
 1

Dynamic Reconfiguration in Sensor Networks with Regenerative Energy Sources

Ani Nahapetian1, Paolo Lombardo2, Andrea Acquaviva3, Luca Benini2, Majid Sarrafzadeh3

3Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, California, USA
2Dipartimento di Elettronica, Informatica e Sistemistica (DEIS), Università Bologna, Bologna, Italy

3Information Science and Technology Institute (ISTI), Università di Urbino, Urbino, Italy

ABSTRACT
In highly power constrained sensor networks, harvesting energy
from the environment makes prolonged or even perpetual
execution feasible. In such energy harvesting systems, energy
sources are characterized as being regenerative. Regenerative
energy sources fundamentally change the problem of power
scheduling for embedded devices. Instead of the problem being
one of maximizing the lifetime of the system given a total amount
of energy, as in traditional battery powered devices, the problem
becomes one of preventing energy depletion at any given time.
Coupling relatively computationally intensive applications, such
as video processing applications, with the constrained FPGAs
that are feasible on power constrained embedded systems, makes
dynamic reconfiguration essential. It provides the speed
comparable to a hardware implementation, but it also allows the
dynamic reconfiguration to meet the multiple application needs of
the system. Different applications can be loaded on the FPGA, as
the system’s needs change over time. The problem becomes how
to schedule the dynamic reconfiguration to appropriately make
use of the regenerative energy source, to ensure the proper
availability of energy for the system over time.
In this paper, we present a methodology for carrying out dynamic
reconfiguration for regenerative energy sources, based on
statistical analysis of tasks and supply energy. The approach is
evaluated through extensive simulations. Additionally, we have
evaluated our implementation on our regenerative energy,
dynamically reconfigurable prototype, known as the MicrelEye.
Our approach is shown to miss 57.7% less deadlines on average
than the current approach for reconfiguration with regenerative
energy sources.
1. INTRODUCTION
In an effort to provide long, or even perpetual, lifetime distributed
embedded nodes, with the fast and flexible functionality of
dynamically reconfigurable systems, systems are being developed
that utilize both low power and dynamically reconfigurable
components. Hardware execution is known to be more energy
efficient, and with the flexibility of FPGAs, the integration of
FPGAs into sensor nodes is posed to present great benefits,
especially since there are now low-power solutions that integrate
FPGAs on chip (such as ATMEL), and there is continuing
research into low-power FPGAs. Aside from limited energy
availability, another key challenge facing sensor networks is the
highly limited computational resources. Dynamic reconfiguration
allows the execution of different types of task with the speed and
the energy efficiency of hardware. The different tasks can be due
to the fact that the nodes are equipped with multiple sensors or
because the complexity of the task dictates that it is divided into
subtasks, as is the case with our video sensor prototype presented
in subsequent sections.

