
Energy Evaluation of Software Implementations of
Block Ciphers under Memory Constraints∗

Johann Großschädl
jgrosz@iaik.tugraz.at

Stefan Tillich
stillich@iaik.tugraz.at

Christian Rechberger
chrech@iaik.tugraz.at

Michael Hofmann
mhofmann@sbox.tugraz.at

Marcel Medwed
koermy@sbox.tugraz.at

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria

ABSTRACT
Software implementations of modern block ciphers often
require large lookup tables along with code size increasing
optimizations like loop unrolling to reach peak performance
on general-purpose processors. Therefore, block ciphers are
difficult to implement efficiently on embedded devices like
cell phones or sensor nodes where run-time memory and
program ROM are scarce resources. In this paper we analyze
and compare the performance, energy consumption, run-
time memory requirements, and code size of the five block
ciphers RC6, Rijndael, Serpent, Twofish, and XTEA on the
StrongARM SA-1100 processor. Most previous evaluations
of block ciphers considered performance as the sole metric
of interest and did not care about memory requirements or
code size. In contrast to previous work, our study of the
performance and energy characteristics of block ciphers has
been conducted with “lightweight” implementations which
restrict the size of lookup tables to 1 kB and also impose
constraints on the code size. We found that Rijndael and
RC6 can be well optimized for high performance and energy
efficiency, while at the same time meeting the demand for
low memory (RAM and ROM) footprint. In addition, we
discuss the impact of key expansion and modes of operation
on the overall performance and energy consumption of each
block cipher. Our simulation results show that RC6 is the
most energy-efficient block cipher under memory constraints
and thus the best choice for resource-restricted devices.

Keywords
Lightweight cryptography, symmetric cipher, energy opti-
mization, memory footprint, code size reduction.

1. INTRODUCTION
Mark Weiser envisioned in the early 1990s a world filled

with “ubiquitous” computational resources providing access
to information and services anytime, anywhere [19]. Today,
15 years later, part of Weiser’s vision has become reality
thanks to the proliferation of mobile computing appliances
like cell phones and PDAs. Another form of an ubiquitous

∗The research described in this paper has been supported
by the Austrian Science Fund (FWF) under grant number
P16952-NO4 and by the European Commission under grant
number FP6-IST-033563 (project SMEPP).

computing infrastructure are networks of tiny sensor nodes
embedded into the environment to perform monitoring and
surveillance tasks. Cell phones, PDAs, sensor nodes and the
like are typically equipped with wireless networking capa-
bilities, enabling them to communicate with other devices
and centralized resources or to connect to the Internet. The
networks formed by ubiquitous systems are characterized
by a high level of heterogeneity and ad-hoc communication
[12]. Middleware plays an essential role in ubiquitous com-
puting because it weaves together a multitude of resources
and capabilities (e.g. different types of devices, operating
systems, network interfaces, communication protocols) and
hides their heterogeneity from the applications [8].

Current research on middleware for ubiquitous computing
covers a wide range of topics such as routing, synchroniza-
tion, quality of service, data aggregation, location awareness
(context sensitivity), and resource discovery. In the recent
past, however, security issues received particular attention
since wireless ad-hoc networks are relatively open and easily
accessible, which calls for effective measures to protect the
resources and services from unauthorized use. The impor-
tance of security becomes evident when considering that, in
the near future, every human being will be surrounded by
tens or even hundreds of ubiquitous computing devices. For
example, wireless sensor nodes are already (or will soon be)
deployed in health care for monitoring the blood pressure
or heart rate of a patient. Thus, any effort put into making
ubiquitous computing systems more secure and reliable as
today’s PCs is legitimate [16].

