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Abstract
This paper introduces a class of single-ended coding schemes to
reduce off-chip interconnect energy consumption. State-of-the-art
codes for processor-memory off-chip interfaces require the trans-
mitter and receiver (memory controller and memory) to collaborate
using current and previously transmitted values to encode and de-
code data. Modern embedded systems, however, cannot afford to
use such double-ended codes that require specialized memories to
participate in the code. In contrast, a single-ended code enables
the memory controller to encode data stored in memory and sub-
sequently decode that data when it is retrieved, allowing the use
of commodity memories. In this paper, single-ended codes are
presented that assign limited-weight codewords using trace-based
mapping techniques. Simulation results show that such codes can
reduce the energy consumption of an uncoded off-chip interconnect
by up to 42.5%.

1. Introduction
Most modern system-on-a-chip-based (SoC-based) embedded

systems require more memory capacity than can reasonably be em-
bedded into the SoC core. In such systems, the interconnect be-
tween the core and external memory can consume as much or more
energy than the core itself. Even though external memory and its
associated interconnect are major contributors to the overall energy
consumption in SoC-based embedded systems, such systems will
continue to require the memory capacity afforded by external mem-
ory into the foreseeable future. Therefore, it is essential to develop
memory controller architectures that reduce the energy consump-
tion of the off-chip interconnect to external memory.

Many techniques have been proposed to reduce the energy con-
sumption of off-chip interconnects and external memories. Energy
can be reduced by minimizing the number of external memory ac-
cesses [1–4] and then using low energy memory modes when the
external memory is not in use [5, 6]. However, external memory is
included in most systems because that is the only way to provide the
necessary memory capacity for the system. Therefore, a significant
number of external memory accesses will always remain. Memory
compression [7–11] and coding [12–25] are well-known techniques
to further reduce the energy consumption of the processor-memory
interconnect and the external memory. However, memory com-
pression techniques are best suited for instructions, not data, which
leaves coding as the primary technique for reducing energy con-
sumption on the interconnect for data transfers.

Memory coding reduces energy consumption on the interconnect
by reducing switching activity, i.e., bit transitions. However, prior

This research was supported in part by gifts from Texas Instruments and
Advanced Micro Devices.
.

coding techniques are almost all context-dependent, double-ended
codes that require a codec (coder/decoder) on both ends of the in-
terconnect [12–24]. Context-dependent codes use a one-to-many
mapping in which the codeword is chosen based upon both the cur-
rent and previous data values to cross the interconnect. For exam-
ple, bus-invert coding selects the value that minimizes the Ham-
ming distance to the value on the interconnect, by either transfer-
ring the data value unchanged or inverting it [24]. Since the context
of a transmission is only known at the time of the transfer, such
context-dependent codes must also be double-ended, meaning that
the receiver must participate in the code to recover the original data
value.

Modern embedded systems, however, cannot afford to use
double-ended codes over the processor-memory interconnect. As
embedded systems development is driven by cost and time-to-
market considerations, such systems must use commodity mem-
ories. These commodity memories do not have the logic required
to participate in double-ended coding schemes. So, while double-
ended coding schemes can reduce energy consumption when they
are appropriate (such as for on-chip interconnects, specialized sys-
tems that can afford the use of custom memories, etc.), they are not
useful for the vast majority of embedded systems.

This paper introduces the concept of single-ended, limited-
weight codes for interconnect energy reduction. These single-
ended codes can be used in modern embedded systems with com-
modity memory, yet are still able to achieve significant reduction
in the processor-memory interconnect’s energy consumption. The
proposed codes separate codeword generation from codeword as-
signment. The generated codewords are limited-weight codewords
(codewords with a limited number of ones), which are selected
from a larger code space [25]. As initially proposed, such limited-
weight codes (LWCs) were used with a straightforward assignment
strategy to implement a single-ended, context-independent code.
However, using such an assignment, LWCs only modestly reduce
the switching activity on the interconnect compared to state-of-the-
art codes. This paper introduces a trace-based assignment strategy
for limited-weight codewords that reduces the switching activity
on the interconnect as much or more than state-of-the-art double-
ended, context-dependent codes without requiring the participation
of the memory.

