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Abstract
We introduce a general framework, called PowerQuest, with the 
primary goal of extracting "interesting" dynamic invariants from 

a given simulation-trace database, and applying it to the power-
reduction problem through detection of gating conditions. 
PowerQuest adopts machine-learning techniques for data mining. 
The advantages of PowerQuest in comparison with other state-of-
the-art Dynamic Power Management (DPM) techniques are: 1) 
Quality of ODC conditions for gating 2) Minimization of extra 
logic added for gating. We demonstrate the validity of our 
approach in reducing power through experimental results using 

ITC99 benchmarks and real-life microprocessor test cases. We 
present up to 22.7 % power reduction in comparison with other 
DPM techniques.  

1. Introduction 
The key idea in power management is that unused parts of a 

complex design can be shut down during system operation. 
Power-management techniques based on this principle belong to 
the broad class of dynamic power management (DPM) methods 
[1]. Recent work [2] in automatic DPM detects conditions where 
the clock can be stopped via clock gating without compromising 
functional correctness. The detection of such conditions in real-
life RTL designs with minimum impact on area and performance 
requires extensive logic analysis and is widely acknowledged as a 

difficult task [2]. The latest techniques in [2] achieve scalability 
by limiting the usage of Observable Don't Care (ODC) conditions 
to the steering modules of the design. While ODC detection is less 
expressive for steering modules, it does not capture the most 
general idleness conditions risking the omission of significant 
gating opportunities. 

We introduce a general methodology and framework, called 
PowerQuest, with the primary goal of extracting "interesting" 
dynamic invariants from a simulation trace database. PowerQuest 

adopts machine-learning techniques, for data representation, 
manipulation and invariant extraction. We demonstrate the 
benefits of dynamic invariant extraction especially to the domain 
of dynamic power management through the efficient detection of 
interesting invariants (characteristics) with respect to power 
consumption (e.g., unobservability).

Why is trace data mining especially applicable to power 
optimization?  Both at micro-architectural level and RTL, power 

benchmarks (in form of simulation traces) represent the execution 
scenarios (e.g., common-case, peak activity) that are of interest 
with respect to power consumption. Optimizing and estimating 
power based on common-case computation have become an 
established practice. Thus, dynamic invariants extracted from 
power benchmarks include common-case legal computation data 
that is impossible to extract solely from static topological logic 
analysis. 

In this paper, we especially focus on the efficiency of 
PowerQuest in extraction of Observable Don’t Care Conditions 

that are used later for gating unused parts of the design. The 
advantages of PowerQuest in comparison with other state-of-the-
art DPM techniques are: 1) Quality of ODC conditions for gating 
2) Minimization of extra logic added for gating. Utilizing 
assumptions embedded in traces that represent the common case 
computation, ODC conditions detected by PowerQuest are 

potentially simpler. Moreover, PowerQuest utilizes the global 
functional view provided in trace data that is not obtainable from 
structural topological analysis; i.e., gating (ODC) condition 
extraction is not limited to latch boundaries or only steering logic 
modules as in [2] and thus has higher potential of not missing 
significant gating opportunities. The user can request the 
formulation of these invariants based on a small set of significant 
signals (not necessarily in the vicinity of the sequentials to be 

gated). Furthermore, PowerQuest does not add extra logic for 
gating, but rather learns a signal (if any) that can be used as 
substitute for all or part of the logic needed to control the 
activation. Computation of such a signal would have been 
practically impossible using only structural/functional analysis 
without the trace data.  

In the general usage mode, one can extract invariants that can 
characterize various scenarios of interest with respect to power 

(either idleness or excessive activity). The end result will be 
acquisition of new and useful information that can help the 
designer make better decisions in order to manage power 
dissipation. Alternatively, this information can be utilized by 
downstream synthesis tools to automatically perform the gating. 
As usage scenarios, we can consider both power-saving 
opportunity detection and root-cause analysis of excessive power 
consumption.  

This paper is organized as follows. In Section 2, we present an 

overview of PowerQuest system and usage scenarios. In Section 3 
we describe in detail the data-mining techniques used for power-
aware dynamic invariant extraction. Section 4 explains how RTL 
power-saving opportunities detected by known state-of-the-art 
dynamic power management (DPM) techniques can be identified 
by PowerQuest. In Section 5, we present experimental results 
using ITC99 [3] benchmarks and real-life microprocessor test 
cases that show up to 22.7 % power reduction over classic 

dynamic power management techniques. Section 6 compares 
PowerQuest with related work. Finally, in Section 7 we 
summarize and conclude. 

