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                                   Abstract 
This paper tackles the problem of dynamic power management 
(DPM) in nanoscale CMOS design technologies that are typically 
affected by increasing levels of process, voltage, and temperature 
(PVT) variations and fluctuations. This uncertainty significantly 
undermines the accuracy and effectiveness of traditional DPM 
approaches. More specifically, we propose a stochastic framework 
to improve the accuracy of decision making in power management, 
while considering the manufacturing process and/or design 
induced uncertainties. A key characteristic of the framework is 
that uncertainties are effectively captured by a partially 
observable semi-Markov decision process. As a result, the 
proposed framework brings the underlying probabilistic PVT 
effects to the forefront of power management policy determination. 
Experimental results with a RISC processor demonstrate the 
effectiveness of the technique and show that our proposed 
variability-aware power management technique ensures robust 
system-wide energy savings under probabilistic variations. 
1. Introduction 
In the nanometer era, PVT variations, especially within-chip 
variations, pose a major challenge to the design of low-power 
circuits and systems. These within-chip variations that arise either 
from environmental variations (i.e., temperature or voltage) or 
manufacturing process variations (i.e., dopant fluctuations, Tox and 
Leff variability) can result in uncertainty in the power and delay 
estimation [1][5]. Variability refers to the known quantitative 
relationship to a source, whereas uncertainty refers simply to 
something we cannot describe deterministically precisely. Modern 
VLSI circuits are becoming increasingly sensitive to the rising 
levels of variability in process and design parameters. Lack of 
proper modeling and analysis tools transforms variability to 
uncertainty [6]. Thus, integrating different sources of uncertainty 
in one conceptual framework is becoming challenging. 

As evidenced in the recent literature [1]-[5], increasing interest 
has focused on reducing the variability and1/or uncertainty in the 
designs. The work presented in [1] studies the impact of leakage 
reduction techniques on the delay uncertainty. Since leakage is 
critically dependent on operating temperature and power supply, 
reference [2] presents a full chip leakage estimation technique 
which accurately accounts for power supply and temperature 
variations. In reference [3], the authors discuss process, voltage 
and temperature variations and their impact on circuit and 
microarchitectures beyond the 90nm technology node. 
Probabilistic models used to account for the impact of threshold 
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voltage variations on the leakage power are introduced in [4]. 
These models are then used to minimize leakage power, while 
satisfying certain performance requirements. Reference [5] 
presents a technique to optimize supply and threshold voltage in 
high-performance circuits. The authors show that interactions 
between supply voltage, frequency, power, and temperature 
significantly impact the energy-delay-product of a target design. 

Most of the previous work on variability and uncertainty has 
focused on the variability modeling and analysis, and variation 
control at the circuit level and with respect to optimization 
problems in the physical design domain. It is important to account 
for different sources of variability or uncertainty early in the 
design process, especially at the level of developing resource 
management and power control strategies for large complex 
electronic systems. Variations (even systematic ones) at that level 
often translate to uncertainty because the underlying detailed 
circuit-level realization is not available and hence, the variations 
appear as imperfect or noisy (hence, uncertain) observations about 
the state of a system. The influence of uncertainty about the 
measured parameters of the system must be modeled stochastically 
and utilized to determine uncertainty in the performance 
parameters of interest. To the best of our knowledge, no proposed 
research work has been conducted on power management 
techniques with stochastic modeling for the uncertainty. Improving 
the accuracy and robustness of decision making by modeling and 
assessing the uncertainty is an important step to guarantee the 
quality of all kinds of system-level resource management, 
including dynamic power management.  

In this paper, we propose a stochastic uncertainty management 
framework and integrate it with system-level power control. Our 
proposed framework is based on i) partially observable Markov 
decision process [7] to model the uncertainty and ii) semi-Markov 
decision process to model the decision making for optimizing the 
power consumption under a delay constraint. Markov decision 
process model offers a robust theoretical framework which enables 
one to apply strong mathematical optimization techniques in order 
to derive optimal policies. Finally, we present a variability-aware 
dynamic power management technique to illustrate the 
effectiveness of the uncertainty management framework.  