The trace-based assignment strategy exploits frequency and se-
quence information from memory traces collected on the target
system. Previously proposed frequency-based codes have all been
double-ended [12–16]. A key observation of this work is that the
appropriate use of frequency information can result in significant
reductions in switching activity on the interconnect without the
need to resort to a double-ended coding scheme. Furthermore,
the additional use of sequence information during codeword as-
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signment can lead to even greater reductions in switching activity.
In fact, a sequence-based assignment of limited-weight codewords
yields a 42.5% reduction in switching activity with a single-ended
code. This is competitive with one of the best previously proposed
double-ended, frequency-based codes, which achieves a 38.7% re-
duction in switching activity with DRAM participation.

This paper is organized as follows. In Section 2, the proposed
singled-ended, limited-weight codes are described. Section 3 de-
scribes a memory controller architecture to support these coding
techniques. Section 4 analyzes the performance of the proposed
memory controller innovations on a set of embedded computing
benchmarks. Finally, Section 5 concludes the paper.

2. Coding for Commodity Memories
This section develops a class of context-independent, single-

ended coding schemes for embedded systems. These coding
schemes are split into two phases. During the first phase, a set
of codewords is generated. In the second phase, each information
symbol is assigned to a unique codeword. These assignments are
determined using only frequency-based and sequence-based met-
rics, without any run-time context information. Such codes have
several advantages. First, they significantly lower energy consump-
tion on the interconnect between the SoC and the memory mod-
ules. Second, they are single-ended, so they do not require the
memory to participate in the coding/decoding process. A codec is
only required in the memory controller on the SoC. Last, the cod-
ing/decoding process has a negligible impact on performance.

2.1 Codeword Generation
Limited-weight codes (LWCs) provide an effective set of code-

words that minimize the number of ones in each codeword [25].
LWCs are single-ended, context-independent codes. Consider a k-
bit wide data bus with 2k information symbols. A m-LWC is a
one-to-one mapping where every word in the 2k input space maps
to a codeword such that the Hamming weight (i.e., the number of
ones in the codeword) is less than or equal to m. Since the source
entropy must remain unchanged, i.e., since every information sym-
bol must have a unique codeword, the following inequality must be
satisfied by all m-LWCs:
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Here, n is the minimum number of bits (m ≤ n) required to satisfy
the inequality (1). Therefore, n determines the width of the bus
needed to implement a m-LWC. Note that (1) is only satisfied for
n ≥ k.

A perfect m-LWC satisfies (1) above with equality, i.e., all the
codewords of length n with weight less than or equal to m are
used in the mapping. For example, a 4-LWC where k equals 8 is
a perfect 4-LWC when the codeword bus width, n, equals 9. The
degenerate case where m equals k is a simple remapping. For ex-
ample, an 8-LWC where k equals 8 includes the same codewords
as the input space, but they can be potentially reassigned to reduce
energy consumption on the processor-memory interconnect. This
paper focuses on 4-LWC and 8-LWC codewords for 8-bit informa-
tion symbols.

2.2 Trace-based Assignment
As discussed in the introduction, most coding techniques use

context information to assign codewords in order to minimize tran-
sitions. However, single-ended codes require the assignment to be
independent of the current context. This can be done with no a pri-
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Figure 1: Graph representation of trace information

ori information about the memory behavior of the system, as in the
originally proposed limited-weight code [25]. In contrast, this pa-
per proposes to assign codewords based on an analysis of memory
traces taken from the system.