Capturing energy from the environment is referred to as energy
harvesting or energy scavenging. Systems that obtain or
supplement their energy supply with energy captured from the
environment are characterized as having regenerative energy
sources. These systems are fundamentally different from battery-
powered systems because instead of working with a limited total
available energy, they must optimize for proper operation given
limited energy availability at any instance in time [7]. As a result,
there are instances, where it may be beneficial to consume energy.
Additionally there can be considerable variability in energy
availability. This information may be predictable, depending on
the characterizability of the energy sources. Regenerative energy
for sensor networks is a novel approach for overcoming a critical
problem of power consumption. For certain applications,
especially networks deployed in open spaces, solar energy
harvesting can be a very dependable source of energy for
operation. Finally, with regenerative energy sources, sensor
networks can adapt themselves to perpetual operation [8][4].
Energy can be harvested from various renewable sources. There
exist several prototype systems with various regenerative energy
sources. [12] gives a history and a survey of different types of
energy harvesting systems, including their own ambulatory
motion energy harvesting shoe prototype. [2] provides a system
for vibration energy harvesting. The Prometheus project [4] and
the Heliomote project [5] are prototypes for utilizing solar power.
[14] discusses the feasibility of a network consisting of mobile
nodes that roam the environment in search of energy for all the
nodes, taking the concept to the robotics realm. A few papers have
taken a look at the scheduling aspects of regenerative energy
systems, including [1][15] which utilize dynamic voltage scaling
to approach the problem and [10][11] which provide an online
scheduling approach, which is independent of a dynamic voltage
scaling approach.
In this work, however, we consider systems that require the speed
of hardware, but because of complexity of the application or the
limited nature of the hardware, need to have the flexibility of
software. Dynamically reconfigurable resources bridge this gap,
and provide the speed of an FPGA, but with the flexibility of
being reconfigured on the fly at runtime, and hence allowing
much more complicated applications on a limited FPGA resource.
With the increasing demand for real-time and computation
intensive applications, such as sophisticated video and audio
processing applications, on limited embedded systems such as
sensor networks, the need to carry out dynamic reconfiguration
becomes even greater. Reconfigurability in sensor networks has
been explored by [16] for their PicoRadio low power, sensor
network, to accommodate for different networking protocols. [9]
examined dynamic software reconfiguration in sensor networks,
using a constraint programming based approach. They verified
their results using a simulation of a one-dimensional tracking
application. The combination of a regenerative energy system,

978-3-9810801-2-4/DATE07 © 2007 EDAA

 2

enabled with dynamic runtime reconfigurarabilty has first been
examined by [3]. The paper, however, presents a simple approach
to runtime reconfiguration, which we enhance in this paper with
great improvements in terms of deadline misses. The paper shows
that runtime reconfiguration is feasible and useful. They use a
high power consuming system as a proof of concept. Here on the
hand, we take a look at a real low power system equipped with the
FPSLIC architecture and solar energy harvesting ability. Also, the
paper [3] has worked under the assumption that if there is enough
energy to reconfigure the hardware, then it is beneficial to
reconfigure the hardware. This assumption is not necessarily true.

Table 1. Example

Task
Type

SW Energy
Requirement

HW Energy
Requirement

Reconfiguration
Cost

1 25 10
2 15 2

10

Figure 1. Example
Consider the following example where you are given two types of
tasks, 1 and 2, and three tasks total. Table 1 gives their energy
requirement for execution in software and in hardware. The
reconfiguration cost for the hardware is also given. Figure 1
demonstrates the “reconfigure if able” approach, where the top
curve represents the energy stored. During the start of execution
of task 1 and 2, there is enough energy to reconfigure and run the
tasks in hardware. During the execution of the second task, the
energy stored is depleted and not replenished. As a result, there is
not enough energy to execute the third task, either in hardware or
in software. On the other hand, had we saved the reconfiguration
obtained for the first task and run the second task in software,
there would have been enough energy to execute the third task in
hardware. Thus violating no deadlines. The example demonstrates
that a reconfiguration of the hardware, even when there is a large
availability of energy, can be more costly in the future, when there
may be a limited amount of energy. Maintaining a valuable
reconfiguration could be more valuable for low energy periods
than a less valuable reconfiguration, even if it wastes energy in the
short term.

2. PROBLEM FORMULATION
In this paper, we specifically address the problem of scheduling
tasks onto hardware or software for execution, while manipulating
the energy provided by regenerative sources. This is coupled with
problem of determining when to reconfigure the FPGA.

More formally, the problem can be formulated as given tasks,
heterogeneous resources, and a regenerative energy source, the

objective is to ensure the execution of the largest number of tasks,
within their availability interval. (In the case of dependencies
between tasks, without violating a dependency.) Each task i is
characterized by an arrival time (ai), a hard deadline (di), an
energy requirement for execution on hardware (Hi) and on
software (Si), and a type distinguishing which reconfiguration
profile they require from the library. Task types identify whether a
reconfiguration is needed between the execution of two
consecutive tasks. Tasks of different types require a
reconfiguration. There is both a processor on which a software
implementation can be executed, as well as hardware resources
with a known reconfiguration cost (or costs). There is also the
possibility of porting the reconfiguration data from an external
source. Finally, there is a regenerative energy source with an
energy buffer, whose energy loss over time we assume to be
insignificant, and an external source of energy, which can vary
significantly over time. The energy buffer, however, has a limited
storage capacity, and after it reaches its capacity any additional
energy is not captured by the system.

