area-latency curves
of different existing S-box implementations, along with our

3

suggested one. The different area-latency values for a par-
ticular design are represented by the symbol (·). Three dots
in the curve corresponding to our design has λ = (ω14, ω12,
ω11). Our implementation is 1.047 times (286/273) better
than the smallest one (Satoh at el. [6]) in terms of area.

0

200

400

600

800

1000

1200

1400

1600
1800

7641 2 3 5
Latency (ns)

Area
(gate)

Our Design

Verbauwhede at el [16]

Wolkerstorfer et al [7]

Satoh et al [6]

Hodjat et al [10]

Figure 5. Area-Latency tradeoff for S-box

4.2 Subfield Implementation of MixCol-
umn

8

8

8

T(2).x

T(3).x

X[7 :4]

X[3 : 0]

X

4

4 Xω11

Xω11

Xω

Figure 6. Structure of the MixColumn

In Mixcolumn transformation, the elements of the fixed
matrix M belongs to GF (28). Since, according to our de-
sign, all operations are in GF ((24)2), all elements of M
∈ GF (28) must be mapped into the elements of M

′ ∈
GF ((24)2). This is done using a transform matrix T (equa-
tion 2). For example, T(2) = 00101110 = (ω11+xω), where
ω is the primitive element of GF (24) and the irreducible
polynomial for GF ((24)2) is (x2 + x + ω14). Figure 6
shows the structure of the MixColumn transformation.

5 Key Schedule Optimization

All computations on key expansion occur wordwise (32-
bit). Let Nk denotes the length of the key divided by 32 and
Nb denotes the length of the data block divided by 32. Let
W[0],...,W[Nk-1] be the Nk columns of the original key.
These Nk columns can be recursively expanded to obtain
Nk*Nr more columns (RoundKey), whereNr is the number
of round. The values of Nr are determined from the Table
2 [2]. Suppose that all columns up to W[i-1] have been
expanded. The next column W[i] can be constructed as:

W [i] =




W[i-Nk]⊕T(W[i-1]) if i mod Nk=4(Nk = 8)
W[i-Nk]⊕T(W[i-1],Rcon) if i mod Nk = 0

W[i-Nk]⊕W[i-1]) otherwise

Nr Nb=4 Nb=6 Nb=8
Nk=4 10 12 14
Nk=6 12 12 14
Nk=8 14 14 14

Table 2. Numbers of rounds (Nr) as a function
of the block and key length

Gen

TT

key

Counter

i

Initial_

Data_enable

Clk

>> >> >> >>

<< <<

3

Rcon

<<

(8:1 Mux)M4

M3
(3:1 Mux)

(2:1)
M1

M2

2

2

32

32

32

32

32

R
k

256 bits W[Nkj−8]

W[Nk W[Nk]

k k k k

W[N −1]k

W[Nk + 7] + 1]

W[N − 1] W[N − 4] W[N − 6] W[N − 8]

(3:1)

C 1

Figure 7. KeyScheduler

Here T(W[i-1],Rcon) is a non-linear transformation based
on the application of the S-box to the four bytes of the col-
umn, and the addition of a round constant (Rcon) for sym-
metry elimination [2]. T(W[i-1]) represents the same with-
out addition of Rcon. In Figure 7, the W’s are the 32-bit
shift registers. Initial key is generated from control unit, C1

is user-specific and i is generated from an 8-bit up counter
which is reset to value 1 by the Data enable signal. The
Data enable signal is set when data blocks are ready to be
processed. R is a 256-bit register to store initial key. When
Data enable signal is set, a single word (32 bits) among 8
words goes through the shift registers W[Nk-8],...,W[Nk-1]
at every clock. The word is selected by 3 bits control sig-
nals generated by the counter. After Nk cycles all registers
W[Nk-8],...,W[Nk-1] are occupied by the initial key stored
at register R. Now at every clock single word of RoundKey
is made. It goes through another set of 32-bit shift registers
W[Nk],...,W[Nk+7] as round key and the same key is fed
back to the register W[Nk-1] through the multiplexer M1
for generating the next round key. The architecture takes
Nb clock cycles to generate single round key. A maximum
of 8 × 14 + 8 = 120 clock cycles are required to generate
complete round key (for 256 bits data and key). The pri-
mary goal of this architecture is to have a drastic reduction
in hardware as compared to [5, 6, 10, 16].

