
PowerQuest: Trace Driven Data Mining for Power Optimization

Pietro Babighian Gila Kamhi Moshe Vardi

 Intel Corp. Intel Corp. Rice University

 Leixlip – Ireland Haifa – Israel Houston - Texas

Abstract
We introduce a general framework, called PowerQuest, with the
primary goal of extracting "interesting" dynamic invariants from

a given simulation-trace database, and applying it to the power-
reduction problem through detection of gating conditions.
PowerQuest adopts machine-learning techniques for data mining.
The advantages of PowerQuest in comparison with other state-of-
the-art Dynamic Power Management (DPM) techniques are: 1)
Quality of ODC conditions for gating 2) Minimization of extra
logic added for gating. We demonstrate the validity of our
approach in reducing power through experimental results using

ITC99 benchmarks and real-life microprocessor test cases. We
present up to 22.7 % power reduction in comparison with other
DPM techniques.

1. Introduction
The key idea in power management is that unused parts of a

complex design can be shut down during system operation.
Power-management techniques based on this principle belong to
the broad class of dynamic power management (DPM) methods
[1]. Recent work [2] in automatic DPM detects conditions where
the clock can be stopped via clock gating without compromising
functional correctness. The detection of such conditions in real-
life RTL designs with minimum impact on area and performance
requires extensive logic analysis and is widely acknowledged as a

difficult task [2]. The latest techniques in [2] achieve scalability
by limiting the usage of Observable Don't Care (ODC) conditions
to the steering modules of the design. While ODC detection is less
expressive for steering modules, it does not capture the most
general idleness conditions risking the omission of significant
gating opportunities.

We introduce a general methodology and framework, called
PowerQuest, with the primary goal of extracting "interesting"
dynamic invariants from a simulation trace database. PowerQuest

adopts machine-learning techniques, for data representation,
manipulation and invariant extraction. We demonstrate the
benefits of dynamic invariant extraction especially to the domain
of dynamic power management through the efficient detection of
interesting invariants (characteristics) with respect to power
consumption (e.g., unobservability).

Why is trace data mining especially applicable to power
optimization? Both at micro-architectural level and RTL, power

benchmarks (in form of simulation traces) represent the execution
scenarios (e.g., common-case, peak activity) that are of interest
with respect to power consumption. Optimizing and estimating
power based on common-case computation have become an
established practice. Thus, dynamic invariants extracted from
power benchmarks include common-case legal computation data
that is impossible to extract solely from static topological logic
analysis.

In this paper, we especially focus on the efficiency of
PowerQuest in extraction of Observable Don’t Care Conditions

that are used later for gating unused parts of the design. The
advantages of PowerQuest in comparison with other state-of-the-
art DPM techniques are: 1) Quality of ODC conditions for gating
2) Minimization of extra logic added for gating. Utilizing
assumptions embedded in traces that represent the common case
computation, ODC conditions detected by PowerQuest are

potentially simpler. Moreover, PowerQuest utilizes the global
functional view provided in trace data that is not obtainable from
structural topological analysis; i.e., gating (ODC) condition
extraction is not limited to latch boundaries or only steering logic
modules as in [2] and thus has higher potential of not missing
significant gating opportunities. The user can request the
formulation of these invariants based on a small set of significant
signals (not necessarily in the vicinity of the sequentials to be

gated). Furthermore, PowerQuest does not add extra logic for
gating, but rather learns a signal (if any) that can be used as
substitute for all or part of the logic needed to control the
activation. Computation of such a signal would have been
practically impossible using only structural/functional analysis
without the trace data.

In the general usage mode, one can extract invariants that can
characterize various scenarios of interest with respect to power

(either idleness or excessive activity). The end result will be
acquisition of new and useful information that can help the
designer make better decisions in order to manage power
dissipation. Alternatively, this information can be utilized by
downstream synthesis tools to automatically perform the gating.
As usage scenarios, we can consider both power-saving
opportunity detection and root-cause analysis of excessive power
consumption.

