
Very Wide Register: An Asymmetric Register File Organization for Low Power
Embedded Processors

Praveen Raghavan , Andy Lambrechts , Murali Jayapala ,
Francky Catthoor , Diederik Verkest , Henk Corporaal

IMEC vzw, Kapeldreef 75, 3001 Leuven, Belgium
KULeuven, Belgium; VUB, Belgium; TU Eindhoven, Netherlands

ragha, lambreca, jayapala @imec.be

Abstract

In current embedded systems processors, multi-ported
register files are one of the most power hungry parts of
the processor, even when they are clustered. This paper
presents a novel register file architecture, which has sin-
gle ported cells and asymmetric interfaces to the memory
and to the datapath. Several realistic kernels from the TI
DSP benchmark and from Software Defined Radio (SDR)
are mapped on the architecture. A complete physical de-
sign of the architecture is done in TSMC 90nm technology.
The novel architecture presented is shown to obtain energy
gains of upto 10X with respect to conventional multi-ported
register file over the different benchmarks.

1 Introduction

Future mobile terminals need to support new multimedia

and wireless communication standards with a high compu-

tational complexity and have an extreme energy efficiency

to provide a long battery life. Current state of the art proces-

sors are facing several bottlenecks that prevent this required

combination of performance and energy efficiency. Multi-

ported data Register Files (RF) are one of the most power

hungry parts of any processor, especially VLIWs [13]. On

average every operation requires three accesses (two reads

and one write) to the RF, which make them a very active

part of the processor. Current architectures try to achieve

a high performance by exploiting parallelism, and there-

fore perform multiple operations per cycle (eg. Instruc-

tion Level Parallelism or ILP, as used in VLIW proces-

sors). This quickly results in a large port requirement for

the register file organization (also interchangeably refered

to as foreground memory organization), that is mostly im-

plemented as a (set of) large multi-ported register files. A

high number of ports has a negative impact on the energy

efficiency of register files. Traditionally, this problem is ad-

dressed through various clustering techniques [16] that par-

tition (or bank) the RF. Data can then only be passed from

one partition to another through inter-cluster communica-

tion [17, 14]. However, as partitions get smaller the cost of

inter-cluster copies quickly grows and the resulting register

files are still multi-ported. For high energy efficiency, it is

preferable that the registers be single ported [9].

Another important energy efficiency bottleneck is

formed by the Level-1 data memories (scratch pads or

caches) [13]. Reducing this bottleneck can be achieved

by improving one or more of three aspects: the memory

design (circuit level), the mapping of data onto the mem-

ory, the memory organization (interface). In this paper we

will use a standard state-of-the-art memory, with a slightly

modified organization compatible with most memory gen-

erators: a wide memory organization, where at the interface

between the memory and the foreground memory, the com-

plete width of the memory will be read out (complete line)1.

By making wide memories, related blocks of data can be

loaded in parallel, thereby reducing the decoder overhead.

This requires the bus between the memories and the register

file to be wide as well.

In this paper, we present a novel asymmetric register

file organization, together with its interface to the wide

memory, that achieves a significantly higher energy effi-

ciency than conventional organizations. The proposed reg-

ister file or foreground memory organization is shown in

Figure 1. Three aspects are important in the proposed or-

ganization: the interface to the memory, single ported cells

and the interface to the datapath. The interface of this fore-

ground memory organization is asymmetric: wide towards

the memory and narrower towards the datapath. This fore-

ground memory is similar to a register file which is incorpo-

rated in the datapath pipeline cycles. The wide interface en-

ables to exploit the locality of access of applications through

wide loads from the memory to the foreground memories

(registers). At the same time the datapath is able to access

words of a smaller width for the actual computations (fur-

ther details in Section 3).

1The details of the memory design and mapping are beyond the scope

of this paper. However, we qualitatively motivate in Section 3 that for

energy efficiency wider memories are suitable.