2.1 Assumptions
A key assumption in this work is that there exists both a software
and a hardware version of tasks. The system can handle the case
where certain tasks have only a single implementation, but the
potential for energy savings is diminished if there is only a single
implementation of tasks. From the viewpoint of the problem
formulation, this only changes the reconfiguration cost that has to
be characterized off-line. In addition to the reconfiguration cost,
the energy consumption of hardware and software task executions
must be profiled to determine the best execution strategy. If this
information is not available, it may be collected during the
execution of the first few occurrences of the task.
To complete the problem formulation, we impose two
relationships among the hardware, the software, and the
reconfiguration energy cost for each task, i, (Hi, Si, Ri
respectively). First, we assume that software execution is more
convenient than performing reconfiguration followed by hardware
execution. This is expressed by the following equation:

iii RHS +≤ . The assumption ensures that software
execution makes sense. Otherwise, there would be very little
reason to use the software version, unless we were able to
parallelize software and hardware executions. Reciprocally, the
cost of running a task on hardware is less expensive, in terms of
energy, than running a task on software, ignoring the cost of
reconfiguration, as given the following equation: ii SH ≤ . If
this assumption were not valid, then hardware execution would be
significantly less energy efficient than the software execution, and
hence there would be no benefit to using the hardware from an
energy viewpoint.

2.2 Key Observations
A few a key observations can be made about the problem, which
can help in the formulation of the problem solution.

1. At any given moment, only the last reconfiguration is
important for future reconfigurations and scheduling.

2. If there is a large supply of energy (i.e. larger than what is
needed to fill the storage to capacity), then carrying out
reconfigurations is valuable and can be carried out without
negatively affecting the execution of tasks in the future.

t

30

20

1 2 1

 3

3. If the current task has a large differential between its
software execution and its hardware execution cost, then a
reconfiguration is valuable.

4. If the current task is frequent, then a reconfiguration is
valuable.

3. STATISTICAL APPROACH
The key observations presented in the previous section have lead
to an approach that uses statistically gathered information about
task arrival and energy availability characteristics to carryout
appropriate reconfigurations. Recall that for tasks of different
types, a reconfiguration is required between consecutive
executions on hardware, whereas tasks of the same type do not
require reconfiguration. By evaluating the expected energy after a
number of future task executions, we can determine the benefit of
carrying out a reconfiguration now. The expected energy
availability can be estimated by the following equation:

() FEExpEExp

FEExpHREEExp

jtypejtype

Ajcurrent

⋅+−

⋅+−−=

=≠)()(

)()(
 (1)

For the current task i of type j, Ecurrent is the current available
energy, R is the reconfiguration cost (we assume without loss of
generality that it is constant for each task), Hj is the cost of
running tasks of type j on hardware, and Exp(EA) is the expected
additional energy to be added to the energy storage because of the
refill effect of the scavenger source. Exp(Etype ≠ j) is the expected
cost of running the next task, of a type other than j on software,
and Exp(Etype = j) is the expected cost of running the next task of
type j on hardware, scaled by the likelihood of such a task type
occurring. F represents the number of tasks into the future the
analysis is carried out for. This is formalized below.