Wireless networks transmit data via radio signals, which
makes them vulnerable to eavesdropping and unauthorized
access. Therefore, the ability to encrypt messages prior to
transmission is of fundamental importance for the security
of ubiquitous computing systems. Block ciphers and stream
ciphers are two examples of symmetric cryptosystems that
can be used to encrypt large amounts of data (“bulk encryp-
tion”). Roughly speaking, a block cipher takes a fixed-length
block of plaintext and a secret key as input and transforms
the plaintext into a ciphertext of the same length. Modern
block ciphers have a block length of 64 or 128 bits, whereas
the key length is typically in the range of between 128 and
256 bits. Research on block ciphers has a long tradition
and received particular attention during the competition
for the Advanced Encryption Standard (AES), organized
by the NIST between 1997 and 1999. Researchers from all

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



over the world submitted evaluations of the AES candidates
and analyzed both security and performance aspects. How-
ever, most performance studies were conducted on high-end
processors with superscalar execution pipeline, out-of-order
scheduling, and plenty of cache. The findings derived from
these evaluations do not allow to draw direct conclusions
regarding block cipher performance on embedded processors
with a single-issue pipeline and small cache.

In the present paper we analyze performance and energy
characteristics of five block ciphers on an embedded RISC
processor. These five block ciphers are XTEA and the AES
candidates RC6, Rijndael, Serpent, and Twofish. Previous
evaluations of block ciphers considered performance as the
sole metric of interest and did not care about other aspects
like energy consumption, code size, or memory footprint, all
of which are important for resource-constrained ubiquitous
computing systems such as cell phones, PDAs, and sensor
nodes. Contrary to previous work, we conducted our per-
formance and energy analysis with “light-weight” software
implementations of block ciphers which restrict the run-time
memory usage to 1 kB and also impose limitations on the
code size. Optimizing block cipher implementations towards
low energy consumption is of paramount importance for
virtually any battery-powered device. Also memory usage
matters heavily since RAM is a precious resource in sensor
nodes. Other devices like PDAs have more RAM, but often
relatively small caches, which again calls for low memory
footprint. Finally, the code size is important since embedded
systems store all program code in on-chip ROM whose size
directly determines the cost of a device.

2. SELECTION OF BLOCK CIPHERS AND
EVALUATION METHODOLOGY

Block ciphers are cryptographic primitives with a variety
of uses. A block cipher defines a key-dependent mapping
from input blocks to output blocks. Most block ciphers
have a fixed block size of either 64 or 128 bits. On the other
hand, the key size of state-of-the-art block ciphers is often
variable, typically ranging from 128 to 256 bits. To allow
both a reasonable level of security and a fair comparison, we
decided to fix the key size to 128 bits and use 128-bit data
blocks for our energy evaluation. These restrictions do not
essentially reduce the pool of candidates for our study since
almost all modern block ciphers support this setting.

For our energy evaluation we chose the five block ciphers
RC6 [13], Rijndael [5], Serpent [1], Twofish [14], and XTEA
[10]. The former four were finalists of the AES contest and
gained significant practical importance in recent years. We
decided to skip Mars, the fifth AES finalist, since it is the
“heaviest” block cipher among the AES finalists. Software
implementations of Mars require a large lookup table of 2
kB in size, which is clearly disadvantageous for embedded
applications where memory resources are at a premium. We
selected XTEA as replacement for Mars because it is often
advocated as being a lightweight block cipher.

We used ANSI C implementations of the block ciphers to
evaluate their performance and energy characteristics. Our
C codes are, in part, based on Gladman’s highly-optimized
implementations of the AES finalists [6]. We simulated all
block ciphers with help of Sim-Panalyzer, a cycle-accurate
instruction set simulator based on SimpleScalar [18]. Sim-
Panalyzer is able to model both the execution time and the

energy consumption of software running on a StrongARM
SA-1100 processor. ARM-compliant processors, in particu-
lar the StrongARM, have a considerable market share in
the embedded systems area. Various cell phones and PDAs
(e.g. HP Jornada and Compaq iPAQ) are equipped with
a StrongARM core or a comparable implementation of the
ARM instruction set architecture [2]. In addition, a number
of sensor nodes feature ARM processors, most notably the
Rockwell WINS node, Intel’s iMote, and Sun’s SPOT.

Contrary to performance, the energy efficiency of block
ciphers has not been widely investigated in the past. To the
best of our knowledge, there exist only three publications
dealing with energy aspects of software implementations
of block ciphers. Law et al. [9] studied the performance and
energy characteristics of different block ciphers on a sensor
node equipped with a 16-bit MSP430 processor from Texas
Instruments. Hager et al. [7] analyzed the energy consump-
tion of the four block ciphers RC2, Blowfish, XTEA, and
Rijndael on hand-held computers. Potlapally et al. [11] re-
searched the energy cost of various cryptographic primitives
and security protocols on an iPAQ PDA. Both Potlapally
et al. and Hager et al. used performance-optimized software
implementations for their energy evaluation and did not pay
attention to memory requirements.