Two important sets of information can be collected from a mem-
ory trace: the frequency of occurrence of each value, i, that crosses
the interconnect (fi) and the frequency with which each value, i,
that crosses the interconnect is followed by every other value, j
(tij). This information can be represented by a graph, as shown in
Figure 1. Each node in the graph represents a single data value, i.
The weight of i is the frequency of occurrence of that data value,
fi. Each node, i, is also connected to every other node, j, including
itself, with a directed edge. The weight of an edge from node i to
node j is the the frequency with which the data value j follows the
data value i over the interconnect, tij . Since the same number of
bit transitions will occur regardless of the order in which two val-
ues cross the interconnect, the two directed edges that connect each
pair of nodes can be collapsed into a single edge whose weight is
the sum of the two directed edges, t′ij :

t′ij = t′ji = tij + tji ∀i �= j (2)

Note that the frequency of occurrence of each value is then related
to the transition frequencies in the following way:

fi =
X

j
tij = tii +

1

2

X

j �=i
t′ij (3)

Note that
P

j �=i t′ij is halved because t′ij includes all the edges that
both enter and leave node i, and each occurrence of i is accompa-
nied by both an entrance and an exit from i.

This graph can then be used to assign codewords in a variety
of ways. This paper explores the use of the node weights to per-
form frequency-based assignment and the edge weights to perform
sequence-based assignment.

2.2.1 Frequency-based Assignment
Codewords can be assigned based on the frequency of occur-

rence of each information symbol. Several previously proposed
codes have performed such frequency-based assignment [12–16].
However, they have used different code generation techniques. For
example, frequent value coding uses one-hot encoding of the 32
most frequently occurring 32-bit values [15]. Since most of the val-
ues remain uncoded, frequent value coding also uses a decorrela-
tor [17, 20] to reduce switching activity using context information.
Single-ended versions (without the decorrelator) of such word-level
frequent value coding schemes do not perform as well as simpler
coding schemes, such as bus-invert coding [24].

Fig. 2 presents the frequency of occurrence of word and byte
values across the MiBench embedded benchmark suite [26]. This
data helps illustrate the limitations and opportunities of frequency-
based coding techniques. As Fig. 2(a) shows, the top 3 32-bit words
occur orders of magnitude more frequently than other values on
the processor-memory interconnect. However, as the figure also
shows, the remaining values in the top 256 frequently occurring
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Figure 3: Frequency-based assignment

words continue to have a relatively high frequency of occurrence
that does not drop off dramatically. For instance, the 10th most
frequently occurring value only occurs only 5 times as often as
the 256th most frequently occurring value. These remaining words
are likely to be significant contributors to the switching activity on
the interconnect. This is further illustrated in Fig. 2(b), where the
cumulative distribution of the top 256 most frequently occurring
32-bits words only accounts for approximately 50% of the values
on the processor-memory interconnect. Given that so many differ-
ent word values cross the interconnect, it is impractical to encode
them all efficiently. For example, Fig. 2(b) shows that frequent-
value coding would only encode 27.6% of the interconnect traffic
by one-hot encoding the 32 most frequently occurring values.

It is far more practical to code at the byte level, since there are
only 256 possible values. Furthermore, similar to the word-level,
the most frequently occurring byte appears an order of magnitude
more frequently than other bytes on the processor-memory inter-
connect. Although the drop-off in frequency is a little less rapid
than at the word-level, the 200 least frequently occurring byte val-
ues still have surprisingly similar frequencies of occurrence. The
relatively slow drop-off in frequency of occurrence suggests that a
code that remaps all information symbols to limited-weight code-
words will be effective.

A frequency-based, limited-weight code exploits this frequency
distribution by ordering the information symbols by decreasing fre-
quency of occurrence, fi. Each information symbol is then as-
signed, in order, to the LWC codeword with the least weight that
remains. The use of an 8-LWC allows a simple remapping in which
information symbols are reassigned based on their frequency of oc-
currence. The use of a 4-LWC can be more effective, as the weight
of the codewords is reduced. Such a 4-LWC would map the 46
``

9
0

´

+
`

9
1

´

+
`

9
2

´´

most frequently occurring byte values (which
account for 74% of all bytes transferred over the interconnect) to
9-bit codewords with 2 or fewer ones in the codeword. The re-
maining 26% of the bytes transferred over the interconnect would
be mapped to 9-bit codewords with only 3 or 4 ones in the code-
word. Such a code will result in a dramatic decrease in ones trans-
ferred over the interconnect, which will increase the probability of
transferring consecutive zeros across any given wire. Therefore, in-
terconnect values will tend to remain at zero, reducing the overall
switching activity.