2. System Overview 
PowerQuest makes use of Learning from Examples [4] 

techniques (more specifically Extended Matrix Approach [5,6]) to 
identify idleness situations that are likely to occur and extracts 
simple Boolean conditions that can be used for the gating of the 
idle blocks.

PowerQuest gets as input simulation traces based on validation 
or power benchmarks. We will refer to each trace as a set of 
simulation data points over time P={p1,...,pn} where a point pi
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represents the values of all the signals at a given clock phase i.
An additional input to PowerQuest consists of the design features 
{F1,...,Fk} needed to classify the positive and negative data points 
(clock phases) of the traces with respect to a splitting criteria 
identified by label L. Each label partitions the set of points into 

two sets: positive examples (PE), which represent data points with 
label 1, and negative examples (NE), which represent data points 
with label 0. 

PowerQuest has a few usage modes which can affect the way 
positive and negative examples (trace data points) are classified. 
The user can control: 1) Time interval of interest 2) Signals of 
interest 3) Assumptions (constraints) under which the invariants 
are mined. The trace data is split based on this input and restricted 

to the data of interest. Obviously, control parameters can 
significantly restrict the size of the data to be mined. 

The signals of interest dictate the variables of the invariant 
relation. The filtering of the invariants based on the comparison 
between positive and negative invariants ensures that every 
candidate learned invariant pi satisfies all the positive points PE 
and does not satisfy any of the negative points NE.  

PowerQuest extracts dynamic invariants from simulation data, 

which by definition is not exhaustive. Thus the validity of each 
invariant detected by PowerQuest has to be formally verified 
(otherwise conditioned to the specific cases where it holds).  

3.  Learning From Traces 
Generally speaking, Learning from Examples [4] addresses the 

problem of extracting, for a given group of objects, a set of 
predefined features differentiating the objects, and a classification 
of the objects as positive and negative examples, a rule that 
generates the classification in terms of feature values. Since this is 
equivalent to classification of the given objects in accordance to 
the set of features, we call this process class label extraction. 
More in detail, the above learning process can be viewed as the 
process of going from specific observational knowledge about 

some objects to a general rule that implies or accounts for the 
observations. In this section we will make the analogy of Learning 
from Examples technique to learning from simulation traces.  

3.1 Class Representation 
We start with a set P={p1,...,pn} of data points. We then define 

a set {F1,...,Fk} of features. With each feature Fi we associate a 
data domain Di. Each feature Fi is a function from P to Di. Thus, 

with each point pj we associate a feature tuple 
F(pj)=<F1(pj),...Fk(pj)>. The set of these tuples constitutes the 
feature space. A label L is a function from P to the domain {0,1}. 
Thus, each label partitions the set of points into two sets: positive 
examples (PE), which represent data points with label 1, and 
negative examples (NE), which represent data points with label 0.     

For example, let us consider the circuit in Figure 1 where 
S=(S1,S2,….S6) is a subset of the signals driving combinational 
logic (in grey) as well as sequential elements (in white). Let us 

also assume that the above logic network has been levelized in 
decreasing topological order leading to 6 logic levels where 
sequential elements are at level 0 while combinational logic is 
distributed over levels 1 to 5. By simulating the circuit, we obtain 
a set of points, each corresponding to the state of the circuit at a 
given point in time. This provides the set P of data points. What 
are the features by which the points are described? Obvious 
features are signal values. Such features have logic values. By 

default, PowerQuest extracts built-in features as well as user 

defined features. Some examples of power relevant features for a 
point pi are SwF and Loc, representing, respectively, the number of 
switching signals at a given clock cycle, and the locality of the 
switching signals (i.e., the average topological distance of the 
switching signals in S from the input of registers). Values for 

feature SwF can be quantitative (extracted by measurements from 
data traces) or qualitative based on a subjective division into 
categories provided by the user. 

Figure 1. A generic sequential circuit. 