This paper is organized as follows. In Section 2, we present an

overview of PowerQuest system and usage scenarios. In Section 3
we describe in detail the data-mining techniques used for power-
aware dynamic invariant extraction. Section 4 explains how RTL
power-saving opportunities detected by known state-of-the-art
dynamic power management (DPM) techniques can be identified
by PowerQuest. In Section 5, we present experimental results
using ITC99 [3] benchmarks and real-life microprocessor test
cases that show up to 22.7 % power reduction over classic

dynamic power management techniques. Section 6 compares
PowerQuest with related work. Finally, in Section 7 we
summarize and conclude.

2. System Overview
PowerQuest makes use of Learning from Examples [4]

techniques (more specifically Extended Matrix Approach [5,6]) to
identify idleness situations that are likely to occur and extracts
simple Boolean conditions that can be used for the gating of the
idle blocks.

PowerQuest gets as input simulation traces based on validation
or power benchmarks. We will refer to each trace as a set of
simulation data points over time P={p1,...,pn} where a point pi

978-3-9810801-2-4/DATE07 © 2007 EDAA

represents the values of all the signals at a given clock phase i.
An additional input to PowerQuest consists of the design features
{F1,...,Fk} needed to classify the positive and negative data points
(clock phases) of the traces with respect to a splitting criteria
identified by label L. Each label partitions the set of points into

two sets: positive examples (PE), which represent data points with
label 1, and negative examples (NE), which represent data points
with label 0.

PowerQuest has a few usage modes which can affect the way
positive and negative examples (trace data points) are classified.
The user can control: 1) Time interval of interest 2) Signals of
interest 3) Assumptions (constraints) under which the invariants
are mined. The trace data is split based on this input and restricted

to the data of interest. Obviously, control parameters can
significantly restrict the size of the data to be mined.

The signals of interest dictate the variables of the invariant
relation. The filtering of the invariants based on the comparison
between positive and negative invariants ensures that every
candidate learned invariant pi satisfies all the positive points PE
and does not satisfy any of the negative points NE.

PowerQuest extracts dynamic invariants from simulation data,

which by definition is not exhaustive. Thus the validity of each
invariant detected by PowerQuest has to be formally verified
(otherwise conditioned to the specific cases where it holds).

3. Learning From Traces
Generally speaking, Learning from Examples [4] addresses the

problem of extracting, for a given group of objects, a set of
predefined features differentiating the objects, and a classification
of the objects as positive and negative examples, a rule that
generates the classification in terms of feature values. Since this is
equivalent to classification of the given objects in accordance to
the set of features, we call this process class label extraction.
More in detail, the above learning process can be viewed as the
process of going from specific observational knowledge about

some objects to a general rule that implies or accounts for the
observations. In this section we will make the analogy of Learning
from Examples technique to learning from simulation traces.

3.1 Class Representation
We start with a set P={p1,...,pn} of data points. We then define

a set {F1,...,Fk} of features. With each feature Fi we associate a
data domain Di. Each feature Fi is a function from P to Di. Thus,

with each point pj we associate a feature tuple
F(pj)=<F1(pj),...Fk(pj)>. The set of these tuples constitutes the
feature space. A label L is a function from P to the domain {0,1}.
Thus, each label partitions the set of points into two sets: positive
examples (PE), which represent data points with label 1, and
negative examples (NE), which represent data points with label 0.

For example, let us consider the circuit in Figure 1 where
S=(S1,S2,….S6) is a subset of the signals driving combinational
logic (in grey) as well as sequential elements (in white). Let us

also assume that the above logic network has been levelized in
decreasing topological order leading to 6 logic levels where
sequential elements are at level 0 while combinational logic is
distributed over levels 1 to 5. By simulating the circuit, we obtain
a set of points, each corresponding to the state of the circuit at a
given point in time. This provides the set P of data points. What
are the features by which the points are described? Obvious
features are signal values. Such features have logic values. By

default, PowerQuest extracts built-in features as well as user

defined features. Some examples of power relevant features for a
point pi are SwF and Loc, representing, respectively, the number of
switching signals at a given clock cycle, and the locality of the
switching signals (i.e., the average topological distance of the
switching signals in S from the input of registers). Values for

feature SwF can be quantitative (extracted by measurements from
data traces) or qualitative based on a subjective division into
categories provided by the user.