The remainder of this paper is organized as follows. Section 2 
provides a background of the paper. The details of the stochastic 
uncertainty management framework are given in section 3. Section 
4 presents a variability-aware dynamic power management 
technique. Experimental results and conclusion are given in 
section 5 and section 6. 

2. Background 
As the leakage power dissipation is becoming an important portion 
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of total power of a system beyond 130nm technology, process, 
voltage, and temperature (PVT) variations within-chip have to be 
controlled to reduce the impact of parameter variations. Since both 
temperature and supply voltage has very strong locality within-die, 
the variation of these results in uneven distribution of power 
dissipation and rapid rise of power density, which occur 
temperature hot spots. Note that there is a feedback loop between 
leakage power and temperature, since subthreshold leakage power 
is exponentially dependent on temperature [10]. Furthermore, 
temperature variations have significant impact on delay. Thus, 
performance estimation is not accurate without considering 
temperature dependency of transistor’s carrier mobility.  

As a result, both power dissipation and performance, affected 
by PVT variations, cannot be identified easily at runtime by a 
system itself. Therefore, we use an observation strategy (e.g., 
thermal-observed) in uncertainty environment to identify the 
profile of the system in a stochastic manner. Note that even if 
power density determines temperature, a change in temperature 
does not correspond to instantaneous power dissipation because of 
a low-pass filtering in translating power variations into 
temperature variations [11]. However, it will not hurt the quality of 
the paper if we assume that instantaneous power density can serve 
as a proxy for temperature variations, provided that multiple on-
chip temperature sensors can provide information about the spatial 
temperature gradients in different zones of the chip [12]. 

The growing extent of the uncertainty in optimization problem 
can be attributed to the fact that the nanometer technology is 
approaching the regime of fundamental randomness in the 
behavior of silicon structures [6]. A move to stochastic 
optimization would mean that we need to treat many design 
optimization problems as random values to be described by 
probabilistic distributions. In some sense, treating the uncertainty 
probabilistically means that even after manufacturing the chip 
there is still uncertainty about the performance behavior, for 
example. Thus, an approach to solve this problem is to provide a 
unified stochastic management framework of the various sources 
of uncertainty in predicting the performance behavior of the 
system. Furthermore, such a stochastic framework must provide 
the computational tractability of the randomness to treat the many 
sources of uncertainty in optimizing the performance. 

3. A Stochastic Decision Making Framework        
for Managing Uncertainty 

We present a theoretical framework to construct a power 
management process under uncertain information. 

3.1 Partially Observable Environments 
The uncertainty in parameter observation, where a power manager 
cannot reliably identify the performance (e.g., delay and power) 
state of the chip (due to non-uniform distribution of variations) 
during power management, may be addressed by modeling 
decision making by stochastic processes. Note that a power 
manager, which observes an on-chip temperature and issues 
commands (or actions) to control uncertain performance state of 
the system, makes a decision at each event occurrence (e.g., time-
based or interrupt-based), called a decision epoch. These actions 
and performance states determine the probability distribution over 
possible next states. Thus, the sequence of performance states of 
the system can be modeled as a stochastic process.  

In partially observable environments, observations made by an 

agent (e.g., the power manager) about the state of the environment 
(e.g., performance) may be noisy and provide incomplete 
information. The most naive strategy for dealing with partial 
observability is to ignore it. That is, to treat the observations as if 
they were the actual states of the environment and act on them. 
This approach will result in unexpected performance behaviors by 
making decisions based on an erroneous Markovian process model. 
Some improvement is achieved by considering stochastic policies, 
i.e., mappings from observations to probability distributions over 
actions. The only way to behave truly effectively in a wide-range 
of environments is to use memory of previous actions and 
observations to disambiguate the current state. A better strategy 
consists of using hidden Markov model techniques to learn a 
model of the environment, including the hidden state, then to use 
that model to construct a perfect memory controller. 
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Figure 1. Structure of a POSMDP agent. 