For example, if we find out that at a given clock cycle the number 
of switching signals is just 5% over the total amount of signals in 

S, then we can associate the numerical value 5% to the attribute 
SwF. On the other hand, if we argue that a percentage greater than 
5% represents a quantity distinguishing between a high-activity 
scenario from a lower-activity one, then we can associate the 
symbol High (first category) to every value greater than 5%, the 
symbol Low (second category) to the values lower or equal to 5% 
and None (third category) to the value 0%. Similarly to the feature 
SwF, Loc can exhibit numeric values (measurement of level 

proximity) as well as subjective category-based values. For 
example, the user might specify as input to PowerQuest the 
following categories: Far 4, 4<Close<1 and None=1.

A label L is a function from P to the domain {0,1}. A label can 
be viewed as a Boolean feature, but we give it a special role in 
classifying the data points as positive or negative examples. As an 
example, let us assume that there exists a Boolean function say  
L=f(S1,S2,…S6) that is 1 if and only if both the input and the 

output of the flip-flop R1 in Figure 2 have the same logic value at 
a given clock cycle. Thus we can classify each cycle in 
accordance to the idleness due to the concurrent data retention at 
both input and output of R1 (hold condition). In other words, we 
can define two labels L=1 and L=0 associated respectively to the 
hold and not-hold conditions. 

As previously mentioned, the goal of Learning from Examples
is all about learning a relation between features and labels, which 

can be used as a classification model as well as an explanatory 
tool to distinguish between objects of different classes.

An atom is a formula of the form xi ∈ Ai or ~( xi ∈ Ai,) where 

Ai is a subset of DI, the domain of the feature Fi. A feature tuple 

<v1,...,vk> satisfies the formula xi ∈ Ai (resp., ~(xi ∈ Ai)), if vi

∈Ai  (resp., ~(vi ∈ Ai)). We are interested in formulas in 

disjunctive normal form, that is, disjuncts of conjunctions of 
atoms. A feature tuple t=<v1,...,vk> satisfies a formula f if there is 
a disjunct d of f such that t satisfies all conjuncts of d. Our goal is 
to learn a formula that describes the sets of positive and negative 
examples; i.e., it is satisfied by all positive examples and is 
falsified by all negative examples. That is, for a point p, L(p)=1 
implies that F(p) satisfies f and L(p)=0 implies that F(p) falsifies f.
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Clearly, a tuple t=<v1,...,vk> can be described uniquely by the 

conjunction dt= x1 ∈ {v1} & ...& xk ∈ {vk}. Thus a formula f that 

describes PE and NE always exists; simply take f to be the 
disjunction of all conjunctions dt, for t in PE. Our goal is to 
minimize the size of the formula f. For example, the formula f
might express clock-gating logic and we want to minimize its 

power requirements. In general, minimizing the formula f is a 
generalized covering problem and is NP-hard [14], requiring us to 
resort to a heuristic approach. 

3.2 PowerQuest Implementation  
PowerQuest extracts classification rules from positive and 

negative examples. Each example characterizes a data point (in 
our case a specific clock cycle), and its label specifies the correct 
decision associated with that point. The generated decision rules 

are expressed as symbolic descriptions involving relations 
between feature values of the point. 
    As an example, if we analyze each signal in S=(S1,S2,….S6)  in 
Figure 1 over a period of five clock cycles corresponding to five 
data points (p1,p2,…p5), we can classify the behavior of the 
signals themselves over the aforementioned set of features and 
with respect to the labels previously extracted (hold and not-hold
conditions) obtaining a table similar to the following one that we 

can call features-label table. 

    The rows associated with cycles C1, C3 and C4 (i.e., data points 
p1, p3, p4) represent positive examples, while rows associated with 
cycles C2 and C5 (i.e., data points p2, p5) represent negative 
examples. By analyzing the above table, it is easy to extract the 
following relation: "The hold condition for R1 is satisfied if and 

only if there is either no activity within the support of L (i.e., the 
set S) or activity only in signals that are topologically far (i.e., N 
logic levels away when N defines the threshold of locality feature) 
from R1 itself". Nevertheless, not all relations that can be 
extracted from a features-labels table are interesting. More 
importantly, the number of features and/or examples may be too 
high. For this purpose, we focus our attention on automated 
techniques that aim at extracting rules from unordered set of 

positive and negative examples; specifically, we use the Extension 
Matrix Approach (EMA) developed by Hong [5] and 
subsequently improved by Wu [6]. In more detail, the EMA is a 
covering technique, which represents knowledge in the form of 
disjunctive Boolean formula by performing a heuristic search 
through a space of logical expressions, until it finds a decision 
rule that covers the positive examples, while leaving out the 
negative examples.  