Figure 1. A generic sequential circuit.

For example, if we find out that at a given clock cycle the number
of switching signals is just 5% over the total amount of signals in

S, then we can associate the numerical value 5% to the attribute
SwF. On the other hand, if we argue that a percentage greater than
5% represents a quantity distinguishing between a high-activity
scenario from a lower-activity one, then we can associate the
symbol High (first category) to every value greater than 5%, the
symbol Low (second category) to the values lower or equal to 5%
and None (third category) to the value 0%. Similarly to the feature
SwF, Loc can exhibit numeric values (measurement of level

proximity) as well as subjective category-based values. For
example, the user might specify as input to PowerQuest the
following categories: Far 4, 4<Close<1 and None=1.

A label L is a function from P to the domain {0,1}. A label can
be viewed as a Boolean feature, but we give it a special role in
classifying the data points as positive or negative examples. As an
example, let us assume that there exists a Boolean function say
L=f(S1,S2,…S6) that is 1 if and only if both the input and the

output of the flip-flop R1 in Figure 2 have the same logic value at
a given clock cycle. Thus we can classify each cycle in
accordance to the idleness due to the concurrent data retention at
both input and output of R1 (hold condition). In other words, we
can define two labels L=1 and L=0 associated respectively to the
hold and not-hold conditions.

As previously mentioned, the goal of Learning from Examples
is all about learning a relation between features and labels, which

can be used as a classification model as well as an explanatory
tool to distinguish between objects of different classes.

An atom is a formula of the form xi ∈ Ai or ~(xi ∈ Ai,) where

Ai is a subset of DI, the domain of the feature Fi. A feature tuple

<v1,...,vk> satisfies the formula xi ∈ Ai (resp., ~(xi ∈ Ai)), if vi

∈Ai (resp., ~(vi ∈ Ai)). We are interested in formulas in

disjunctive normal form, that is, disjuncts of conjunctions of
atoms. A feature tuple t=<v1,...,vk> satisfies a formula f if there is
a disjunct d of f such that t satisfies all conjuncts of d. Our goal is
to learn a formula that describes the sets of positive and negative
examples; i.e., it is satisfied by all positive examples and is
falsified by all negative examples. That is, for a point p, L(p)=1
implies that F(p) satisfies f and L(p)=0 implies that F(p) falsifies f.

0 1 02345

S1

S2

S3

S4
S5

S6

R1

Clearly, a tuple t=<v1,...,vk> can be described uniquely by the

conjunction dt= x1 ∈ {v1} & ...& xk ∈ {vk}. Thus a formula f that

describes PE and NE always exists; simply take f to be the
disjunction of all conjunctions dt, for t in PE. Our goal is to
minimize the size of the formula f. For example, the formula f
might express clock-gating logic and we want to minimize its

power requirements. In general, minimizing the formula f is a
generalized covering problem and is NP-hard [14], requiring us to
resort to a heuristic approach.

3.2 PowerQuest Implementation
PowerQuest extracts classification rules from positive and

negative examples. Each example characterizes a data point (in
our case a specific clock cycle), and its label specifies the correct
decision associated with that point. The generated decision rules

are expressed as symbolic descriptions involving relations
between feature values of the point.
 As an example, if we analyze each signal in S=(S1,S2,….S6) in
Figure 1 over a period of five clock cycles corresponding to five
data points (p1,p2,…p5), we can classify the behavior of the
signals themselves over the aforementioned set of features and
with respect to the labels previously extracted (hold and not-hold
conditions) obtaining a table similar to the following one that we

can call features-label table.

 The rows associated with cycles C1, C3 and C4 (i.e., data points
p1, p3, p4) represent positive examples, while rows associated with
cycles C2 and C5 (i.e., data points p2, p5) represent negative
examples. By analyzing the above table, it is easy to extract the
following relation: "The hold condition for R1 is satisfied if and

only if there is either no activity within the support of L (i.e., the
set S) or activity only in signals that are topologically far (i.e., N
logic levels away when N defines the threshold of locality feature)
from R1 itself". Nevertheless, not all relations that can be
extracted from a features-labels table are interesting. More
importantly, the number of features and/or examples may be too
high. For this purpose, we focus our attention on automated
techniques that aim at extracting rules from unordered set of

positive and negative examples; specifically, we use the Extension
Matrix Approach (EMA) developed by Hong [5] and
subsequently improved by Wu [6]. In more detail, the EMA is a
covering technique, which represents knowledge in the form of
disjunctive Boolean formula by performing a heuristic search
through a space of logical expressions, until it finds a decision
rule that covers the positive examples, while leaving out the
negative examples.