Frequency-based remapping is illustrated with an example
shown in Fig. 3. There are 4 nodes in the graph and the code-space
consists of all 2-bit codewords, i.e., a 2-LWC where n = 2. The
second column of the table in the figure shows the frequency of oc-
currence, fi, of each value, and the third column ranks the nodes in
descending order of fi. Based upon this, the nodes are processed
in the order n1, n4, n3, and n2 and the assigned codewords are
illustrated in the resulting graph with shaded nodes. The expected
number of bit transitions for this assignment of codewords, if the
relative frequency of occurrence remains unchanged, is 124.

2.2.2 Sequence-based Assignment
The set of codewords can also be assigned to information sym-

bols based on the sequence in which they occur. Specifically, the
frequency with which pairs of values follow each other on the inter-
connect can be used to ensure that pairs of values that follow each
other frequently will be assigned codewords that are close to each
other (i.e., have a small Hamming distance between them). Simi-
larly, pairs of values that do not follow each other very frequently
can be assigned codewords that are not close to each other.

Figure 4 shows the frequency of transitions between bytes as a
function of the frequency of occurrence of the bytes. The 256 8-
bit information symbols are arranged in 8 groups of 32 symbols
each in decreasing order of frequency of occurrence. For exam-
ple, group 1 contains the 32 most frequently occurring bytes and
group 8 contains the 32 least frequently occurring bytes. Along
the y-axis, the vertically stacked bars represent the fraction of the
transitions that occur between a symbol in group i and a symbol in
group j, where j ≥ i. From the figure, it is clear that approximately
38% of the transitions are completely contained within group 1 of
the 32 most frequently occurring bytes. However, it is surprising
that 45% of the transitions also occur between bytes in group 1
and bytes in the remaining groups. Indeed, the number of transi-
tions that occur between a byte in group 1 and a byte in group 2
(second bar from the bottom in the group 1 bar) is nearly an or-
der of magnitude greater than transitions that are completely con-
tained between bytes in group 2 (bottom bar in the group 2 bar).
This is a very strong observation that motivates codeword assign-
ments for bytes in groups 2 through 8 that reduce the Hamming
distance to the codewords assigned to bytes in group 1. This is,
however, not addressed in frequency-based assignment, since the
codewords are ranked in ascending order of their weights and as-
signed to information symbols ranked in descending order of fre-
quency of occurrence. As a result, frequency-based assignment
minimizes the Hamming distance between codewords assigned to
bytes in a group, at the expense of the Hamming distance between
codewords assigned to bytes across groups. The rest of this section
describes sequence-based codeword assignment that utilizes transi-
tion frequency distribution between pairs of bytes across groups to
minimize the Hamming distance of their codeword assignments.

From the graph in Fig. 1, sequence-based assignment is formally
equivalent to the minimization of the following objective function:

256
X

i=1

256
X

j=i+1

(code[i] ⊕ code[j]) t′ij (4)

where code[i] and code[j] are the codewords assigned to infor-
mation symbols i and j, respectively, and t′ij is the frequency of
occurrence of the sequences i → j and j → i, as defined in equa-
tion (2). This problem is intractable and belongs to the class of
NP-hard problems.

In practice, however, such problems respond fairly well to
heuristics that proceed with assignments to information symbols
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C – set of generated codewords, e.g., 8-LWC, 4-LWC for assignment
U – set of information symbols with no codeword assignment
A – set of information symbols with assigned codewords

initialize

U ←{all nodes in subject graph}
n ← maxi∈U (fi), i.e., n is the most frequent node
code[n] ← 0; C ← C\{0}; U ← U\{n}; A ← {n}

while U �= φ do

n ← maxi∈U
“

P

j∈A t′ij

”

code[n] ← minc∈C
“

P

j∈A(c ⊕ code[j]) t′nj

”