978-3-9810801-2-4/DATE07 © 2007 EDAA

 = VWR Size

Mux/Demux

To/From Datapath

Word = Size of Datapath

SPW = Line Size of Memory

To/From Memory

Single Ported VWR
Size of Datapath = Word

sub−word

SPW = Line Size of Memory

Figure 1. Very Wide Register Organization

A set of Very Wide Registers (VWR), with a single port

each is used to replace a traditional register file. Micro-

architecturally, every single VWR is made of single ported

cells and it has no pre-decode circuit. A post-decode cir-

cuit consisting of a multiplexer (MUX) is provided to select

the appropriate word(s). For evaluating the gains achieved

by the proposed organization, we present a detailed and op-

timized physical design of: register files, interfaces to the

memory and the datapath.

The rest of the paper is organized as follows: Section 2

gives an overview of related work in the area of register file

architectures. Section 3 gives a detailed description of the

proposed very wide register architecture and its connectiv-

ity of the VWR to the memory and the datapath. An ex-

ample mapping of data to the VWR is illustrated in Section

4. The experimental setup and the results are presented in

Section 5. Finally, Section 6 concludes this paper.

2 Related Work
A large amount of research exists on improving the per-

formance and energy efficiency of register file organiza-

tions. Many techniques have been proposed at various lev-

els of abstraction (namely circuit, architecture, compiler

and system level). In this section we present an overview

of the state-of-the-art architectural are presented and em-

phasize the differences with the proposed organization.

Clustering register files is a generic architectural tech-

nique that reduces energy consumption by splitting regis-

ter files in smaller parts [17, 14]. Since the energy/power

consumption increases super-linearly with number of ports,

clustering techniques reduce the number ports per cluster

and therefore improve energy efficiency. This comes at the

extra cost of inter-cluster communication [16, 14]. Fully

distributed register file organizations are an extreme form

of clustering, where single ported registers are used at the

outputs (or inputs) of the functional units [8, 5, 9]. A by-

pass network interfaces the functional units in the datapath

and the memory. In our approach, multiple VWRs can be

viewed as multiple clusters, with three VWRs per cluster.

Each VWR has only a single port.

In state-of-the-art clustered organizations all the ports

are symmetric i.e., the interfaces to datapath and to the

memory are of equal width and often shared. In our ap-

proach the ports are asymmetric; there is a wide port to the

memory and a narrow port towards the datapath. This al-

lows the datapath to access the VWR through a cheaper,

often used interface, while accesses from the memory go

through a more expensive but less used interface. Data

transfers between the memory and the VWR copy a com-

plete line of the memory to the VWR, or a complete VWR

to the memory (contiguous part of line possible for more

flexibility). A read/write between the VWR and the datap-

ath operates on a single word in the VWR (small part of a

line). Hence this separate and asymmetric interface makes

a more optimized usage of the energy and bandwidth possi-

ble.

The concept of wide registers is commonly used in vec-

tor registers for data-parallel architectures [11, 4, 12]. Mul-

tiple data elements are stored into the vector registers and

all the data are read out to the datapath. This set of data is

refered to as a word and each data element inside this word

is refered to as sub-word. However, in that case the width

of the register file and the datapath are still equal. The main

motivation for wide registers in these architectures is to sup-

port data-parallelism. The same operation is performed on

multiple data (Single Instruction Multiple Data, SIMD) that

are stored in the vector registers. Our approach is comple-

mentary to the vector register approach. Firstly, our pri-

mary target is energy efficiency. Secondly, our approach

can be used in both data-parallel and non-data-parallel con-

texts. In a data-parallel context, the widths of data read to

the (SIMD) datapath from the VWR are the same as the

vector data size. However, a single VWR is much wider

than a vector register and hold multiple vector data. Fig-

ure 1 also illustrates the relative sizes of lines, words and

subwords. SIMD datapaths can be used complementary to

the proposed VWR based architecture. In such a case, each

line contains a set of vector words and each vector word

contains the different subwords. Usually a large amount of

SIMD parallelism is not available in applications due to de-

pendencies and therefore wider datapaths cannot be used.

In case of such dependencies, the VWR can still be used,

where consecutive words are dependent on each other.