In summary, PowerQuest detects invariants in two steps. In the

first phase, power saving opportunities are extracted by splitting
trace data (i.e., the set of examples) into two groups of examples
(i.e. positive and negative) and by learning a Boolean function
that exhibits a False value for all negative examples and a True
value for the positive ones.

In the second step, the learning space of the mining process is
reduced to the previously extracted set of positive examples in
order to quantify user-defined metrics (e.g., switching activity of
signals and signals activity peaks) that are of interest. In other
words, PowerQuest starts learning values of features provided by

the user within the space of positive examples and the fact that a
given feature exhibits a specific value (or within a specific range
of values) represents a property that is invariant within the set of
positive examples.

4. Power-Savings Opportunities
We now show how PowerQuest automatically detects common

DPM opportunities as Operand Isolation [7] through efficient
approximation of observability don’t care function from trace
data. Then, we demonstrate through Pre-computation [8, 9]
technique how PowerQuest minimizes the gating logic by
learning a signal that can substitute the gating logic.

4.1 Operand Isolation
 Operand isolation [7] is a technique to minimize the power
overhead incurred by redundant operations by selectively

blocking the propagation of switching activity through the circuit.
In Figure 2-a, we observe that there is an active path from the
adder to the flip-flop only when the control signals Sel_0 and
Sel_1 are both high. In all other cases, the output of the adder is
not visible by the flip-flop, leading to useless computation when a
change of value occurs at the input of the adder. As shown in
Figure 2-b, operand isolation stops any activity at the input of the
adder by insertion of a block of gating logic that is activated by a
signal AF (Activation Function) with the ability to detect the

useless cycles of the adder. AF is high in the “active” clock cycles
when the adder output is being used and low otherwise. In other
words, ~(AF) represents the Observability Don’t Care (ODC) [10]
condition of the output y of the adder block and it can be extracted
by computing the condition ODCy = (Fy=1 XOR F y =0), where Fy

represents a Boolean function of the variable u with variable y in
its support, while Fy=1 XOR F y =0 is the ordinary Boolean
difference F/ y of Fy with respect to y. The value of ODCy is thus

True in those cases where y is not observable at u, and False
otherwise. In our approach we generate ODCy of a signal y with
respect to a signal u by initially obtaining the function Fy based on
simulation traces and subsequently we simplify Fy properly in
order to find two simple Boolean functions representing Fy =0 and
Fy=1. This can be accomplished by generating sets of positive and
negative examples based on the splitting condition u=1 and then

learning the function Fy by establishing a relation between u and y.
EMA then yields a DNF function Fy that approximates the real
Boolean function (let us name as g) driving the signal u for the
given circuit. We do know, however, that Fy agrees with g on all
points in the trace. Now we can take the ODC condition to be (F

y=0 XOR F y=1). Clearly, we need to use formal techniques to
ensure that our ODC is correct (i.e., the gating based on the
computed ODC will be preserving the functionality of the original

circuit). Although in this simplistic example both trace based data
mining and structural logic analysis techniques would compute
the same unobservability condition ODCy = (S0·S1), trace based
data mining has the potential of detection of simpler and more
global ODC conditions utilizing the common-case legal
computation data embedded in the traces.

Cycle Data Point Sw Loc Label

C1 P1 None None 1

C2 P2 Low Close 0

C3 P3 High Far 1

C4 P4 None None 1

C5 P5 High Close 0

4.2 Precomputation
 The procedure adopted in previous section to extract ODC

conditions for Operand Isolation can be extended also to the case

of Precomputation [8]. Pre-computation�relies on duplication of
part of the logic with the purpose of pre-computation of an ODC

condition one clock cycle earlier. In this section, we will
demonstrate how PowerQuest does not add extra logic for gating,
but rather learns a signal (if any) that can be used as substitute for
the computed ODC condition.

 a)

b)

Figure 2. Exploitation of Operand Isolation.