Figure 1 illustrates the basic structure for a perfect-memory 
controller. The component on the left is the state estimator, which 
computes the agent's belief state, b as a function of the old belief 
state, the last action a derived from policy π, and the current 
observation o. In this context, a belief state is a probability 
distribution over states of the environment, indicating the 
likelihood that, given the agent's past experience, the environment 
is actually in each of those states. 

We use a semi-Markov decision process (SMDP) to model the 
event-driven decision making progression, but also combine it 
with a partially observable Markov decision process (POMDP) to 
consider the uncertainty in parameter observation. Notice that the 
time spent in a particular state in the SMDP (i.e., the sojourn time 
or the time difference between successive decision epochs) follows 
an arbitrary probability distribution, which is a more realistic 
assumption than an exponential distribution [7]. A partially 
observable semi-Markov decision process (POSMDP) extends the 
SMDP model by incorporating an observation model, which is 
defined as follows. 
Definition 1: Partially Observable Semi-Markov Decision 
Process. A POSMDP is a tuple (S, A, O, T, C, Z) such that 

1) S is a finite set of states. 
2) A is a finite set of actions. 
3) O is a finite set of observations. 
4) T is a transition probability function. T: S × A → ∆(S) 
5) C is a cost function. C: S × A → ℜ  
6) Z is an observation function. Z: S × A → ∆(Z) 

where ∆(⋅) denotes the set of probability distributions. At time t+1, 
given {(sk, ok, ak)}k≤t, the system transits to the state st+1 with 
probability Prob(st+1 | st, at), and the state then generates the 
observation ot+1 with probability Prob(ot+1 | st+1, at). The states st+1 
are not observable. Actions are chosen with knowledge of the past 
observations, actions, and/or the distribution of the initial state.  
We consider reactive policies, mainly for their notational 
simplicity. A reactive policy is a randomized stationary policy 



such that the probability of taking an action is a function of the 
most recent observation only. The process {(st, ot, at)} jointly 
forms a Markov chain under a reactive policy, and so does the 
marginal process {(st, ot)}, (marginalized over actions at). 

The performance state of a system at time t is defined as a 
combination of delay and power dissipation values. The chip 
temperature (profile) at time t is the chip temperature measured 
and reported by a number of distributed on-chip temperature 
sensors. Note that the time units are abstractly defined and the task 
of casting them to absolute time units (micro or milli seconds) is 
achieved by the system developer. 
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Figure 2. The rationale for developing the POSMDP 

framework. 
POSMDPs are simply semi-Markov decision processes 

(SMDPs) with hidden states and observations generated by states. 
Figure 2 illustrates the key problem that the POSMDP framework 
addresses. In this figure, we define the chip temperature profile at 
time t to be one of the three observations: o1, o2, and o3. Consider 
that, starting from a system state st(d2, p3) at epoch time t, the 
power manager issues an action (Vdd1, freq2) based on the accepted 
policy, and as a result, the system is expected to move into a new 
state st+1 (d3, p2) at time t+ε. However, because of the PVT 
variations, etc., the resulting system state may actually be st+1 (d3, 
p3) when it is observed at epoch time t+1. Thus, the power 
manager, which is conscious of PVT variations, makes decision 
for power management while estimating the system state based on 
information obtained from observations. The key contribution of 
our POSMDP framework is to recognize this uncertainty about the 
next state of the system, which is in turn caused by PVT variations. 
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Figure 3. Example of three possible observations. 
The power manager can choose an action from a finite set of 

actions, i.e., dynamic voltage and frequency scaling (DVFS) sets, 
at decision epochs. Although we know the issued action with 
certainty, the resulting state is not known in advance because of 
the PVT variations. For example, Figure 3 shows scenarios where 
starting in the active mode and with an action a2 issued at time t, 
the next system state may be one of three possible ones as 
observed at time t+1, that is, the power manager cannot know for 
certain which next state will occur. 