3 Architecture Description
As described in Section 1, the motivation for the pro-

posed architecture is derived from various parts of the pro-

cessor. Section 3.1 gives the architectural innovations in

the data memory hierarchy. Section 3.2 presents the Very

Wide Register and its microarchitecture. Section 3.2 shows

the interconnection between the scratchpad memory and the

VWR and the interface between the VWR and the datapath

2

is described in Section 3.3.

3.1 Data Memory Organization and Interface

As mentioned in Section 1, energy in memories can be

reduced by improving one or more of three aspects: the

memory design (circuit level), the mapping of data onto the

memory, the memory organization (interface). In this sec-

tion, we discuss the memory organization. A detailed en-

ergy breakdown of an SRAM based scratchpad2 shows that

for a typical size for the level-1 data memory (eg. 64Kb)

about half of the energy is spent in the decoder and the

wordline activation [3, 6]. The other half is spent in the

actual storage cells and in the sense-amplifiers. The decode

cost is the price that is paid for being able to access words

in any given order. The energy consumption in the mem-

ory organization can be optimized further by performing as

few decodings as possible by reading out more data for ev-

ery decode. In the embedded systems domain this can be

achieved by exploiting the available spatial locality of data.

The row address (Row Addr in Figure 2) selects the de-

sired row in the memory through the pre-decoder. The

sense-amplifiers and precharge lines are only activated for

the words that are needed and only these will consume en-

ergy and are read out. Figure 2 shows the proposed scratch-

pad organization and the address that has to be provided.

To be able to handle partial rows (less optimal for energy,

but more flexible), the full address contains two additional

fields: Position decides at which word the read-out will

start, while No. Words decides the number of words that

has to be read out. Hence, at most a complete row and at

least one word of the SRAM can be read out and will be

transfered from the scratchpad to the VWR registers. The

scratchpad can be internally partitioned or banked and the

proposed technique can be applied on top of the banked

structure.

This architecture is compatible with almost all existing

SRAM generators (e.g. Artisan), but in actual instantiation

such a wide interface is not yet used, so the energy and per-

formance models may have to be extended for such a wide

output. If the used design library does not contain such a

wide memory, it can be composed from multiple narrower

memories by connecting them in parallel, but the overhead

due to extra decoding would limit the gains.

3.2 Foreground Memory Organization
We propose a single ported register cell as shown in Fig-

ure 1. This register organization is called Very Wide Register
(VWR). The VWR has asymmetric interfaces: a wide inter-

face towards the memory and a narrow interface to the dat-

apath. Every VWR is as wide as the line size of the scratch

pad or background memory, and complete or partial lines

2Scratchpad based memories are used instead of Cache based L1 mem-

ories as they have been shown to be energy efficient [10].

Column Decoder and Precharge Logic

Row Addr Position No. Words

SA Activation

Logic

Word

Word

P
re

−
d

ec
o

d
er

Address

Sense Amplifiers

SRAM Array

To/From VWR (SPW bits Wide)

Figure 2. VWR & Scratchpad Organization

can be read from the scratchpad into these VWRs. The

VWRs have only a post-decode circuit, which consists of

a Multiplexer/De-Multiplexer (MUX/DEMUX). This cir-

cuit selects the words that will be read from or written to

the VWR. Each VWR has its own MUX and DEMUX, as

shown in Figure 1. The controls of the MUX and DEMUX

on which register is to be accessed is derived from the in-

structions. Because of the single-ported cell design, the read

and write access of the registers to the scratchpad memory

and access to the datapath cannot happen in parallel. The

VWR is a part of datapath pipeline with a single cycle ac-

cess similar to register files.

Since the interface of the VWR to the memory is as wide

as a complete VWR, which is of the same width as the mem-

ory and the bus, the load/store unit is also different. It is ca-

pable of loading or storing complete (or partial 3) lines from

the scratchpad to the VWRs. Section 4, shows an example

on how the load/store operations are performed between the

memory and the VWR.

During placement and routing (e.g. using Magma Fusion

Blast place and route tool) the cells of the VWR are aligned

with pitch of the sense amplifiers of the memory to reduce

the amount of interconnect and the related energy. This en-

ables clear direct routing between the wide memory and the

VWR without much interconnect overhead. The same opti-

mization cannot be done in case of a traditional register file,

because of the fact that the memory and datapath interfaces

of the register file are shared and due to the multi-ported

nature of these register files.