Referring, for example, to the circuit in Figure 3, we may want
to use the previously extracted activation function AF in order to
selectively stop the clock signal and thus gate the activation of
sequential elements that eventually drive the adder input. In this

manner, we decrease power consumption not only in the fan-out
cone of logic of the input flip-flops but also within the flip-flops
themselves. The main difficulty, however, is due to the fact that
ODC conditions masking flip-flops in clock cycle “T” should be
used to gate their clock in cycle “T-1”. In other words, the clock-
gating logic should be active in the clock cycle immediately
before the flip-flop becomes unobservable [2]. Unfortunately, the
control signals at the inputs of the ODC functions are generated

one clock cycle too late. If the control signals S0 and S1 are
available directly as outputs of flip-flops, the instantiation of the
clock-gating logic is relatively straight-forward. Logic gates
implementing the ODC conditions are inserted and their inputs are
connected to the inputs of the flip-flops driving S0 and S1. In real-
life designs, however, the control inputs of the steering modules
are seldom coming directly from the flip-flops; instead, they are
often generated by additional logic, as shown in Figure 3. In this

case, the entire cone of logic between flip-flops and control
signals S0 and S1 needs to be duplicated and connected to the
inputs of the flip-flops, and the ODC computation gates need then
to be connected to the outputs of the duplicated cones [2]. Clearly,
the addition of this extra logic may represent a non-negligible
overhead. Referring to Figure 3, our approach tries to learn about
the existence, within the fan-in cone CL, of a signal, say t, whose
logic behavior is similar to the ODCy condition.

In such a case, t can be used as an active-low signal to
condition the activation of registers driven by the block of logic
CL. The extraction procedure of the signal t is straight-forward
and consists of four major steps:

Figure 3. A generic sequential circuit

1. A Boolean function representing the ODC
y
 is computed by the

method discussed earlier. A matrix of ODC
y

positive and
negative examples is built. We call such a matrix OEM

y
 (i.e.,

ODCs Examples Matrix) and it contains all the configurations
for which ODC

y
 equals 1 or 0. In this learning process, the

features are values of signals of S
0
and S

1
. We split the set of

trace points according to ODC
y
 == T and ODC

y
== F and label

them in the matrix, respectively.

2. By considering the simulation trace of the signals within the
block CL, a matrix of unclassified examples is generated. We
call such a matrix UEM (i.e., Unclassified Examples Matrix)
and it contains only features' (signals') values since no class
label extraction has been performed.

3. We compare each example (i.e., signals' values at a particular
trace point/cycle) in the matrix UEM with the labels in OEM

y
.

More specifically, we identify all the features (signals) that
exhibit value 1 in an example (trace point/cycle) p

i
 in matrix

UEM and has ODC
y

= T in the next example p
i+1

 in matrix
OEM

y
 as potential candidates to be clock-gating signals.

4. Finally, the set of found features (if any) is pruned in order to
get the set which exhibits the largest number of 1’s. The

signals associated to the features in this set will have
functionality close to ODCy and thus will be good candidates
for clock gating (i.e., good candidates for t).

In Figure 4, the OEMy matrix for the Observability Don’t Care
condition ODCy= (S0·S1)’ extracted previously is represented. The
columns in grey represent the clock cycles during which signal y
is not observable (ODCy=1). Let us suppose that block CL in

Figure 3 contains exactly four signals A0, A1, A2, A3 represented
by the UEM matrix shown in Figure 5. We want now to find a
signal among A0, A1, A2, A3 that could be used effectively as
clock-gating signal for the sequential element driven by the block
CL. This can be accomplished by considering the examples (i.e.
columns) in UEM and by checking for each of them if the value
of ODCy to the associated next example in OEMy is T or F
revealing the presence or absence of observability at the next
cycle for the signal y. In particular, if y is observable at the next

clock cycle then the considered example (column) in UEM is
removed since it does not have a candidate feature (signal) that