∑
∑=≠

=

≠ =
TT

ljl
lTT

k
k

l
jtype S

N

N
EExp

1,

1

)((2)

jTT

k
k

j
jtype H

N

N
EExp

∑
=

= =

1

)((3)

In the previous equations, TT refers to the number of task types,
Ni refers to number of occurrences of tasks of type i, Si refers to
the energy cost of running task i on software, and Hi refers to the
energy cost of running task i on hardware. Equations (2) and (3)
calculate the expected energy cost of running the next task. To
determine the proper expected cost, we have to estimate the
probability that the next task type is other than the current one.
This is obtained by multiplying the actual cost (S or H) by the
probability that the task is (or is not) of the same type of the
current one. The probability is obtained by averaging the sum the
number of occurrences observed for a certain task type.
This sort of analysis can be used to determine if it is appropriate
to reconfigure the hardware or not. If it is observed that the
expected energy cost is negative, or even below a certain
threshold, then the reconfiguration is not carried. Equation (2) and
(3) assume that task of the same type have the same hardware and
software energy costs. This may not necessarily be the case. The

energy cost, may be determined by other parameters. Our model is
robust enough to handle this case. When determining the expected
cost of task types, the energy cost of the tasks can be calculated
using the individual task characteristics, instead of the task type
characteristics.
This analysis can be extended to order-two statistics, that is where
we maintain statistics on the possibility of a task following
another task. We maintain statistics on the pairs of tasks, instead
of individual tasks. As a result, Equations (2) and (3) will be
replaced by Equations (4) and (5), respectively.

∑
∑=≠

=

≠

−
=

TT

ljl
lTT

k
k

lj
jtype S

N

N
EExp

1,

1

,

1
)((4)

jTT

k
k

jj
jtype H

N

N
EExp

1
)(

1

,

−
=
∑

=

= (5)

There are various ways to compute the expected additional
energy, and this question extensively studied in [8]. As shown in
Equation (6), we use the product of the expected length of time
until the arrival of the next task, D, and the estimated available
power, Pexpected.

)()(exp DExpPEExp ectedA ⋅= (6)

4. SIMULATION RESULTS
Simulations were conducted to determine the effectiveness of our
approach. A comparison with five other approaches, detailed
below, is presented.
Random – The random approach aims to run a task on hardware
50% of the time. If there is not enough energy, then it attempts to
run the task on software. If the random approach does not run the
task on hardware, it attempts to run the task in software. If there is
not enough energy, the task misses its deadline.
All-hardware – The all-hardware approach always runs the task
on hardware. If there is not enough energy, it misses the deadline.
Reconfigure-if-able – The reconfigure if you have enough energy
approach aims to run the tasks on hardware, by reconfiguring if
needed. If there is not enough energy to reconfigure, then the task
is run in software, and if there is not enough energy to run the task
in software, then the deadline is missed. This approach was the
one taken by [3].
All-software – The all-software approach always runs the task on
software. If there is not enough energy, it misses the deadline.
Statistical – The statistical approach calculates the expected
energy after the execution of two tasks, with the approach
presented in section 5. If the task is not run on software, as in the
random and the reconfigure-if-able approaches, it attempts to run
the task in software, and if there is still not enough energy it
misses the deadline.
Oracle – The oracle approach is aware of the immediate harvested
energy profile and future tasks. It is used to provide a lower
bound, as it has the greatest amount of information to make the