6 The Control Unit
A Finite State Machine with Data-path (FSMD) is a uni-

versal specification model [12] which is used in the core
of the present work with the addition of a reset state. This
reset state can be treated as the start state of the FSMD.

4

S31

S32

S33

S

S

S0

S15

16

17

000000

Else

S40

000000

S39

000000

000000

000001

000000

Else

000000

000000

000000

Else

000000

000000

000000

000110

000100

000100

000000
000000

000100

000110

000000
000000

Else
000000

S36

S38

S41

S42

S49

000110
S50

S51

S56

S60

S61

S69

S70

S77

S82

round)

round)

101000

011000

001000

S83

S84

S85

S86

Last_round Addkey_enable Data_enable

Key_enable

0 0 0 0 0 0

First_round Initial_key

1(If C == 00)
(If C == 01)1

(If C == 00)2 2

2

2

22

2

(If C == 10)

C = 00

C = 012

C = 00 C = 10
C = 01

(C = 10)
(C = 01)2

(If Last_

(If First_

Figure 8. FSMD of Control Unit

In the Figure 8, {S0, S1, S2, S3, . . . S86} are the set of
control states, S0 = reset state, {clock, reset, C2C1} = in-
put signals, {O0, O1, O2, O3, O4, O5} are the output sig-
nals where O0 = Key enable, O1 = Data enable, O2 = Ini-
tial key, O3 = Addkey enable, O4 = First round and O5 =
Last round. C2C1 is a 4-bit control signal specified by user.
The lower 2-bit C1 specifies the key length and higher 2-
bit C2 specifies the block length. The Key enable signal
loads the initial key into the register R shown in Figure 7.
Data enable signal select 256 bits block among two 256
bits blocks, one coming from Plain Text and other gener-
ated as intermediate cipher shown in Figure 2. This signal
is also used to initiate the value of the Counter shown in
Figure 7. Figure 2 takes two clock cycles to complete a sin-
gle round, but KeyScheduler (Figure 7) takes a minimum of
4 cycles for generating single round key. This is why Add-
key enable signal is used as an enable signal of BUFFER2
to get valid data from xor operation (Figure 2). Similarly,
Last round signal is used as an enable signal of BUFFER3
to get valid Cipher Text.

According to our design, the state transitions of the con-
troller take place at every clock cycle. If the controller waits
for j (j > i) clock cycles at state Si then the next state is
Sj and the controller self loops at Si for (j-i) clock cycles.
The transitions make several branches depending upon the
control signal C2C1. Values of C2C1 for different values
of key and data length are shown in Table 3. We need total
(Nb*Nr+Nk) states, i.e, 8x14+8 = 120 states for 256 bits
block and key length. But due to short of scope only 86
states are shown in the figure, through which it can be ex-

plained how does the FSMD work. Let us take an example.
Example 1 In the example let us take 128 bits data and 128
bits key (i.e C2C1 = 0000).

• The controller starts at S0 with the positive edge
of reset. The consecutive 15 clock cycles states
{S0, S1, . . . S15} have same status and in those cases
all outputs are 0.

• At the next state S16 (16th cycle) Key enable signal
becomes 1 and rest are 0. It signifies that 128 bits data
are stored in register R as initial key. As we are taking
8 bits data from I/O at every cycle, after 16 cycles we
can get 128 bits data.