0

01

1

S1S0
Clk

+

DIn_1

In_2

x

y z

u

Clk

D
0

01

1

S1S0

+

x

y z

u

Clk

D

Clk

D

Clk

D

CONTROL
LOGIC

CL

0

01

1

S1S0

Clk

+

DIn 1

In 2

AF

x

y z

u

can be used as activation signal. By applying the above procedure
we are, hence, pruning the set of examples in UEM obtaining a
smaller UEM matrix as shown in Figure 6. In particular, the
higher the number of 1’s, the better it is since the signal will cover
more cases of un-observability. For the case above, the number of

1’s of each row is

Figure 4. The OEM
y
 Matrix

Figure 5. The UEM Matrix of traces for the block of Logic CL

Figure 6. The pruned UEM Matrix

respectively, A1 = 6, A2 = 6, A3 = 5, A4 = 8 leading to the
conclusion that signal A4 is the best choice.

5. Experimental Results
 We have implemented trace based data mining using the

EMA approach and supporting the proposed flow and
methodology for power optimization in PowerQuest. In order to
evaluate the scalability and performance trends, we ran
PowerQuest on an industrial micro-processor design as shown in

Figure 7. The efficiency of the tool in extracting interesting
invariants that aid getting significant power reduction was tested,
as shown in Table 1 and 2 using ITC'99 suite. The industrial
design is a data-path block with very regular structure, extracted
from a floating-point multiplier of a state-of-the-art micro-
processor design. It consists of 935 sequential elements, 599
primary inputs and 309 primary outputs. Experiments have been
performed on a Dual-Core Workstation with 4 Gb of main

memory. Performance of PowerQuest has been evaluated in two
different scenarios over trace data of 10000 cycles. In the first
case, we constrained the mining process by specifying a property
under which invariants (i.e., unobservability conditions) should be
extracted. In practice, we directed the extraction to gating
conditions for sequentials by constraining the splitting condition
with SA (Switching Activity) > 0.5 for each sequential thus
reducing the search space. In the second case, we did not specify

any initial constraint, letting PowerQuest make its choice. Clearly
in such a case performance decreases since the tool has to process
the entire data set in order to gather features as well as splitting
conditions. As shown in Figure 8, the analysis of over 500 signals
takes less than 60 minutes proving the scalability of the method to
real-life test case. Tool efficiency in mining interesting invariants
has been evaluated on 10 benchmarks included in the ITC'99 suite
[3]. We have chosen the benchmarks since the size of the
benchmarks facilitates in-depth analysis of results with respect to

their gating quality with respect to power and their functional
validity. Table 1 reports, for each benchmark, number of cells
(Cells), number of flip-flops (FF), number of primary input (PI)

and output (PO) as well as number of interesting invariants
associated with power saving opportunities such as Operand
isolation (OI-Inv) and Pre-computation (PComp-Inv). Also, Table
1 reports number of invariants found by PowerQuest and related
to the existence of regions in the design with distinguishably

different Switching Activity (SA-Inv) and Activity Peaks (APk-
Inv). We computed the gating manually utilizing the gating

Table 1. Invariant Extraction

condition automatically detected by PowerQuest and compared
the results against classic ODC-based clock gating introduced in
[2] by running Power Compiler on the output design. The validity
of dynamic invariants found by PowerQuest was checked by
formally verifying the functional equivalence of the gated and
original designs. For the results reported in Table 2, we have

assured functional correctness of the gated design utilizing the
gating function computed by PowerQuest. Gating results for
Bch_01, Bch_02 and Bch_06 have been left out in Table 2, since
no invariants associated to pre-computation opportunities are
found, eliminating one of the prerequisite needed for exploitation
of ODC-based clock gating. As shown in Table 2, PowerQuest
extracted ODC based clock gating gets superior results (up to 22%
power reduction with no negative impact to timing and area).
Interestingly, delay on critical path improves up to 31.7%. This is

due to the fact that implementation of ODC-based clock gating is
not performed by involving logic duplication or retiming
transformation (as in [2]); rather, PowerQuest extracts signals (if
any) already available within the design that can be used as
substitute for all or part of the logic needed to control the
activation of FFs based on Observability Don’t Care conditions.
Moreover, since PowerQuest tries to approximate the general
ODC condition rather than the approximation of the restricted

ODC condition in [2], it can come up with higher quality gating
condition.