Since the VWR is single ported, it is important that data

that needed the same cycle/operation are placed in different

VWRs. Arrays are mapped on the VWR during a separate

mapping process (explained further in Section 4). Scalar

data like scalar constants, iterators and addresses etc. can be

mapped to a separate Scalar Register File (SRF) in order not

to pollute the data in the VWR with intermediate results4.

3multiple contiguous words in the same row of the SRAM
4Since we target the data-arrays and large data-structures and due to

space constraints, the details of the SRF are not discussed further in this

3

Scratchpad

SP Width

Scalar
Register

File

SP Width = Bus Width = FG Width

Bus Width

Interconnect

’N’ VWRs

Single−ported VWR

‘M’ Inputs/Outputs

Datapath

FG Width

Word = Datapath Width = 64 bits

e.g SP Width = Bus Width = FG Width = 1024 bits

‘N’ Inputs/

Outputs

Datapath Width

Datapath Width

Datapath Width

Figure 3. VWR and Scalar Register File con-
nectivity to the datapath and the L1 Memory

3.3 Connectivity Between VWR and Datapath

The foreground memory consisting of VWRs and SRF

can be connected to any datapath organization (consisting

of multipliers, adders, accumulators, shifters, comparators,

branch-unit etc.) by replacing the register file. Figure 3

shows the connectivity between the VWRs, SRF and the

datapath. The datapath may or may not support sub-word

parallelism similar to state of the art processor engines like

Altivec, MMX or SSE2.

Once the appropriate data are available in the foreground

memory, the decoded instruction steers the read and write

operations from and to the foreground memory and the dat-

apath. At a given cycle, one word (consisting of subwords)

will be read from the VWR to the datapath and the result

will be written back to a VWR. The foreground VWR orga-

nization along with the datapath is shown in Figure 3.

4 Example Operation

Figure 4 presents the operation of the VWR on simplified

example code, assuming a 32-bit processor datapath and a

256-bit line-size. This means that one VWR at any given

point in time can store 8 words. For the sake of simplic-

ity no subword parallelism or vector parallelism is used in

this example, of which Figure 4 shows the C code (with in-

trinsics). The asymmetric interface of the VWR, having a

wide connection to the memory (width is complete row of

the scratchpad) and a narrow connection of one word wide

to the datapath, results in the following mode of operation:

a complete row of the scratchpad is copied to the VWR at

once, using a LOAD row. In this example operands from

arrays b and c are allocated to two different rows in the

scratchpad and to two different VWRs (VWR 1 and 2).

paper.

O r i g i n a l Code :

f o r (i =0 ; i 64; i ++)
a [i] = b [i] c [i] ;

M odi f i ed Code wi th VWR:

f o r (i =0 ; i 8; i ++)
LOAD row VWR2, b [i 8] ;
LOAD row VWR1, c [i 8] ;
f o r (j =0 ; j 8; i ++)

VWR3[j] = VWR2[j] VWR1[j] ;

STORE row VWR3, a [i 8] ;

Figure 4. Re-written C code with Very Wide
Registers and load/store operations

0

2E-13

4E-13

6E-13

8E-13

1E-12

1.2E-12

1.4E-12

1.6E-12

1.8E-12

4 8 16 32
No. of Words

E
ne

rg
y/

A
cc

es
s

to
D

at
ap

at
h

16-bit Word 32-bit Word 64-bit Word 128-bit Word 256-bit Word

Figure 5. 1-ported VWR Energy/Access to dat-
apath

Therefore two rows are loaded. In the next phase these

operands are consumed one by one by the inner loop and

the results are stored in a third VWR (VWR 3). Only when

all computations of the inner loop are finished, the complete

VWR 3 is stored back to the scratchpad.

Because in the embedded signal processing systems do-

main (including the benchmarks used here), most data is

streaming and continuous, it is reasonable to assume that

most of the time complete lines of the scratchpad can be

loaded with relevant data. It is still possible to load partial

rows if not enough independent data words can be found to

fill a complete row (for instance at the end of a loop).