C ← C\{code[n]}; U ← U\{n}; A ← A
S

{n}

Figure 5: Pseudo-code for sequence-based assignment

one-at-a-time. The linear pass heuristic algorithm shown in Fig. 5
was developed to solve this problem as follows. The central idea
is to proceed by making codeword assignments to nodes (informa-
tion symbols) one-at-a-time in the subject graph. All nodes begin
in the set of unassigned nodes, U . Once a codeword assignment
is determined for a node, that node is transferred to the set of as-
signed nodes, A. The first symbol to be assigned a codeword is
the most frequently occurring byte. Although the first codeword
can be randomly assigned, 0 is chosen for simplicity. On each sub-
sequent pass, the node, n, with the maximum sum of transition
frequencies to A given by

P

j∈A t′nj is chosen for codeword as-
signment. Ties are broken by selecting the n with higher frequency
of occurrence, fn. The codeword, c, is chosen such that it has
the minimum cumulative weighted Hamming distance to the nodes
in A. The weighted Hamming distance of the codeword c to node
j ∈ A is the Hamming distance between c and code[j] weighted
by the corresponding t′nj . By summing over all j ∈ A, the cumu-
lative weighted Hamming distance of c to A is determined. The
search for the codeword that minimizes the cumulative weighted
Hamming distance is exhaustive over the pool of unassigned code-
words. Once a codeword is assigned to n, it is moved from U to A.
The updates are performed as indicated in the pseudo-code, and a
new node, n, is chosen for codeword assignment on the next pass.

The heuristic is illustrated with an example shown in Fig. 6, start-
ing with the same graph as Fig. 3. There are 4 nodes in the graph
and the code-space consists of all 2-bit codewords. Each graph in
the figure represents one pass through the algorithm of Fig. 5. The
shaded nodes belong to the set of assigned nodes, A, and the un-
shaded nodes belong to the set of unassigned nodes, U . At each
step, the solid edges are edges that are considered in selecting the
next node, n, and the dashed edges are ignored at that step, but will
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be used in future steps. For clarity, edges that are no longer needed
are removed from each graph. The set of assigned nodes, A, is ini-
tialized to the most frequently occurring node n1, which is assigned
the codeword 00, as shown in the upper left of Fig. 6. The weights
of the edges between the remaining nodes and A are used to se-
lect node n4, which has the maximum weight to A. This node is
assigned a codeword that minimizes its cumulative weighted Ham-
ming distance to A, as shown in the upper right of Fig. 6. The
process is repeated with the new A, which now contains two nodes.
Node n2 has edge weights of 22 to A and node n3 has edge weights
of 24 to A, so node n3 is assigned a codeword next. As shown in
the lower right of Fig. 6, node n3 is assigned 11, as that minimizes
the cumulative weighted sum of the bit transitions between n3 and
nodes {n1, n4} in A. Finally, the last node n2 is assigned the re-
maining codeword, as shown in the lower left of the figure. The
expected switching activity obtained for this assignment of code-
words is 102. This is a 17.7% improvement over the frequency-
based assignment for the same graph, and is attributable to the in-
terchange of the assignments of 10 and 11 to nodes n2 and n3 in the
subject graph. Sequence-based assignment thus results in the best
possible assignment, since edges between the two pairs of code-
words with Hamming distance 2 ({01,10} and {00,11}) have the
two lowest weights (2 and 10) in the subject graph.

3. Memory Controller Architecture
A context-independent codec does not need to be near the pins

of the SoC core. As the only input to the codec is the data itself,
the data can be encoded and decoded anywhere within the memory
controller. Therefore, data can be encoded well before it is written
to memory. The latency of encoding the data can likely be hidden
by the long latency SDRAM operations that must occur before the
data can cross the pins. Similarly, data can be decoded well after
it is read from memory. Again, the decoding latency could possi-
bly be hidden by arbitration delays for the system bus. For the 30
benchmark programs from the MiBench suite that will be explored
in Section 4, an extra cycle latency penalty for decoding results in
less than a 0.1% performance penalty on average.

Of the many possible ways to implement a context-independent
codec, a lookup-table is the most efficient mechanism for the trace-
based codes described in this paper. To encode or decode bytes,
a 256-entry table would be required with either 8 or 9 bit entries,
depending on the code. For performance, multiple identical tables
could be used, one for each byte that can be transferred on the off-
chip interconnect in a given cycle. To provide the flexibility to
change the code, the lookup-tables would have to be SRAM struc-
tures.