The state transition probability function determines the 
probability of a transition from a performance state s to another 

state s’ after executing action a, i.e., T(s’, a, s) = Prob(st+1 = s’ | at 
= a, st = s). 2  Let pa (s, s’, t) denote the probability that as a 
consequence of choosing action a when the system performance 
state is s, the state equals s’ after time t. Note that pa (s, s’, t) can 
be used to calculate the expected transition time between decision 
epochs. We consider a cost function which assigns a quantitative 
cost value to each state and action pair, i.e., we adopt the 
conventional approach whereby the expected cost is k(s, a) 
incurred when action a is chosen in state s. The costs can be set by 
the applications or the developers.  

An observation function, which captures the relationship 
between the actual performance state and the observation, may be 
defined as the probability of making observation o’ after taking 
action a that should have landed the system in s’, i.e., Z(o’, s’, a) = 
Prob(ot+1 = o’ | at = a, st+1 = s’).  
 

3.2 Policy Representation in POSMDP 
In partially observable environments, since a power manager 
cannot fully observe the underlying performance state of the 
system, it makes decisions based on the observable system history 
H. Note that the system history is a sequence of state and action 
pair such as <s0, a0>, <s1, a1>,…, <st, at>, making this a non-
Markovian process. The power manager receives an observation o’ 
which is dependent on s’ and a. Although the observation gives the 
power manager some evidence about the current state s, s is not 
known exactly. Thus, we maintain a distribution over states called 
a belief state b [7]. The belief state for state s is denoted as b(s), 
and the sum of belief states over all states is equal to 1, i.e., Σs∈Sbs 
= 1. Hence, by using the belief state space B, a properly updated 
probability distribution over the performance state S, we can 
convert the original POSMDP into a fully observable SMDP, so-
called belief state SMDP [14]. A properly updated belief state, 
b’(s’), after action a and observation o’, may be calculated from 
the previous belief state b(s) as follows: 

( ', ', ) ( ', , ) ( )
'( ') ( ' | ', , )

( ' | , )
s S

Z o s a T s a s b s
b s Prob s o a b

Prob o a b
∈= =

∑
 (1) 

In this equation, the numerator consists of the observation function, 
transition function, and current belief state. The denominator is 
independent of s’, and can be regarded as a normalization factor. 

The power manager’s goal is to choose a policy that minimizes 
a cost function, C. Basically, a particular policy tells the power 
manager what action to perform, and what to do next contingent on 
an observation. Let π : B → A represent a stationary policy that 
maps the probability distribution over belief states to actions. By 
incorporating the expectation over actions, the cost of a stationary 
policy π can be determined by using the Bellman equation [8] as  

   ( ) ( ) ( , ) ( ' | , ) ( ')π πγ
∈ ∈

= +∑ ∑s S o O
C Cb b s k s a Prob o a b b     (2) 

where γ is a discount factor, 0 ≤γ < 1. Simply speaking, the power 
manager must execute the action a prescribed by policy π, and 
then update its probability distribution over the system’s 
performance states according to equation (1). The optimal action 
to take at b is obtained by  

                                   * ( ) arg min ( )
a A

Cb bππ
∈

=                             (3) 

                                                                 
2 In this paper, subscripts denote state information whereas superscripts 
denote time stamp.  



A standard method of finding the optimal infinite policy π is to 
iterate cost function for POSMDP by using a sequence of optimal 
finite cost functions.  