Currently the allocation of arrays to the VWR is done

using intrinsics (like LOAD row, STORE row, etc.). To per-

form register allocation to the VWR, the benchmarks arrays

need to have affine linear index expressions. The compiler

phase required for the VWR allocation is being studied and

preliminary results are promising. A detailed discussion of

the compilation falls outside the scope of this paper.

5 Experimental Setup and Results
Both the proposed and the base line architecture are sim-

ulated using the CRISP [15] framework. CRISP is a cycle

accurate instruction set simulator extension of the Trimaran

[2] framework. Different architectures like VLIWs, RISC

and VWR-based architectures are modeled in the CRISP

framework, which generates the activation trace for the dif-

ferent components of the processor.

4

The different components are implemented in VHDL

and synthesized using Synopsys Physical Compiler using

DesignWare components. All the components are synthe-

sized to a clock frequency of 200MHz (typical frequency

for embedded processor) using a TSMC 90nm general pur-

pose technology library running at 1V Vdd, worst case de-

sign corner. The area and energy consumption of the 90 nm

memories was taken from Cacti 4.1 [7]. The sizes of the

memories used in the experiment are described in Section

5.2. The area of the different modules generated from Phys-
ical Compiler and taken from Cacti are ported to Magma
Fusion Blast, where placement and routing is done5. Mem-

ories from SRAM generators like Artisan could also be used

instead of Cacti. The capacitance of the routing for each

component is back-annotated and re-synthesized in Physi-
cal Compiler and the energy/access of each component is

computed. Since wide L1 memories and VWR are used

here, the energy overhead due to interconnect bus could be-

come large if the interface bus is incorrectly routed. The

interconnect has been modeled (in both the VLIW and the

VWR based register files) accurately using the detailed re-

sults from place and route and is taken into account in the

energy estimations. The energy consumption of the clock

tree network of every component is included in the energy

consumption of the component itself. Due to space con-

straints a detailed discussion on the layout is not included

in this paper [19]. Accurate energy/access numbers are ob-

tained from the physical design and are combined with the

activation trace for each component from the instruction set

simulation, providing the net energy consumption of each

component for any simulation run.

5.1 VWR Parameter Exploration
A Very Wide Register or VWR is a parameterizable fore-

ground memory organization, replacing the traditional reg-

ister file. Therefore different parameters like number of

words, size of the word can be varied for each VWR. Figure

5 shows the variation in energy/access of the VWR from the

datapath, when both the number of words as well as the size

of the word are varied. Figure 6 shows the same variation in

case of the access toward the memory (when all the words

in the VWR are read from or written to).

Figure 5 shows that as the size of the word is changed

from 16-bit to 256-bit, the energy/access towards the dat-

apath changes linearly. When the number of words is in-

creased however, there is only a slight increase in the ener-

gy/access. This increase is more apparent for larger sizes

of words due to the fact that the MUX/DEMUX structure

for larger word sizes is more complex. Figure 6 shows

that the energy/access also increases linearly for increasing

word sizes and increasing number of words.

The experiments show that the energy/access of the

5For Place and Route tools, internal proprietary memories were used as

Cacti provides only area estimates.

0

1E-11

2E-11

3E-11

4E-11

5E-11

6E-11

4 8 16 32
No. of Words

E
ne

rg
y/

A
cc

es
s

to
M

em
or

y

16-bit Word 32-bit Word 64-bit Word 128-bit Word 256-bit Word

Figure 6. 1-ported VWR Energy/Access to
memory

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

TI D
SP/D

SP_w
_v

ec

TI D
SP/D

SP_d
ot

p_
sq

r

TI D
SP/D

SP_d
ot

pr
od

TI D
SP/D

SP_n
eg

32

TI D
SP/D

SP_v
ec

su
msq

MIM
O/C

om
pe

ns
at

ion

80
2.1

1a
Syn

c

80
2.1

6e
Syn

c

N
or

m
al

iz
ed

R
F

E
ne

rg
y

C
on

s.