• In next cycle (state S17) all output signals are set to
0. Similarly after 15 cycles at state S32 Data enable
and Initial key are set to 1. In consecutive 4 cycles
Initial key signal sets to 1. At these stages Mux M1
selects 4 words from R (Figure 7) and those words
are stored in shift registers W[Nk-4],...,W[Nk-1], i.e,
W[0],...,W[3]. Now the words of the key are ready to
be expanded.

• At next 4 cycles 128 bits round key is made. At
S38 there are three branching S39, S40 and S41.
Those branching take place depending upon the sig-
nals Last round and First round.

• All those states except S40 come back to S36 in the
next cycle signifying that the expansion of next round
keys can start. State S40 comes back to S32. It sig-
nifies that all 10 rounds key generation are completed
and ready to store initial keys from register R to the
shift registers W[Nk-4],...,W[Nk-1], i.e, W[0],...,W[3]
to generate next 10 round key for next cipher text.

C2C1 Key
128 192 256

128 0000 0100 1000
Data 192 0001 0101 1001

256 0010 0110 1010

Table 3. C2C1 for different Key and Data

7 Implementation Results and Comparison

The proposed design has been implemented on Xil-
inx Vertex XCV1000 hardware platform and simulated by
ModelSim8.1i. The same design has been compiled in 0.18
µ CMOS using Synopsys design tool (Design Compiler).
The performances (throughput and frequency) are shown at
Table 4 and Table 5. Throughput (τ) is calculated as:
τ = (η × f)/(ψ), where η, f and ψ stand for block length,
clock frequency and number of clock cycle respectively.
In our design Nb clock cycles are needed to generate single
round intermediate cipher.
τ = (Nb × 32 × f)/(Nb × Nr) = (32 × f)/Nr.

5

Clock Frequency = 37.73 MHz
Throughput (Mb/s) Nb=4 Nb=6 Nb=8

Nk=4 120.74 100.61 86.24
Nk=6 100.61 100.61 86.24
Nk=8 86.24 86.24 86.24

Table 4. Throughput in FPGA

Clock Frequency = 120 MHz
Throughput (Mb/s) Nb=4 Nb=6 Nb=8

Nk=4 384 320 274.28
Nk=6 320 320 274.28
Nk=8 274.28 274.28 274.28

Table 5. Throughput in 0.18µ CMOS

E D Key Data
128 192 256 128 192 256

[4] • • • •
[11] • • •

0.3µ Technology
[14] • • • •

0.18µ Technology
[13] • • • • •
[16] • • • • • • •
Our • • • • • • •

Table 6. Features of compared Architectures

In Table 6 and Table 7 we show comparative analysis
of different existing AES architectures, along with our sug-
gested one. The symbol • signifies that the design does of-
fer the choice. E and D stand for Encryption and Decryption
respectively.

We do not take into account any implementation based
on fully-pipelining [3, 5, 6, 10] as they give greater through-
put at the expense of larger area. We have not shown any
comparative analysis of performance in FPGA as it can
be misleading when dedicated memories and RAMs are
present in the design. Moreover, there is no FPGA based
reconfigurable AES-Rijndael which is capable of handling
all possible combinations (128,192,256) of data and key.

8 Conclusions
We have presented AES encryptor core design in rolling

and inner-pipelined fashion. The design strikes an opti-
mal balance between area and frequency of operation. Re-
sults and comparisons with existing works have been fur-
nished. The paper demonstrates that the proposed archi-
tecture outperforms prior results with respect to the pa-
rameter throughput per area. Implementation of encryp-
tor/decryptor core designs into a single-chip exploiting ex-
tended composite subfield GF (((22)2)2) may be included
as a future work.

Frequency Throughput Gate Throughput
(MHz) (Mb/s) (K) per

kilo gates
[14] 80 9.9 3.4 2.91
[15] 50 70 7 10
[16] 125 2290 173 13.23
[13] 132 2400 149 16.17
Our 120 384 21 18.21

Table 7. Performances of compared cores

References
[1] Guido Bertoni et al: Efficient Software Implementation of AES on

32-bits Platforms: CHES 2002, Revised Papers, LNCS Vol. 2523,
pp.159-171, Springer-Verlag.