In summary, PowerQuest detects invariants in two steps. In the 

first phase, power saving opportunities are extracted by splitting 
trace data (i.e., the set of examples) into two groups of examples 
(i.e. positive and negative) and by learning a Boolean function 
that exhibits a False value for all negative examples and a True 
value for  the positive ones.  

In the second step, the learning space of the mining process is 
reduced to the previously extracted set of positive examples in 
order to quantify user-defined metrics (e.g., switching activity of 
signals and signals activity peaks) that are of interest. In other 
words, PowerQuest starts learning values of features provided by 

the user within the space of positive examples and the fact that a 
given feature exhibits a specific value (or within a specific range 
of values) represents a property that is invariant within the set of 
positive examples.  

4. Power-Savings Opportunities 
We now show how PowerQuest automatically detects common 

DPM opportunities as Operand Isolation [7] through efficient 
approximation of observability don’t care function from trace 
data. Then, we demonstrate through Pre-computation [8, 9] 
technique how PowerQuest minimizes the gating logic by 
learning a signal that can substitute the gating logic.  

4.1 Operand Isolation  
    Operand isolation [7] is a technique to minimize the power 
overhead incurred by redundant operations by selectively 

blocking the propagation of switching activity through the circuit. 
In Figure 2-a, we observe that there is an active path from the 
adder to the flip-flop only when the control signals Sel_0 and 
Sel_1 are both high. In all other cases, the output of the adder is 
not visible by the flip-flop, leading to useless computation when a 
change of value occurs at the input of the adder. As shown in 
Figure 2-b, operand isolation stops any activity at the input of the 
adder by insertion of a block of gating logic that is activated by a 
signal AF (Activation Function) with the ability to detect the 

useless cycles of the adder. AF is high in the “active” clock cycles 
when the adder output is being used and low otherwise. In other 
words, ~(AF) represents the Observability Don’t Care (ODC) [10] 
condition of the output y of the adder block and it can be extracted 
by computing the condition ODCy =  (Fy=1 XOR F y =0), where Fy

represents a Boolean function of the variable u with variable y in 
its support, while Fy=1 XOR F y =0 is the ordinary Boolean 
difference F/ y of Fy with respect to y. The value of ODCy is thus 

True in those cases where y is not observable at u, and False 
otherwise. In our approach we generate ODCy of a signal y with 
respect to a signal u by initially obtaining the function Fy based on 
simulation traces and subsequently we simplify Fy properly in 
order to find two simple Boolean functions representing Fy =0 and 
Fy=1. This can be accomplished by generating sets of positive and 
negative examples based on the splitting condition u=1 and then 

learning the function Fy by establishing a relation between u and y.
EMA then yields a DNF function Fy that approximates the real 
Boolean function (let us name as g) driving the signal u for the 
given circuit. We do know, however, that Fy agrees with g on all 
points in the trace. Now we can take the ODC condition to be (F 

y=0 XOR F y=1). Clearly, we need to use formal techniques to 
ensure that our ODC is correct (i.e., the gating based on the 
computed ODC will be preserving the functionality of the original 

circuit). Although in this simplistic example both trace based data 
mining and structural logic analysis techniques would compute 
the same unobservability condition ODCy = (S0·S1), trace based 
data mining has the potential of detection of simpler and more 
global ODC conditions utilizing the common-case legal 
computation data embedded in the traces. 

Cycle Data Point Sw Loc Label 

C1 P1 None None 1 

C2 P2     Low Close 0 

C3 P3     High Far 1 

C4 P4 None None 1 

C5 P5 High Close 0 



4.2 Precomputation
    The procedure adopted in previous section to extract ODC 

conditions for Operand Isolation can be extended also to the case 

of Precomputation [8]. Pre-computation�relies on duplication of 
part of the logic with the purpose of pre-computation of an ODC 

condition one clock cycle earlier. In this section, we will 
demonstrate how PowerQuest does not add extra logic for gating, 
but rather learns a signal (if any) that can be used as substitute for 
the computed ODC condition.  

 a) 

b) 

Figure 2. Exploitation of Operand Isolation. 