VWR Energy Clustered 8FU TI RF RISC RF

Figure 7. VWR Energy comparison over TI
DSP Benchmarks and Wireless Benchmarks

VWR towards the datapath and memory is always lower

than that of a register file with 3 or more ports with the same

storage space and the same memory footprint. The gains of

the VWR with respect to register files increase dramatically

as the number of ports is increased, as additional ports in-

crease the energy/access of the register file dramatically.

5.2 Benchmarks and Energy Savings
For comparison with other register file configurations,

a clustered 8FU VLIW register file (similar to TI’s

TMS320C64x [18] 12 ports/cluster, 32 registers deep/clus-

ter) and a single issue RISC (3 ports, 16 deep) are used as

the base line processors. Since the VWRs are single ported,

4 VWRs are used to allow 4 (R/W) accesses in parallel.

Each VWR contains 8 words of 32-bit each. A 32KB of

memory is used in all the three architectures, but the output

is 256-bit for the VWR case and 32-bits for the RISC and

the VLIW.

The TI DSP benchmark suite [1] and realistic bench-

mark kernels from Software Defined Radio (SDR): 802.11a

synchronization, 802.16e synchronization, MIMO feedback

loop compensation, are used to evaluate the three different

architectures described above. Figure 7 shows the energy

gains of using a VWR for each of the different benchmarks.

The energy consumption has been normalized to the en-

ergy consumption of the 8FU VLIW’s register file for each

5

benchmark. The VLIW register file’s energy consumption

is not much higher than that of the RISC, because it has

been clustered. It can be seen that over all the benchmarks,

the VWR based architecture saves on average of about 10X
in energy with respect to the register files of the 8FU clus-

tered VLIW based architecture. For the benchmarks used,

about 5% of the total energy spent in the VWR is spent on

loads and stores from the memory. This cost is reduced by

a factor of 14X, because the activity is substantially reduced

by loading/storing complete rows to the VWR and because

the access cost is also lower for the wide load/store com-

pared to the register file. The remaining 95% of the VWR

energy is spent in accessing it from the datapath. This part

of the cost is reduced by a factor of 10X, and hence the to-

tal energy consumption of the register file is reduced just

over a factor 10X. Note that the VLIW, RISC Register Files

as well as the VWR can be sub-banked and microarchitec-

turally optimized furthur, thereby giving a different relative

gain of the VWR with respect to the multi-ported register

file. Such optimizations are outside the scope of this pa-

per and are complementary to the architecture presented.

Complete rows of data could not always be loaded from the

wide memory to the VWR for the data layout of the bench-

marks, but the overhead of the partial loads was observed to

be low. Since Energy/Access of the VWR has a much lower

cost, large energy savings exist compared to a multi-ported

VLIW.
Figure 8 shows the energy breakdown between the mem-

ories, buffers to drive the bus and the register file for the

VLIW and the VWR based architectures. The pins of the

VWR are aligned and matched to the pitch of the sense am-

plifier of the memories to reduce the net capacitance of the

bus and the energy required to drive them. The VWRs con-

sist of cells that are connected to only one bitline and one

wordline each, which results in a smaller net-capacitance

that has to be driven. Therefore VWR designs can be

clocked faster than multi-ported register files. The larger

buffer cost in case of the VLIW register file is the result of

the unified interface and multi-ported nature of a traditional

register file to both the datapath and the memory. The extra

cost of the bus that connects this port to the memory has to

be paid every time the register file is accessed from the data-

path. The high access frequency of the VLIW ports towards

the datapath results therefore in a high energy penalty. Due

to the wide nature of the SRAMs, the energy consumption

in the SRAMs is also reduced by about 40% for the same

amount of data transfered. This results in a total reduction

of more than 60% in energy consumption in the data mem-

ory and the register file, which form a major part of the total

energy consumption of a VLIW.