0

10

20

30

40

50

60

3 15 17 30 45 60 118 234 284 344 406 466 526

Number of Signals

T
im

e
 [
m

in
]

Constr.

Not Constr.

Figure 7. Performance evaluation on different scenarios.

ODCy T T T F T T T F T T T F T T T F

S0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

S1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Bench Cells FF PI PO OI-Inv PC-Inv SA-Inv APk-Inv

Bch_01 45 5 4 2 2 0 0 0

Bch_02 25 4 3 1 0 0 0 0

Bch_03 150 30 6 4 7 8 2 5

Bch_04 480 66 13 8 12 3 1 6

Bch_05 608 34 3 36 17 2 1 9

Bch_06 66 9 4 6 1 0 0 0

Bch_07 382 51 3 8 8 5 4 9

Bch_08 168 21 11 4 3 1 1 5

Bch_09 131 28 3 1 3 2 4 2

Bch_10 1000 121 7 6 21 11 7 12

A1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

A2 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1

A3 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

A4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A1 1 1 1 1 1 1 0 0 0 0 0 0

A2 0 0 0 1 1 1 0 0 0 1 1 1

A3 1 0 1 0 0 1 0 0 1 0 0 1

A4 0 1 1 0 1 1 0 1 1 0 1 1

Table 2. PowerQuest ODC-based Clock Gating vs. ODC-based Clock Gating in [2]

6. Related Work
 Other approaches that have contributed to dynamic invariant
detection are [12, 13]. Invariant extraction from software traces
has been suggested in [12], and then adapted in [13] to hardware
traces. The invariants are selected from a set of candidate
invariants; the tool just has to check which invariants hold in the

input traces. The construction of the set of candidate invariants is
hardwired into the tool. In our approach, the selection of features
and labels is left to the user, but the invariants are extracted using
machine-learning techniques. We pay a higher computational
price, but we are able to extract much more complex invariants.
Moreover, our approach is unique in the application of dynamic
invariant extraction to the domain of dynamic power-reduction
opportunities detection (See [15] for applications of machine-

learning techniques to the design of shut-down policies for putting
modules into sleep mode). We utilized here Extension Matrix
Approach (EMA) as the machine learning technique based on the
experience reported in [5, 6]. Whether other machine-learning
approach, cf. [4, 11], can perform better in the context of trace
driven data mining for dynamic invariant extraction for power
reduction is an interesting question and has not been the focus of
our current research. In summary our contribution is in the
demonstration the benefits oftrace data-mining for extraction of

dynamic invariants for power optimization rather than application
of the specific machine learning technique (i.e., EMA). Our
machine-learning techniques overcome the difficulties of the
standard approach of extracting clock-gating opportunities by
structural analysis [2]. The advantages of our approach have been
three folded: 1) Gating (ODC) condition approximation is not
limited to latch boundaries or only steering logic modules as in
[2]. 2) Utilizing assumptions embedded in traces that represent the

common case computation of the design, the ODC conditions that
we compute are potentially simpler. 3) We do not add extra logic
for gating but rather learn a signal (if any) that can be used as
substitute for all or part of the logic needed to control the
activation. Computation of such a signal would have been
practically impossible using only structural/functional analysis
without the trace data. The disadvantage of our approach is the
need of formal verification of the gating conditions since we

extract dynamic invariants from simulation data, which by
definition is not exhaustive.

7. Conclusions
 We introduced here PowerQuest, a novel framework, with the
primary goal of extracting of "interesting" invariants for power
optimization given a simulation trace database, based on machine-
learning techniques. We demonstrated using ITC99 benchmarks
how PowerQuest can automatically extract classic dynamic
power-management (e.g., pre-computation, operand isolation)

opportunities and get up to 22.7 % reduction on power without

negative impact on delay and area over selected classic power
reduction methods. Additionally, using real-life microprocessor
benchmark data we demonstrated the method's robustness and
scalability on real-life design environment. To the best of our
knowledge, PowerQuest pioneers the usage of machine-learning
techniques in mining dynamic (i.e., simulation based) power data
to facilitate power reduction.