Referring, for example, to the circuit in Figure 3, we may want 
to use the previously extracted activation function AF in order to 
selectively stop the clock signal and thus gate the activation of 
sequential elements that eventually drive the adder input.  In this 

manner, we decrease power consumption not only in the fan-out 
cone of logic of the input flip-flops but also within the flip-flops 
themselves. The main difficulty, however, is due to the fact that 
ODC conditions masking flip-flops in clock cycle “T” should be 
used to gate their clock in cycle “T-1”. In other words, the clock-
gating logic should be active in the clock cycle immediately 
before the flip-flop becomes unobservable [2]. Unfortunately, the 
control signals at the inputs of the ODC functions are generated 

one clock cycle too late. If the control signals S0 and S1 are 
available directly as outputs of flip-flops, the instantiation of the 
clock-gating logic is relatively straight-forward. Logic gates 
implementing the ODC conditions are inserted and their inputs are 
connected to the inputs of the flip-flops driving S0 and S1. In real-
life designs, however, the control inputs of the steering modules 
are seldom coming directly from the flip-flops; instead, they are 
often generated by additional logic, as shown in Figure 3. In this 

case, the entire cone of logic between flip-flops and control
signals S0 and S1 needs to be duplicated and connected to the 
inputs of the flip-flops, and the ODC computation gates need then 
to be connected to the outputs of the duplicated cones [2]. Clearly, 
the addition of this extra logic may represent a non-negligible 
overhead. Referring to Figure 3, our approach tries to learn about 
the existence, within the fan-in cone CL, of a signal, say t, whose 
logic behavior is similar to the ODCy condition. 

In such a case, t can be used as an active-low signal to 
condition the activation of registers driven by the block of logic 
CL. The extraction procedure of the signal t is straight-forward 
and consists of four major steps: 

Figure 3. A generic sequential circuit 

1. A Boolean function representing the ODC
y
 is computed by the 

method discussed earlier. A matrix of ODC
y

positive and 
negative examples is built. We call such a matrix OEM

y
 (i.e., 

ODCs Examples Matrix) and it contains all the configurations 
for which ODC

y
 equals 1 or 0. In this learning process, the 

features are values of signals of S
0
and S

1
. We split the set of 

trace points according to ODC
y
 == T and ODC

y
== F and label 

them in the matrix, respectively. 

2. By considering the simulation trace of the signals within the 
block CL, a matrix of unclassified examples is generated. We 
call such a matrix UEM (i.e., Unclassified Examples Matrix)
and it contains only features' (signals') values since no class 
label extraction has been performed.

3. We compare each example (i.e., signals' values at a particular 
trace point/cycle) in the matrix UEM with the labels in OEM

y
.

More specifically, we identify all the features (signals) that 
exhibit value 1 in an example (trace point/cycle) p

i
 in matrix 

UEM and has ODC
y

= T in the next example p
i+1

 in matrix 
OEM

y
 as potential candidates to be clock-gating signals.  

4. Finally, the set of found features (if any) is pruned in order to 
get the set which exhibits the largest number of 1’s. The 

signals associated to the features in this set will have 
functionality close to ODCy and thus will be good candidates 
for clock gating (i.e., good candidates for t). 

In Figure 4, the OEMy matrix for the Observability Don’t Care 
condition ODCy= (S0·S1)’ extracted previously is represented. The 
columns in grey represent the clock cycles during which signal y
is not observable (ODCy=1). Let us suppose that block CL in 

Figure 3 contains exactly four signals A0, A1, A2, A3 represented 
by the UEM matrix shown in Figure 5. We want now to find a 
signal among A0, A1, A2, A3 that could be used effectively as 
clock-gating signal for the sequential element driven by the block 
CL. This can be accomplished by considering the examples (i.e. 
columns) in UEM and by checking for each of them if the value 
of ODCy to the associated next example in OEMy is T or F 
revealing the presence or absence of observability at the next 
cycle for the signal y. In particular, if y is observable at the next 

clock cycle then the considered example (column) in UEM is 
removed since it does not have a candidate feature (signal) that 
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can be used as activation signal. By applying the above procedure 
we are, hence, pruning the set of examples in UEM obtaining a 
smaller UEM matrix as shown in Figure 6. In particular, the 
higher the number of 1’s, the better it is since the signal will cover 
more cases of un-observability. For the case above, the number of 

1’s of each row is  

Figure 4. The OEM
y
 Matrix

Figure 5. The UEM Matrix of traces for the block of Logic CL

Figure 6. The pruned UEM Matrix 

respectively, A1 = 6, A2 = 6, A3 = 5, A4 = 8 leading to the 
conclusion that signal A4 is the best choice. 