The introduction of SRAM tables in the encoder and decoder
will increase the total energy consumed by the system. For the
frequency-based, 4-LWC code, the encoder would require four 256



entry, 9-bit wide SRAM tables to allow four bytes to be encoded
per cycle. The decoder would require four 512 entry, 8-bit wide
SRAM tables to allow four bytes to be decoded per cycle. Note that
half of the 512 entries in the decoder tables would be unused, but
a 512 entry SRAM enables a simple lookup for decoding. These
tables can be approximated as 2 KB, 32-bit wide memories. An
access to such a memory in 65 nm CMOS at 0.9 V would consume
approximately 5.7 pJ [27].

To put this in perspective, a transition on a 5 mm processor-
memory interconnect with a 2.5 V memory would consume ap-
proximately 11 pJ. This assumes that the capacitance of the
processor-memory interconnect (including the processor package
traces, processor pins, board trace, memory pins, and memory
package traces) is about 1.5 pF for the processor, 106 pF/m for
the board trace, and 1.5 pF for the memory [28]. Therefore, the
proposed coding schemes must eliminate about 1/2 a bit transition
per transfer to break even in terms of energy consumption.

Finally, many of the codes discussed here increase the size of
the data by adding an additional bit for every byte. This increases
the data-path width of the memory controller, the width of the
processor-memory interconnect, and the width of the SDRAM. Ob-
viously, this additional bit can increase energy consumption. How-
ever, the objective of these codes is to reduce energy consumption
by limiting the number of transitions, so usually this is not an issue
in the memory controller or the processor-memory interconnect, as
will be shown in Section 4 (all results include the transitions on this
additional wire, as appropriate). However, widening the SDRAM
is potentially problematic. Samsung has introduced SDRAMs with
9-bit bytes, which consume 6–8% more current than their normal
counterparts [29]. However, this is assuming a regular data pattern.
In practice, the reduction in switching activity achieved by these
codes can more than offset this increase.

4. Results
The coding techniques presented here were evaluated using the

SimpleScalar/ARM simulator [30]. The simulator was configured
to closely match the Intel Xscale processor [31]. SimpleScalar
was also modified to incorporate a cycle accurate SDRAM model
that simulates all timing and resource constraints [32]. The
simulator is configured to model a 75 MHz, 512 Mb Micron
MT48LC32M16A2-75 single data rate SDRAM. The switching ac-
tivity on the interconnect for the coded and uncoded data transfers
was calculated as the SDRAM is accessed, ensuring the bit transi-
tions occur on the data bus in the same order as a real system.

The MiBench embedded benchmark suite was used to evaluate
the proposed codes [26]. Thirty applications, spanning the auto-
motive, consumer, networking, office, security, and telecommuni-
cation domains, are used from the suite with their large input sets.

Table 1 shows the average reduction in switching activity on the
processor-memory interconnect for thirteen coding strategies when
compared with the baseline uncoded case. The table shows the bus
width for each coding strategy (switching activity on any additional
wires are accounted for in all results), the average switching activ-
ity per transfer, and the reduction in switching activity compared
to the uncoded case. The first two codes in the table are context-
dependent, double-ended codes. Bus-invert coding is the simplest
and most popular such code [24]. FV32 with a decorrelator one-
hot codes the 32 most frequently occurring values (for each bench-
mark) and uses a decorrelator to significantly reduce switching ac-
tivity [15]. As the table shows, both context-dependent, double-
ended codes perform quite well, reducing switching activity on the
interconnect by 21.8% and 38.7%, respectively.

The remaining eleven codes are all context-independent, single-

ended codes that can be implemented entirely within the memory
controller without specialized SDRAM. FV32 and FV8 are modi-
fied from the codes presented in [15] to make them single-ended.
They simply one-hot encode the 32 most frequently occurring word
values or the eight most frequently occurring byte values to form
a code. These codes are labeled “Self”, as each benchmark uses
the most frequently occurring values from that benchmark. As the
table shows, these codes yield only a 17.8% and 15.5% reduction
in switching activity. Therefore, such a one-hot encoding strategy
relies heavily on a context-dependent, double-ended decorrelator to
reduce switching activity on the interconnect.