References

[1] L. Benini and G. De Micheli, Dynamic Power Management: Design

Techniques and CAD Tools. Norwell, MA: Kluwer, 1997

[2] P. Babighian, L. Benini, E. Macii,“A Scalable Algorithm for RTL

Insertion of Gated Clocks Based on ODCs Computation,” IEEE

Transactions on CAD of Integrated Circuits and Systems, Volume: 24,

Issue: 1 , Jan. 2005.

[3] http://www.cerc.utexas.edu/itc99-benchmarks/bench.html

[4] J. G. Carbonell, (Ed.). “Machine Learning: Paradigms and Methods”,
MIT Press., 1990.

[5] J.R. Hong,“AE1: An Extension Matrix Approximate Method for the
General Covering Problem”, Int. J. Comput. Inf. Sci., Vol. 14, 1985.

[6] X.D. Wu,“Rule Induction with Extension Matrix”, Journal of the
American Society for Information Science, Vol. 49, No. 5, 1992.

[7] M. Munch, B. Wurth, R. Mehra, J. Sproch, N. Wehn, “Automating
RT-Level Operand Isolation to Minimize Power Consumption in
Datapaths,” DATE-00: IEEE Design Automation and Test in Europe.

[8] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M. Papaefthymiou,
“Precomputation-Based Sequential Logic Optimization for Low
Power,” IEEE Transactions on VLSI Systems, December 1994

[9] J. Monteiro, S. Devadas, A. Ghosh, “Sequential Logic Optimization
for Low Power Using Input-Disabling Precomputation Architectures,”
IEEE Trans. on CAD of Integrated Circuits and Systems, Mar 1998.

[10] M. Damiani, G. De Micheli, “Don’t Care Set Specifications in

Combinational and Synchronous Logic Circuits,” IEEE Trans. on
CAD of Integrated Circuits and Systems, March 1993.

[11] T. Mitchell, “Machine Learning”, McGraw Hill, 1997.

[12] M.D. Ernst, J. Cockrell, W.G. Grisswold, and D. Notkin, “Dynamic

Discovering Likely Program Invariants to Support Program
Evolution”, IEEE Transactions on Software Engineering, Feb 2005

[13] S. Hangal, N. Chandra, S. Narayan, S. Chakravorty, “IODINE: a tool

to automatically infer dynamic invariants for hardware designs”.

Proc. Design Automation Conference, 2005, pp. 775-778.

[14] R.S. Michalski and R.L. Chilausky, "Learning by Being Told and

From Examples," International Journal of Policy Analysis and
Information Systems, 1980

[15] M. Srivastava, A. Chandrakasan, and R. Brodersen, "Predictive

system shutdown and other architectural techniques for energy

effcient programmable computation," IEEE Trans. on VLSI
Systems,Vol.4, No. 1 (1996), 42-55.

ODC-based Clock Gating PowerQuest ODC-based Clock Gating
Bench

Cells Area
Delay

[ns]

Power

[uW]
Cells

 Cells

[%]
Area

 Area

[%]

Delay

[ns]

 Delay

[%]

Power

[uW]

 Power

[%]

Bch_03 94 1640 1.84 513.4 77 18.1 1555 5.2 1.57 14.7 437.4 14.8

Bch_04 278 4726 2.08 911,9 193 30.6 4186 11.4 1.62 22.1 874.5 4.1

Bch_05 280 4073 2.66 299.3 263 6.1 3837 5.8 2.37 10.9 275.2 8.0

Bch_07 184 3173 1.89 476.7 160 13 2931 7.6 1.29 31.7 435.8 8.6

Bch_08 102 1450 1.96 241.8 93 8.8 1364 5.9 1.75 10.7 226.3 6.4

Bch_09 94 1561 1.65 450.8 92 2.1 1525 2.3 1.25 24.2 444.6 1.3

Bch_10 601 8855 2.77 1242 578 3.8 8628 2.56 2.43 12.3 958.9 22.7

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