Figure 4 (a) shows a graphical influence diagram [14] of 
POSMDP, where the power manager generates an observation 
(caused by the action and state pair). Note that an arrow simply 
indicates an influence direction in the diagram. Now, we can 
convert it into the belief-state SMDP as shown in Figure 4 (b). The 
process of maintaining the belief state is Markovian, which means 
that the SMDP problem with the belief state can be solved by 
adapting the value iteration algorithm, which iterates on the 
optimal value of every state (defined as the expected infinite 
discounted sum of reward that the system will gain if it starts in 
that state and executes the optimal policy.) The optimal policy is 
then obtained by choosing, in every state, the action that 
minimizes the estimated discounted cost, using the current 
estimate of the value function. The value iteration technique may 
be contrasted with the policy iteration technique, which 
manipulates the policy directly, rather than finding it indirectly via 
the optimal value function. In practice, value iteration is much 
faster per iteration, but policy iteration takes fewer iterations. In 
our problem setup, we have found the value iteration to be more 
efficient than the policy iteration. Details of the value iteration 
technique for the SMDP is omitted to save space. Interested 
readers may refer to [7]. 
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Figure 4. The joint influence diagram for a) POSMDP and   

b) belief-state SMDP. 

4. Variability-aware Power Management 
Considering the uncertainty in optimization problem, we present a 
variability-aware dynamic power management technique based on 
the POSMDP framework. 
4.1 Power Management Formulation 
Let a sequence of belief states b0, b1, …, bn denote a processing 
path δ from b0 to bn of length n with the property that p(b0, b1), …, 
p(bn-1, bn) > 0, where p(x, y) is the probability that the system 
moves to state y from state x. For a policy π (cf. equation (3)), the 
discounted cost C of a processing path δ of length n is defined as 

                             
0

( ) ( , )
n

i
it i iC cost b aπ δ γ

=∑                        (4) 

where exponent ti denotes the duration of time that the system 
spends in belief state bi before action ai causes a transition to state 
bi+1, and cost(b, a) is the expected cost rate, given by 

    
'

1
( , ) ( ) ( ' | , ) ( , ')

( , )τ ∈
= + ∑

b B
Probcost b a pow b b b a ene b b

b a
   (5) 

where pow(b) is the power consumption of the system in belief 

state b, Prob(b’ | b, a) is the probability of being in belief state b’ 
after action a in state b, ene(b, b’) is the energy required by the 
system to transit from state b to b’, and τ(b, a) is the expected 
duration of time that the system spent in state b if action a is 
chosen. Thus, we can compute the expected power consumption of 
the system in active mode, given that the system starts in state b,  
as actpowπ

avg (b) = EXP[Cπ(δ)]. Considering the expectation with 
respect to π over the set of processing paths starting in state b, the 
total energy dissipation of the system is defined as: 

 
.. .( ) ( )Vdd Vth d

l L l L
total l lavgene actpow b exe slepow T exeπ π
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where slepowVdd.Vth is the power consumption of the system in the 
sleep mode, exel.π is the execution time of task l , where l ∈ L (set 
of tasks), running under policy π, and Td is the given deadline. 
Changing the voltage level (and correspondingly the operating 
frequency) of the system affects the execution time of the tasks as 
follows. Let Vi denote the operating voltage and fi the clock 
frequency of the system, which are set by the power manager. For 
the simplicity of discussion, we define the workload of task l, Ni,l , 
as the number of clock cycles required to complete task l at 
operating voltage Vi. Let variable x(l, i) represent the percentage of 
the workload of task l running at voltage Vi under policy π. The 
execution time of task l under policy π may be calculated as 

                              
,, 1

( , )
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m

l i
exe x l i N fπ =
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where m is the number of optimal voltage settings, and Σix(l,i) = 1. 
Thus, we can calculate the remaining idle time as Dl – exel,π, which 
is used for slack calculation to achieve energy savings, where Dl is 
the deadline of task l. 

A block diagram for the proposed variability-aware power 
management solution is provided in Figure 5. We assume that the 
system has two modes: active and sleep modes for simplicity (the 
idle mode is regarded as being a part of the active mode.) In the 
active mode, the system can switch between different speed levels, 
i.e., power-saving states, as commanded by the power manager  
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Figure 5. The diagram of variability-aware power management.