3. MOTIVATING EXAMPLE
The performance of block ciphers can vary substantially

depending on the specific implementation and the properties
of the underlying processor. In [17] Tillich et al. examined
the influence of the cache size on the performance of four
different Rijndael software implementations on a SPARC
V8-compliant RISC processor. These four implementations
required lookup tables of different size, ranging from 256
byte (only S-box lookup) to 8 kB (T-tables [5]). Figure 1
illustrates the execution time of the implementations as a
function of cache size varying from 1 kB to 16 kB (separate
instruction and data cache of the same size).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 kB 2 kB 4 kB 8 kB 16 kB

Cache size

C
lo

c
k
 c

y
c
le

s

T lookup 1 kB

T lookup 4 kB

T lookup 8 kB

Only S-box lookup (256 B)

Figure 1: Performance of different Rijndael imple-
mentations as a function of the cache size.

The execution time of the implementation with the 256-
byte table for S-box lookup is relatively independent of the
cache size. It outperforms the other three implementations
impressively on small-cache systems. On the other hand, the
implementations using large T-tables are fast on systems
with large cache, but their performance declines for small
cache sizes [17]. In any case, large lookup tables consume a



Operation RC6 Rijndael Serpent Twofish XTEA

Table lookup – 8 to 8 bit – 8 to 8 bit (2×) –

Logical operation xor, fixed and xor xor, and, or, not xor xor, fixed and

Shift/rotate variable rotate bytewise rotate fixed shift fixed rotate fixed rotate

Integer add/sub X – – X X

Integer multiply X – – – –

GF(28) multiply – X – X –

Table 1: Basic operations of the five block ciphers RC6, Rijndael, Serpent, Twofish, and XTEA.

significant amount of program memory (if they are stored
as constants) or data memory (when pre-calculated during
run-time). For embedded systems, it can not be taken as
granted that this price in terms of memory overhead can
be paid, even if there is a performance gain. Therefore, the
strategy of T-lookup [6], which is a natural implementation
choice for Rijndael on desktop computers and servers, can
quickly become unattractive for small-memory devices.

4. EXAMINED BLOCK CIPHERS
All block ciphers used in practice have an iterative struc-

ture. An input block is encrypted by several, often identical
round transformations. The round transformations apply
sub-keys that are either computed in advance or in parallel
by means of a key-schedule function. Round transformations
and the key-schedule function of a block cipher typically
consist of a set of simple operations. The block ciphers we
examined (RC6, Rijndael, Serpent, Twofish, and XTEA)
share a number of fundamental operations. These are table
lookups of varying size, bitwise Boolean operations, basic
arithmetic operations like integer addition, subtraction, or
multiplication, as well as bitwise shift and rotate operations
by a fixed or variable number of positions.

Note that the basic operations of each block cipher can
be implemented in different ways. However, in this paper
we only consider implementation options which are suitable
for resource-constrained devices. Some operations allow to
trade memory (or code size) for performance/energy. As an
example, consider the finite field inversion carried out in the
Rijndael round transformation. Even though it is possible
to implement it using Boolean functions only, the required
execution time—and, hence, the consumed energy—would
be very high. Therefore, a lookup into a moderately sized
table is usually more suitable, even on memory-restricted
devices like sensor nodes. On the other hand, the situation
is completely different for the block cipher Serpent. Serpent
uses tiny 4-bit by 4-bit S-boxes, which could be easily imple-
mented via lookup tables, even when memory resources are
at a premium. However, on 32-bit platforms, it is generally
more efficient to perform the S-box operations as a sequence
of Boolean functions, following a bit-slice approach [4].

Table 1 summarizes the basic operations of the five block
ciphers. Note that we do not distinguish between shift and
rotate operations since our target platform (StrongARM)
supports both in a similar way.