[2] J.Daemen and V.Rijmen (2002); The Design of Rijndael: AES-The
Advanced Encryption Standard: Springer-Verlag Berlin Heidelberg,
New York, 2002.

[3] D. Mukhopadhyay, D. RoyChowdhury: An Efficient End to End De-
sign of Rijndael Cryptosystem in 0.18µ CMOS: The 18th Interna-
tional Conference on VLSI Design and The 4th International Con-
ference on Embedded Systems (VLSID’05), pp.405-410.

[4] V. Fischer and M. Drutarovasky Two Methods of Rijndael Imple-
mentation in reconfigurable Hardware: CHES 2001, LNCS Vol.
2162, pp.77-92, Springer-Verlag.

[5] A.Rudra et al; Efficient Rijndael Encryption Implementation with
Composite Field Arithmetic: CHES 2001, LNCS Vol. 2162, pp.171-
184, Springer-Verlag 2001.

[6] A. Satoh, S. Morioka, K. Takona and S. Munetoh: A Compact Rijn-
dael Hardware Architecture with S-Box optimization: Proceedings
of Advances in Cryptography-ASIACRYPT 2001, LNCS Vol. 2248,
pp.239-254, Springer-Verlag.

[7] J. Wolkerstorfer, E.Oswald and M. Lamberger: An ASIC Implemen-
tation of the AES S-boxes: in Proc. RSA Conference (CT-RSA)
2002, LNCS Vol. 2271, pp.67-78, San Jose, CA, Feb. 2002.

[8] C. Paar: Efficient VLSI Architectures for Bit-Parallel Computation
in Galois Fields: PhD thesis, Institute of Experimental Mathemat-
ics, University of Essen, Germany, 1994.

[9] P. Chodowiec and K. Gaj: Very Compact FPGA Implementation
of the AES Algorithm: CHES 2003, LNCS Vol. 2779, pp.319-333,
Springer-Verlag.

[10] A. Hodjat, I. Verbauwhede: Area Throughput Tradeoffs for Fully
Pipelined 30 to 70 Gbits/s Aes Processors: IEEE Transaction on
Computers, Vol. 55, No. 4, pp.83-88, 2006.

[11] A. J. Elbirt, W. Yip, B. Chetwynd, C. Paar: An FPGA-based perfor-
mance evaluation of the AES block cipher candidate algorithm fi-
nalists: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 9, No. 4, pp.545-557, 2001.

[12] D. D. Gajaki and L. Ramachandran: Introduction to high-level syn-
thesis: IEEE Transaction on Design and Test of Computers, Vol. 11,
No. 4, pp.44-54, Dec, 1994.

[13] R. Sever, A. Neslin, Y. Tekmen, M. Asker A High Speed ASIC Im-
plementation of the Rijndael Algorithm: International Symphosium
of Circuit and System (ISCAS-2004), IEEE Vol.2, pp.541-4.

[14] M. Feldhofer, J. Wolkerstorfer, J. Rijmen AES implementation on a
grain of sand: IEE Procidings in Information Security, July, 2005.

[15] N. Praustaller, S. Mangard, S, Dominikus, J. Wolkerstorfer Efficient
AES implementation on ASIC’s and FPGA’s: Proc. Fourth Work-
shop on the Advanced Encryption Standard (AES 2004), LNCS Vol.
3373, pp.98-112, Springer-Verlag, 2004.

[16] I. Verbauwhede, P. Schaumont, H. Kuo Design and Performance
Testing of a 2.29-GB/s Rijndael Processor: IEEE Journal of Solid
State Circuit, Vol. 38, No. 3, pp.569-572, March 2003.

6

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