4.2 Optimal Policy Algorithms 
Considering the optimal policy during power management, we 
introduce two algorithms that incorporate our proposed framework. 
The first algorithm is an offline algorithm based on SMDP 
modeling, which finds the optimal policy but assumes that the state 
transition probabilities are known with certainty. The second 
algorithm is an online version that could cope with the unknown 
state of the system and utilizes the POSMDP framework. 

As for the offline algorithm, if the state transition probabilities 
T(s’, a, s) are known, the SMDP-based algorithm in determining 
optimal policy can be described as a linear programming problem 



as shown in [13]: 
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where actpowπ
avg(s) is the expected power in state s, and ϕ(s,a ) is 

the frequency that the system is in state s and action a is issued. 
Note that the optimal solution to the SMDP policy optimization 
problem belongs to the set of deterministic policies [7]. 

Figure 6 describes the proposed online algorithm for 
variability-aware power management when the performance state 
is not known beforehand. The algorithm includes an operation to 
estimate the next step as st+1 = Fst, where F is a projection matrix 
that has an induced transition probability Fij, a weighted sum over 
actions of transition probabilities, T(sj, ak, si), with conditional 
probability of action a in state s, Prob(ak | si), given by 

( , , ) ( | )= ∑ij k j k i k iF T s a s Prob a s                   (9) 

The system history is a sequence of state, observation, and 
action triples such as <b0, o0, a0>, < b1, o1, a1>,…, < bt, ot, at> 
and the cost is provided by the users e.g., in a table-lookup. With n 
states and m actions, this algorithm takes O(n) and O(m) times for 
finding a belief state and an optimal action, respectively, which 
results in total O(nm) running time. 

 n: the number of states
m: the number of actions
input: o, l, Dl
output: π

1: observe temperature o
2: estimate the next state,  s’ = Fs
3:        for x = 1 to n
4:              if (ox = o)
5:              calculate belief state b
6:                       for y = 1 to m
7: calculate Dl – exel.ay (slack)
8:                              find ay s.t. minimum ene
9: update system history  H

10: return π

n: the number of states
m: the number of actions
input: o, l, Dl
output: π

1: observe temperature o
2: estimate the next state,  s’ = Fs
3:        for x = 1 to n
4:              if (ox = o)
5:              calculate belief state b
6:                       for y = 1 to m
7: calculate Dl – exel.ay (slack)
8:                              find ay s.t. minimum ene
9: update system history  H

10: return π

Figure 6. Online algorithm for variability-aware DPM. 

5. Experimental Results 
In the experimental setup, we implemented a 32bit RISC processor 
compatible with [15] in 130nm CMOS technology, which has 3 
operating voltage levels and dual threshold voltages. We 
developed the proposed algorithm in Matlab, which allows us to 
rapidly consider multiple scenarios with respect to the magnitude 
and distribution of PVT variations. We obtained SAIF (Switching 
Activity Interchange File) [16] by back-annotated RTL simulation, 
and then executed the Power Compiler [16] to achieve accurate 
power value. 

We first analyze the performance behavior of the RISC 
processor as a function of the process variations. Figure 7 shows a 
set of power-delay curves for the RISC processor, obtained by 
running the Power Compiler for various process conditions and Vth 
variations. For example, if we change the degree of variation for 
Vth, then the design in the SS condition (i.e., 1.35 Vdd, 125°C) can 

result in leakage power dissipation between 1.5uW and 6.2uW. 
The dynamic power dissipation is, however, independent of the Vth 
variations and since in our design and technology node, the 
dynamic power dissipation constitutes the bulk of the total power 
dissipation, the variation in total power with respect to Vth is rather 
small. In our experiment, we set the 3-σ variations in the operating 
frequency and supply voltage level of the chip to be 10%. This is a 
reasonable assumption for a chip realized in the 130nm CMOS 
technology. 
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Figure 7. Power-delay curves for different levels of variability.