6 Conclusion
In this paper we have presented a novel register file archi-

tecture with asymmetric interfaces to the memory and the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
LI

W
R

F/
D

S
P

_w
_v

ec
V

W
R

/D
S

P
_w

_v
ec

V
LI

W
R

F/
D

S
P

_d
ot

p_
sq

r

V
W

R
/D

S
P

_d
ot

p_
sq

r
V

LI
W

R
F/

D
S

P
_d

ot
pr

od
V

W
R

/D
S

P
_d

ot
pr

od
V

LI
W

R
F/

D
S

P
_n

eg
32

V
W

R
/D

S
P

_n
eg

32
V

LI
W

R
F/

D
S

P
_v

ec
su

m
sq

V
W

R
/D

S
P

_v
ec

su
m

sq

V
LI

W
R

F/
M

IM
O

/C
om

pe
ns

at
io

n

V
W

R
/M

IM
O

/C
om

pe
ns

at
io

n
V

LI
W

R
F/

80
2.

11
a

S
yn

c

V
W

R
/8

02
.1

1a
S

yn
c

V
LI

W
R

F/
80

2.
16

e
S

yn
c

V
W

R
/8

02
.1

6e
S

yn
c

N
or

m
al

iz
ed

E
ne

rg
y

Memory Energy Buffer Energy RF Energy

Figure 8. Energy consumption Split between
register file, buffers and register file

datapath. Different application kernels were mapped on the

VWR. Compared to a clustered VLIW register file, about

10x reduction in energy consumption on different bench-

marks was demonstrated. The interconnection between the

memory and the VWR was optimized and the achieved en-

ergy gains remove most of the overhead. We are currently

working a compiler with automated register allocation of

arrays on the VWR and the design of the wide memories.

References
[1] TI DSP Benchmark Suite

http://focus.ti.com/docs/toolsw/folders/print/sprc092.html.
[2] Trimaran: An Infrastructure for Research in Instruction-Level Paral-

lelism. http://www.trimaran.org, 1999.
[3] B. Amrutur et al. Speed and power scaling of SRAM’s. In IEEE

JSSC, vol. 35, Feb 2000.
[4] K. Asanović. Vector Microprocessors. PhD thesis, University of Cal-

ifornia Berkeley, 1998.
[5] H. Corporaal. Microprocessor Architectures : From VLIW to TTA.

John Wiley & Sons, 1998.
[6] P. Evans, et al. Energy consumption modeling and optimization for

SRAM’s. In IEEE JSSC, vol 30, May 1995.
[7] HP Research, http://quid.hpl.hp.com:9081/cacti/index.y. Cacti 4.1.
[8] Improv Systems, Inc, http://www.improvsys.com. Jazz DSP proces-

sor: Product Brief, 1999.
[9] J. Janssen and H. Corporaal. Partitioned register file for TTAs. In

Proc. of Micro, pages 303–312, 1995.
[10] M. Kandemir, et al. Compiler-directed scratch pad memory opti-

mization for embedded multiprocessors. In IEEE Trans on VLSI,
pages 281–287, March 2004.

[11] U. J. Kapasi, et al. Programmable stream processors. IEEE Com-
puter, Aug. 2003.

[12] C. E. Kozyrakis et al. Scalable vector processors for embedded sys-

tems. IEEE Micro, 23(6):36–45, 2003.
[13] A. Lambrechts, et al. Power breakdown analysis for a heter. NoC

platform running a video application. Proc of ASAP, Jul 2005.
[14] V. Lapinskii, et al. Application-specific clustered VLIW datapaths:

Early exploration on a parameterized design space. IEEE TCAD,

21(8):889–903, Aug 2002.
[15] P. OpDeBeeck, et al. CRISP: A template for reconfigurable instruc-

tion set processors. In Proc of FPL, Aug 2001.
[16] S. Rixner, et al. Register organization for media processing. In

HPCA, Jan 2000.
[17] J. Sánchez et al Modulo scheduling for a fully-distributed clustered

VLIW architectures. In Proc of MICRO, Dec 2001.
[18] Texas Instruments, Inc, http://www.ti.com. TMS320C6000 CPU and

Instruction Set Reference Guide, Oct 2000.
[19] J-B.Domelevo, Working on the Design of a Customizable Ultra-Low

Power Processor: A Few Experiments Masters Thesis, ENS Cachan

Bretange/IMEC, Sep 2005.

6

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