RC6
RC6 was proposed by Rivest et al. in 1998 [13]. It is an
unbalanced Feistel network and supports variable block and
key lengths. We chose the variant with a 128-bit block and
key length and 20 rounds since this version was submitted
as an AES candidate and allows a fair comparison with the

other ciphers. The basic operations needed to implement
RC6 are bitwise logical xor, modular addition and subtrac-
tion, modular squaring, and data-dependent rotation. All
operations are performed on 32-bit words.

Rijndael (AES)
Rijndael, introduced by Daemen and Rijmen in 1998 [5], is
a substitution-permutation network with 10 rounds for the
variant with the 128-bit key length that we consider. The
128 bits of a block are arranged in a 4 × 4 matrix of bytes
where each byte is viewed as an element of the finite field
GF(28). The round transformation can be described using
arithmetic operations (addition, multiplication, inversion)
in this field [5]. However, the main operations needed on
our target platform are 8-bit to 8-bit table lookup, bytewise
rotate, and bitwise logical xor.

Serpent
Serpent was proposed by Anderson et al. in 1998 [1]. It is a
substitution-permutation network with 32 rounds. Serpent
is designed to allow for an optimized implementation using
the bitslice technique [4]. Hence, instead of table lookups, an
efficient way to implement Serpent is to use operations like
fixed shift/rotate and logical and, or, xor, and not.

Twofish
Twofish is a Feistel-type cipher with 16 rounds, proposed by
Schneier et al. in 1998 [14]. A unique feature of Twofish are
its key-dependent S-boxes based on two fixed permutations
on 8-bit values, which are typically implemented via table
lookup. The S-box operation is followed by a matrix multi-
plication over the finite field GF(28). Twofish also performs
logical xor, addition mod 232, and fixed bitwise rotation.

XTEA
XTEA was introduced by Needham and Wheeler in 1997 as
an improvement of the Tiny Encryption Algorithm (TEA)
[10]. It operates on data blocks of 64 bits with a 128-bit key
and performs 64 rounds. XTEA is characterized by a very
simple round function; the only operations being used are
fixed bitwise rotation, logical xor, and modular addition.

5. DESCRIPTION OF CODE SIZE AND
MEMORY OPTIMIZATIONS

We implemented Rijndael and XTEA from scratch with
minimal code size in mind. In some cases (e.g. Rijndael) it is
possible to use run-time-generated lookup tables, stored in
RAM, to reduce the code size. In these cases, we preferred a
small memory footprint over minimized code size, as RAM
is normally much more scarce in embedded systems than
program ROM. The implementations of RC6, Serpent, and



Twofish are based on Brian Gladman’s code [6], which are
performance-optimized variants for 32-bit platforms. We
took a number of measures to reduce the code size of these
implementations, whereby the main point was always to
replace pre-processor macros (which result in inline code)
with functions calls.

Other general measure for code size reduction include the
use of data types which correspond to the native word size
of the target processor (32 bit) for all C variables and the
consideration of the maximal size of constants or immediate
values (11 bits on ARM). We used inline assembler for a
few critical operations in order to take advantage of special
architectural features of ARM like its built-in shift/rotate
mechanism for ALU instructions. This mechanism allows to
perform an optional shift of a register or immediate value
“for free” as part of an ALU instruction.

RC6
Our RC6 implementation is derived from Brian Gladman’s
source code [6]. We replaced all macros by function calls and
used rolled loops in the encrypt/decrypt functions to save
code size. In order to reduce the function call overhead, we
replicated the body of the loop four times, i.e. each iteration
of the loop actually executes four round transformations.

Rijndael (AES)
On 32-bit platforms, Rijndael is usually implemented with
round lookup (T-lookup) tables in order to maximize per-
formance [6]. Depending on the configuration, these lookup
tables have a size of between 1 kB and 8 kB for encryption
and between 1 kB and 12 kB for decryption. Hence, the
T-lookup tables can occupy up to 20 kB of memory in the
most extreme case. However, it is possible to avoid these
tables and to implement Rijndael with just two 256-byte
tables for the forward S-box (encryption and key expansion)
and inverse S-box (decryption), as well as 12 bytes for the
round key constant table (rcon). We implemented Rijndael
following this strategy and the concepts of Bertoni et al. [3]
to allow for an efficient execution of the costly MixColumns
and InvMixColumns transformation on 32-bit platforms.