5. Experimental Results 
    We have implemented trace based data mining using the 

EMA approach and supporting the proposed flow and 
methodology for power optimization in PowerQuest. In order to 
evaluate the scalability and performance trends, we ran 
PowerQuest on an industrial micro-processor design as shown in 

Figure 7. The efficiency of the tool in extracting interesting 
invariants that aid getting significant power reduction was tested, 
as shown in Table 1 and 2 using ITC'99 suite. The industrial 
design is a data-path block with very regular structure, extracted 
from a floating-point multiplier of a state-of-the-art micro-
processor design. It consists of 935 sequential elements, 599 
primary inputs and 309 primary outputs. Experiments have been 
performed on a Dual-Core Workstation with 4 Gb of main 

memory. Performance of PowerQuest has been evaluated in two 
different scenarios over trace data of 10000 cycles. In the first 
case, we constrained the mining process by specifying a property 
under which invariants (i.e., unobservability conditions) should be 
extracted. In practice, we directed the extraction to gating 
conditions for sequentials by constraining the splitting condition 
with SA (Switching Activity) > 0.5 for each sequential thus 
reducing the search space. In the second case, we did not specify 

any initial constraint, letting PowerQuest make its choice. Clearly 
in such a case performance decreases since the tool has to process 
the entire data set in order to gather features as well as splitting 
conditions. As shown in Figure 8, the analysis of over 500 signals 
takes less than 60 minutes proving the scalability of the method to 
real-life test case. Tool efficiency in mining interesting invariants 
has been evaluated on 10 benchmarks included in the ITC'99 suite 
[3]. We have chosen the benchmarks since the size of the 
benchmarks facilitates in-depth analysis of results with respect to 

their gating quality with respect to power and their functional 
validity. Table 1 reports, for each benchmark, number of cells 
(Cells), number of flip-flops (FF), number of primary input (PI) 

and output (PO) as well as number of interesting invariants 
associated with power saving opportunities such as Operand 
isolation (OI-Inv) and Pre-computation (PComp-Inv). Also, Table 
1 reports number of invariants found by PowerQuest and related 
to the existence of regions in the design with distinguishably 

different Switching Activity (SA-Inv) and Activity Peaks (APk-
Inv). We computed the gating manually utilizing the gating  

Table 1. Invariant Extraction 

condition automatically detected by PowerQuest and compared 
the results against classic ODC-based clock gating introduced in 
[2] by running Power Compiler on the output design. The validity 
of dynamic invariants found by PowerQuest was checked by 
formally verifying the functional equivalence of the gated and 
original designs. For the results reported in Table 2, we have 

assured functional correctness of the gated design utilizing the 
gating function computed by PowerQuest. Gating results for 
Bch_01, Bch_02 and Bch_06 have been left out in Table 2, since 
no invariants associated to pre-computation opportunities are 
found, eliminating one of the prerequisite needed for exploitation 
of ODC-based clock gating. As shown in Table 2, PowerQuest 
extracted ODC based clock gating gets superior results (up to 22% 
power reduction with no negative impact to timing and area). 
Interestingly, delay on critical path improves up to 31.7%. This is 

due to the fact that implementation of ODC-based clock gating is 
not performed by involving logic duplication or retiming 
transformation (as in [2]); rather, PowerQuest extracts signals (if 
any) already available within the design that can be used as 
substitute for all or part of the logic needed to control the 
activation of FFs based on Observability Don’t Care conditions. 
Moreover, since PowerQuest tries to approximate the general 
ODC condition rather than the approximation of the restricted 

ODC condition in [2], it can come up with higher quality gating 
condition. 
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Figure 7. Performance evaluation on different scenarios. 