4-LWC is the original limited-weight code, presented in Sec-
tion 2.1, which uses nine bits per byte to code all byte values with
at most four bits set [25]. Without using trace-based assignment,
4-LWC is only able to reduce switching activity by 13.9%.

The next four limited-weight codes use the frequency-based as-
signment scheme presented in this paper. “Self” and “Global” re-
fer to whether each benchmark’s own frequency distributions were
used to assign codewords for that benchmark or all benchmarks
used the same codewords derived from the combined frequency
distributions of all benchmarks. The 8-LWC is equivalent to remap-
ping, and uses eight bits per byte. The 4-LWC uses nine bits per
byte. As the table shows, these codes are able to reduce switching
activity on the interconnect by 22.4–30.3% on average. As would
be expected, the codes that use the frequency distributions for each
benchmark individually yield about 5–6% higher reductions.

The last four limited-weight codes use the sequence-based as-
signment scheme presented in this paper. Similar to frequency-
based coding, “Self” and “Global” refer to the use of self or global
transition frequency distributions for codeword assignment. The
codewords for the 8-LWC and 4-LWC schemes are equivalent to
those for the frequency-based mapping technique. As the table
shows, these codes are able to reduce switching activity on the
interconnect by 33.3–42.5% on average. As would be expected,
the codes which use the transition frequency distributions for each
benchmark individually yield higher reductions, by about 7–8%.

The results show that when using limited-weight codes, the as-
signment strategy is critical. Furthermore, the penalty of using an
extra wire per byte for the 4-LWC codes is more than offset by
the effectiveness of such codes. Finally, these codes reduce the
number of bit transitions per transfer by 2.7–5.1, indicating that the
energy savings achieved by eliminating this many bit transitions
per transfer using the proposed techniques dwarfs the minor en-
ergy overhead (∼ 0.5 bit transitions per transfer) of implementing
the SRAM-based lookup tables to support such codes in hardware.

5. Conclusions
State-of-the-art coding techniques to reduce energy consump-

tion across the processor-memory interconnect have traditionally
used double-ended techniques that require specialized memories.
In contrast, the proposed trace-based, limited-weight codes are vi-
able single-ended codes that are not only competitive with these
state-of-the-art codes, but also compatible for use with commodity
memory.

This paper has shown that both the type of code used and the
assignment scheme for that code are important. Limited-weight
codes by themselves are ineffective. Similarly, using frequency in-
formation without limited-weight codes yields an inefficient code
that is also ineffective. However, using frequency or sequence
information to assign limited-weight codes minimizes switching
activity to a greater extent than any other context-independent,
single-ended code. Furthermore, such codes sometimes outperform
context-dependent, double-ended codes that cannot be used with



Table 1: Average reduction in switching activity

Bus Bit Transitions ReductionCode
Width per Transfer (%)

Uncoded 32 11.95 —

Context-dependent Bus Invert ([24]) 36 9.35 21.8
Double-ended

Prior work
Self FV32 with Decorrelator ([15]) 33 7.33 38.7

Self FV32 (modified from [15]) 33 9.82 17.8
Prior work Self FV8 (modified from [15]) 36 10.10 15.5

4-LWC ([25]) 36 10.29 13.9
Self 8-LWC 32 8.58 28.2

Frequency-based Global 8-LWC 32 9.27 22.4Context-independent
Assignment Self 4-LWC 36 8.32 30.3Single-ended

Global 4-LWC 36 8.94 25.1
Self 8-LWC 32 6.99 41.5

Sequence-based Global 8-LWC 32 7.97 33.3
Assignment Self 4-LWC 36 6.87 42.5

Global 4-LWC 36 7.71 35.5

commodity SDRAMs. Since embedded systems continue to use
commodity memories and since the processor-memory intercon-
nect is a dominant consumer of energy in such systems, the coding
techniques presented here can significantly improve the overall en-
ergy efficiency of modern embedded systems.
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