Serpent
Again our implementation is a modification of Gladman’s
code [6]. This code follows the bit-slice approach proposed
by the inventors of Serpent [1]. We replaced the macros by
function calls, which markedly reduced the code size of the
C functions implementing the S-box. The use of temporary
local variables in these C functions allows for further code
size reduction without notable loss of performance. We also
rewrote the en/decrypt functions and brought them into a
very compact form with the help of C function pointers.

Twofish
Twofish is also based on Gladman’s code [6], whereby the
macros are again replaced by function calls. Fixing the key
size to 128 bits and implementing the en/decrypt functions
with rolled loops allowed for further reduction of the code
size. However, the benefit achieved by using loops is limited
since the round function is executed only eight times.

XTEA
XTEA is trivial to implement. There is absolutely no room
for an improvement of the original source code from [10].

5.1 Comparison of Code Size and Memory
Footprint

Figure 2 summarizes the code size of the resulting block
cipher implementations after we made the modifications and
optimizations described before. All values are given in bytes
and represent the size of the text segment. XTEA is the
clear winner in this comparison due to its simplicity and the
lack of a key expansion function. The RC6 implementation
is also very small; encryption and decryption occupy less
than 1 kB altogether. Twofish achieves average results in
terms of code size. However, it must be considered that the
Twofish code contains two 256-byte lookup tables for the
8-bit permutations q0 and q1 [14]. Figure 2 shows the size
of Gladman’s Rijndael as well as our own Rijndael imple-
mentation. Gladman’s code is twice as large as ours when
both encryption and decryption are needed. Serpent is also
relatively large in terms of code size, primarily due to the
bit-slice approach for the S-box implementation.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

RC6 Rijndael

(Gladman)

Rijndael

(ours)

Serpent Twofish XTEA

B
y
te

s

Encryption

Decryption

Both

Figure 2: Comparison of code size.

All five block ciphers except Rijndael were implemented
without large lookup tables in order to reduce the run-time
memory footprint to a minimum. Gladman’s Rijndael im-
plementation performs the S-box operation via a 256-byte
lookup table whose entries are calculated at run-time with
help of the genTabs function [6]. Of course, two 256-byte
tables are necessary if both encryption and decryption have
to be performed, amounting to 512 bytes altogether. On
the other hand, our Rijndael implementation uses a static
lookup table for the S-box operation. In summary, Rijndael
requires marginally more run-time memory than the other
four ciphers. However, the overall run-time memory (RAM)
utilization of each cipher is well below 1 kB, which confirms
that the implementations are indeed “lightweight” and fulfill
the memory constraints we imposed.

6. SIMULATION RESULTS
We simulated the five block cipher implementations with

Sim-Panalyzer [18] in order to analyze and compare their
execution times and energy consumption. Sim-Panalyzer
provides architectural and power configuration templates
for the StrongARM SA-1100 processor. All source codes
were compiled, assembled, and linked with an ARM cross
compiler based on the GNU GCC and the BINUTILS tool
chain. We put a similar effort into optimizing each of the
five block ciphers to ensure a fair comparison.



6.1 Performance
Figure 3 summarizes the running times (in clock cycles)

of the key expansion and the encryption of a 128-bit data
block. RC6 is by far the fastest block cipher, but suffers
from a relatively costly key expansion. The two Rijndael
implementations have a faster key expansion than RC6, but
need more time to encrypt a 128-bit block. XTEA is roughly
comparable to Rijndael and has the advantage that it does
not need a key expansion. Serpent and Twofish show rather
bad performance in both key expansion and encryption.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

RC6 Rijndael

(Gladman)

Rijndael

(ours)

Serpent Twofish XTEA

C
lo

c
k
 c

y
c
le

s

Encryption

Key expansion

Figure 3: Performance of key expansion and encryp-
tion of a 128-bit data block.

Figure 4 illustrates the decryption performance of the
five block cipher implementations. The relative performance
figures are very similar to that of encryption. Again, RC6
wins big followed by XTEA and Rijndael. However, as in
encryption, RC6 has the penalty of costly key expansion. A
noteworthy detail is that Gladman’s Rijndael code is much
faster for encryption than for decryption. Our Rijndael
implementation, on the other hand, has similar execution
times for both encryption and decryption.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

RC6 Rijndael

(Gladman)

Rijndael

(ours)

Serpent Twofish XTEA

C
lo

c
k
 c

y
c
le

s

Decryption

Key expansion

Figure 4: Performance of key expansion and decryp-
tion of a 128-bit data block.