ODCy T T T F T T T F T T T F T T T F 

S0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

S1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Bench Cells FF PI PO OI-Inv PC-Inv SA-Inv APk-Inv 

Bch_01 45 5 4 2 2 0 0 0 

Bch_02 25 4 3 1 0 0 0 0 

Bch_03 150 30 6 4 7 8 2 5 

Bch_04 480 66 13 8 12 3 1 6 

Bch_05 608 34 3 36 17 2 1 9 

Bch_06 66 9 4 6 1 0 0 0 

Bch_07 382 51 3 8 8 5 4 9 

Bch_08 168 21 11 4 3 1 1 5 

Bch_09 131 28 3 1 3 2 4 2 

Bch_10 1000 121 7 6 21 11 7 12 

A1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

A2 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 

A3 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

A4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

A1 1 1 1 1 1 1 0 0 0 0 0 0 

A2 0 0 0 1 1 1 0 0 0 1 1 1

A3 1 0 1 0 0 1 0 0 1 0 0 1

A4 0 1 1 0 1 1 0 1 1 0 1 1



Table 2. PowerQuest ODC-based Clock Gating  vs. ODC-based Clock Gating in [2] 

6.  Related Work 
     Other approaches that have contributed to dynamic invariant 
detection are [12, 13]. Invariant extraction from software traces 
has been suggested in [12], and then adapted in [13] to hardware 
traces. The invariants are selected from a set of candidate 
invariants; the tool just has to check which invariants hold in the 

input traces. The construction of the set of candidate invariants is 
hardwired into the tool. In our approach, the selection of features 
and labels is left to the user, but the invariants are extracted using 
machine-learning techniques.  We pay a higher computational 
price, but we are able to extract much more complex invariants. 
Moreover, our approach is unique in the application of dynamic 
invariant extraction to the domain of dynamic power-reduction 
opportunities detection (See [15] for applications of machine-

learning techniques to the design of shut-down policies for putting 
modules into sleep mode). We utilized here Extension Matrix 
Approach (EMA) as the machine learning technique based on the 
experience reported in [5, 6]. Whether other machine-learning 
approach, cf. [4, 11], can perform better in the context of trace 
driven data mining for dynamic invariant extraction for power 
reduction is an interesting question and has not been the focus of 
our current research. In summary our contribution is in the 
demonstration the benefits oftrace data-mining for extraction of 

dynamic invariants for power optimization rather than application 
of the specific machine learning technique (i.e., EMA). Our 
machine-learning techniques overcome the difficulties of the 
standard approach of extracting clock-gating opportunities by 
structural analysis [2]. The advantages of our approach have been 
three folded: 1) Gating (ODC) condition approximation is not 
limited to latch boundaries or only steering logic modules as in 
[2]. 2) Utilizing assumptions embedded in traces that represent the 

common case computation of the design, the ODC conditions that 
we compute are potentially simpler. 3) We do not add extra logic 
for gating but rather learn a signal (if any) that can be used as 
substitute for all or part of the logic needed to control the 
activation. Computation of such a signal would have been 
practically impossible using only structural/functional analysis 
without the trace data. The disadvantage of our approach is the 
need of formal verification of the gating conditions since we 

extract dynamic invariants from simulation data, which by 
definition is not exhaustive.  

7. Conclusions 
    We introduced here PowerQuest, a novel framework, with the 
primary goal of extracting of "interesting" invariants for power 
optimization given a simulation trace database, based on machine-
learning techniques. We demonstrated using ITC99 benchmarks 
how PowerQuest can automatically extract classic dynamic 
power-management (e.g., pre-computation, operand isolation) 

opportunities and get up to 22.7 % reduction on power without 

negative impact on delay and area over selected classic power 
reduction methods. Additionally, using real-life microprocessor 
benchmark data we demonstrated the method's robustness and 
scalability on real-life design environment. To the best of our 
knowledge, PowerQuest pioneers the usage of machine-learning 
techniques in mining dynamic (i.e., simulation based) power data 
to facilitate power reduction.  
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 Delay 

[%] 

Power 

[uW] 
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Bch_03 94 1640 1.84 513.4 77 18.1 1555 5.2 1.57 14.7 437.4 14.8 

Bch_04 278 4726 2.08 911,9 193 30.6 4186 11.4 1.62 22.1 874.5 4.1 

Bch_05 280 4073 2.66 299.3 263 6.1 3837 5.8 2.37 10.9 275.2 8.0 

Bch_07 184 3173 1.89 476.7 160 13 2931 7.6 1.29 31.7 435.8 8.6 

Bch_08 102 1450 1.96 241.8 93 8.8 1364 5.9 1.75 10.7 226.3 6.4 

Bch_09 94 1561 1.65 450.8 92 2.1 1525 2.3 1.25 24.2 444.6 1.3 

Bch_10 601 8855 2.77 1242 578 3.8 8628 2.56 2.43 12.3 958.9 22.7 
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