The second experiment is to demonstrate the effectiveness of 
the proposed POSMDP framework and power management 
technique. First, we set the parameter values for the evaluation of 
the POSMDP framework as shown in Table 1 and Figure 8. The 
performance state (s1, s2, and s3) in Figure 8 is defined as a 
combination of power dissipation and execution delay for the 
RISC processor. 

Table 1. Parameter values for a given experiment. 
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Figure 8. Performance states for a given experiment. 

Second, we arbitrarily choose a sequence of 20 application 
programs, which include SPECint2000 gcc, gap, and gzip 
benchmarks e.g., gap1-gzip2-gap3-gcc4-…-gap20, where programi 
is the i-th program in the sequence. Next, the sequence of 
programs is executed on the processor to calculate the belief states 
based on the estimated temperature which serves as the 
observation, where we use thermal parameters extracted from the 



commercial data sheet for a QFP package as adopted in [9]. We 
assume that the processor starts from <s1, s2, s3> = <1, 0, 0> as the 
state point, as shown in Figure 9. Then, the belief states are 
evaluated based on action and observation, as the processor 
executes the sequence of programs as in Figure 9, where we use 
the offline algorithm in determining the policy. 
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end  poin t

start po in t
end  poin t

 
Figure 9. Trace of belief states based on the temperature 

observation. 
Simulation results in Figure 10 demonstrate that the proposed 

variability-aware power management technique ensures energy 
savings in the presence of large within-chip variations. We use the 
energy-delay-product (which is inversely proportional to 
MIPS2/watt) [12] as the figure of merit. Both cases (a) and (b) in 
Figure 10 show the power consumption, obtained by running the 
sequence of 20 programs, as the worst-case (more energy) and 
best-case (less energy), respectively, without considering the PVT 
variation effects. The conventional power management methods 
(which are unaware of the PVT variations) can produce 100% 
difference in energy-delay-product (EDP) figure. Our proposed 
method, case (c), achieves energy savings while considering the 
variations (i.e., we set various values for temperature, Vth, and Vdd 
during simulation), resulting in EDP of (normalized) 1.27 for the 
online algorithm. The offline algorithm results in (normalized) 
1.09, similar to the abovementioned best-case without considering 
the variability issue. Table 2 summarizes these simulation results 
in terms of power dissipation, energy, and energy-delay-product. 
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Figure 10. Results on various power management: (a) Worst-
case   (b) Best-case  (c) The proposed method (online). 

 

Table 2. Summary of Figure 10  (power, delay per program). 
 

Case (a)

Case (b)

Case (c)

-Worst-case
-Assume No-variation

Description Min. power / delay Max. power / delay
Energy
(normalized)

34.8mW / 4.29ns23.2mW / 12.11ns 1.42

23.0mW / 7.18ns 35.3mW / 3.61ns 1.00

23.1mW / 7.66ns 35.0mW / 3.73ns

-Best-case
-Assume No-variation

-Variability-Aware
( online )

1.15

EDP
(normalized)

2.06

1.00

1.27

Case (a)

Case (b)

Case (c)
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-Assume No-variation

Description Min. power / delay Max. power / delay
Energy
(normalized)

34.8mW / 4.29ns23.2mW / 12.11ns 1.42

23.0mW / 7.18ns 35.3mW / 3.61ns 1.00

23.1mW / 7.66ns 35.0mW / 3.73ns

-Best-case
-Assume No-variation

-Variability-Aware
( online )

1.15

EDP
(normalized)

2.06

1.00

1.27

6. Conclusion 
We proposed a variability-aware dynamic power management 
technique which brings the variational effects to the forefront of 
power management framework. The proposed uncertainty 
management framework, which is based on POSMDP, controls the 
uncertain states of the system and makes a decision (voltage and 
frequency setting) to achieve energy savings. Being able to predict 
the variational effect would allow significant reduction of the 
uncertain behavior of the system, improving the DPM robustness. 
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