The key expansion does not fall into account when large
amounts of data are encrypted or decrypted. For “bulk
encryption,” a so-called mode of operation specifies how the
individual blocks of the plaintext are encrypted and linked
together. Table 2 shows the throughput of the five block
ciphers for different modes of operation. We evaluated the

Cipher ECB CBC CTR CFB OFB

RC6 5.240 4.407 4.298 4.419 4.426

Rijndael 1.436 1.365 1.354 1.366 1.367

Serpent 0.624 0.610 0.608 0.610 0.610

Twofish 0.398 0.392 0.391 0.392 0.392

XTEA 1.664 1.543 1.517 1.546 1.548

Table 2: Throughput (in MB/s) for different modes
of operation at a clock frequency of 200 MHz.

throughput by encrypting a message of size 15.62 kB, which
corresponds to exactly 1,000 blocks of 128 bits.

The modes of operation we considered in our study are the
electronic codebook (ECB) mode, the cipher-block chaining
(CBC) mode, the counter (CTR) mode, the cipher feedback
(CFB) mode, and the output feedback (OFB) mode. ECB
and OFB achieve the best results, but the difference to the
other modes is relatively small. Regarding throughput, RC6
is again the winner followed by XTEA and Rijndael. Two-
fish and Serpent lag significantly behind the others.

6.2 Power/Energy Consumption
The energy consumed by a processor during the execution

of a piece of software, such as a block cipher, corresponds to
the product of the average power dissipation and the total
running time. The former depends on a number of factors
including supply voltage, clock frequency, and the average
current drawn by the processor while executing individual
instructions of the program code. Sinha et al. analyzed in
[15] the power characteristics of the StrongARM SA-1100
and found that its overall power dissipation is dominated
by a few subsystems like the cache, control logic, and clock
tree. On the other hand, the functional units (e.g. ALU) on
which the instructions are actually executed have almost no
impact on the overall power. Therefore, the variation of the
current consumption between different instructions is rather
small (at most 38% of the overall average current [15]).

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

RC6 Rijndael

(Gladman)

Rijndael

(ours)

Serpent Twofish XTEA

W
a

tt

Encryption Decryption Key expansion

Figure 5: Average power consumption during en-
cryption, decryption, and key expansion.

Figure 5 depicts the average power consumption of the
StrongARM SA-1100 for encryption, decryption, and key
expansion (at a supply voltage of 2 V and a clock frequency
of 200 MHz). As expected, the average power consumption
is pretty uniform amongst the different block ciphers, which
confirms the observations made by Sinha et al. [15]. Due to



0

20

40

60

80

100

120

RC6 Rijndael

(Gladman)

Rijndael

(ours)

Serpent Twofish XTEA

µ
J
o

u
le

Encryption

Key expansion

Figure 6: Processor core energy for key expansion
and encryption of a 128-bit data block.

0

20

40

60

80

100

120

RC6 Rijndael

(Gladman)

Rijndael

(ours)

Serpent Twofish XTEA

µ
J
o

u
le

Decryption

Key expansion

Figure 7: Processor core energy for key expansion
and decryption of a 128-bit data block.

this uniform power profile, the energy consumption of the
block ciphers will primarily depend on the execution time.

Figure 6 and 7 illustrate the energy consumption of the
StrongARM for encryption and decryption, respectively. In
addition, the energy cost of key expansion is also specified
for each block cipher. As expected, the energy values are
closely tied to the corresponding execution times shown in
Figure 3 and 4. The reason for this close relation between
energy and execution time is the uniform average power
dissipation, which differs less than 20% among the different
block ciphers (see Figure 5). In summary, RC6 is by far the
most energy-efficient block cipher, followed by XTEA and
Rijndael.

7. CONCLUSIONS
In this paper we evaluated the performance and energy-

efficiency of the block ciphers RC6, Rijndael, Serpent, Two-
fish, and XTEA on a StrongARM processor. We conducted
our evaluation with “lightweight” software implementations
optimized for small code size and low memory footprint. The
run-time memory utilization of each of our five block cipher
implementations is less than 1 kB, leaving more resources
for the main application. Our simulation results, obtained
with Sim-Panalyzer using power models for the StrongARM
SA-1100, show that RC6 is extremely fast and, hence, very
energy-efficient for both decryption and encryption, but has

the penalty of costly key expansion. Therefore, RC6 is a
good candidate for the encryption of large amounts of data
since in this case the costly key expansion does not fall into
account. XTEA is also very fast and comes in second, after
RC6, in our energy-efficiency ranking. The fact that XTEA
has no key expansion makes it highly suited for application
domains where short messages are encrypted, e.g. in sensor
networks. Rijndael may serve as an alternative to RC6 or
XTEA for medium-sized messages. Our overall conclusion
is that RC6 is the fastest and most energy-efficient block
cipher under memory constraints.

8. REFERENCES
[1] R. J. Anderson, E. Biham, and L. R. Knudsen. Serpent: A

proposal for the Advanced Encryption Standard. Technical
report, University of Cambridge, 1998.

[2] ARM Limited. ARM Architecture Reference Manual. ARM
Doc No. DDI-0100, Issue H, 2003.

[3] G. Bertoni et al. Efficient software implementation of AES
on 32-bit platforms. In Cryptographic Hardware and
Embedded Systems — CHES 2002, LNCS 2523, pp.
159–171. Springer Verlag, 2002.

[4] E. Biham. A fast new DES implementation in software. In
Fast Software Encryption — FSE ’97, LNCS 1267, pp.
260–272. Springer Verlag, 1997.

[5] J. Daemen and V. Rijmen. The Design of Rijndael: AES –
The Advanced Encryption Standard. Springer Verlag, 2002.

[6] B. R. Gladman. AES second round implementation
experience. Available online at http://fp.gladman.plus.
com/cryptography technology/aesr2/index.htm, 2000.

[7] C. T. Hager et al. Performance and energy efficiency of
block ciphers in personal digital assistants. In Proceedings
of the 3rd IEEE International Conference on Pervasive
Computing and Communications (PerCom 2005), pp.
127–136. IEEE Computer Society Press, 2005.

[8] T. Kindberg and A. Fox. System software for ubiquitous
computing. IEEE Pervasive Computing, 1(1):70–81, 2002.

[9] Y. W. Law, J. M. Doumen, and P. H. Hartel. Survey and
benchmark of block ciphers for wireless sensor networks.
ACM Transactions on Sensor Networks, 2(1):65–93, 2006.

[10] R. M. Needham and D. J. Wheeler. Tea extensions.
Technical report, University of Cambridge, 1997.

[11] N. R. Potlapally, et al. Analyzing the energy consumption
of security protocols. In Proceedings of the 8th
International Symposium on Low Power Electronics and
Design (ISLPED 2003), pp. 30–35. ACM Press, 2003.

[12] D. Remondoa and I. G. Niemegeers. Ad-hoc networking in
future wireless communications. Computer
Communications, 26(1):36–40, 2003.

[13] R. L. Rivest et al. The RC6TM block cipher. Technical
report, RSA Laboratories, 1998.

[14] B. Schneier et al. Twofish: A 128-bit block cipher.
Technical report, Counterpane Systems, 1998.

[15] A. Sinha and A. P. Chandrakasan. JouleTrack - A web
based tool for software energy profiling. In Proceedings of
the 38th Design Automation Conference (DAC 2001), pp.
220–225. ACM Press, 2001.

[16] F. Stajano. Security for Ubiquitous Computing. John Wiley
and Sons Ltd, 2002.

[17] S. Tillich, J. Großschädl, and A. Szekely. An instruction
set extension for fast and memory-efficient AES
implementation. In Communications and Multimedia
Security — CMS 2005, LNCS 3677 pp. 11–21. Springer
Verlag, 2005.

[18] University of Michigan. Sim-Panalyzer 2.0. Available for
download at http://www.eecs.umich.edu/∼panalyzer.

[19] M. Weiser. The computer for the 21st century. Scientific
American, 265(3):94–104, 1991.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