 4

decisions. However, it has limited foresight, and hence is not
optimal.
In order to determine the exact characteristics of the system that
would make a specific approach more useful, we carried out
extensive simulations. In these simulations, we utilized a
randomly generated harvested energy profile, and then varied one
component of the system: software execution cost, hardware
execution cost, or reconfiguration cost. The experiments used two
types of tasks, whose arrival times and deadlines were randomly
generated. The reconfiguration cost, the hardware cost, and the
software cost of the two tasks were determined by a ratio based on
the real measurements made on the prototype system described in
the next section. The ratio of the reconfiguration cost to task 1’s
software cost to task 1’s hardware cost to task 2’s software cost to
task 2’s hardware cost is 30:30:6:6:4. In the graphs the average
deadline misses are presented, for the six different approaches.
The statistical approach almost consistently outperforms the other
approaches, by missing fewer deadlines. It misses only marginally
more deadlines than the oracle, which has perfect knowledge of
future tasks and the future harvesting energy profile.
Figure 4 presents the results of varying the software costs. The
two tasks’ software costs were obtained by multiplying the
baseline software costs by a factor, which is plotted along the x-
axis. The ratio of the software costs of the two tasks was 5:1. The
hardware and reconfiguration costs were kept constant. In these
simulations, we varied the factor by which all the software costs
were multiplied. As is expected, the all-hardware approach
performs poorly, regardless of the software cost. When software
costs are very low, all of the approaches, except the all-hardware
approach, perform well missing no or very few deadlines.
However, the statistical approach outperforms all the other
approaches, except the oracle, for the full range of software costs.
Figure 5 presents the results from varying the hardware costs in a
similar fashion, except that the x-axis represents the factor
multiplied to the baselines hardware costs. In these simulations,
we varied the factor by which all the baseline hardware costs were
multiplied, as we did with the software costs in the previous
figure. The ratio of 3:2 was maintained for the hardware costs of
the two tasks. The all-software approach’s performance is same
for the different hardware costs, as would be expected. The
hardware based approaches, however, do not perform as well as
the all-software approach in the previous figure, because there is a
reconfiguration cost that must be paid, even if the cost of running
the task on hardware is 0. The statistical approach performs very
well compared to the other approaches and is very close to the
oracle in all of the test cases. On average the statistical approach
misses 35.3%, 82.6%, and 87.4% less deadlines than the all-
software, the reconfigure-if-able, and the all-hardware
approaches, respectively.
In Figure 6, we keep all the variables of the problem constant and
vary the ratio of the reconfiguration cost to the task execution
costs. As would be expected, Figure 6 shows that the performance
of the all-software approach is the same regardless of the
reconfigurations cost. As the reconfiguration cost becomes too
large to make hardware execution feasible, the reconfigure-if-
able, statistical, and oracle approaches converge to the
performance of the all-software approach. The all-hardware
approach performs very poorly throughout, because it misses
tasks when there is not enough energy to reconfigure, even if there
is enough energy to run that task in software. The statistical
approach is almost equal to the oracle, which has both task and

energy information for the near future. Also, the algorithm
consistently outperforms the reconfigure-if-able, the all-software,
and the all-hardware approaches, with the exception of one test
case where there is a reconfiguration cost of 0. On average the
statistical approach misses 42.7%, 57.7%, and 68.2% less
deadlines than the all-software, reconfigure-if-able, and all-
hardware approaches, respectively.

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10
SW Energy Factor

Pe
rc

en
ta

ge
 o

f M
is

se
d

D
ea

dl
in

es

Random All SW
All HW Reconfigure If Able
Statistical Oracle

Figure 4. Deadline Misses for Various Software Energy Costs

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16
HW Energy Factor

Pe
rc

en
ta

ge
 o

f M
is

se
d

D
ea

dl
in

es

Random All SW
All HW Reconfigure If Able
Statistical Oracle

Figure 5. Deadline Misses for Various Hardware Energy

Costs

 5

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50
Reconfiguration Energy

Pe
rc

en
ta

ge
 o

f M
is

se
d

 D
ea

dl
in

es

Random All SW
All HW Reconfigure If Able
Statistical Oracle

Figure 6. Deadline Misses for Various Reconfiguration Costs

5. CASE STUDY – MICRELEYE
This work has been targeted to the MicrelEye platform, shown in
Figure 7. This node harvests power from a single solar cell and is
equipped with a battery, which is used when the solar cell’s
energy availability is not sufficient. The MicrelEye features an
Omnivision 7640 video sensor, which requires computation-
intensive processing on the captured images. Also, image
recognition is real-time constrained: processing time should
match the frame rate of the video sensor. The system has a
Bluetooth transceiver and hence is capable of networking with
other MicrelEyes or with a network gateway. This implies that
reconfiguration bitstreams can be downloaded from the network.
Thus, the reconfiguration cost can include the cost of
downloading the bitfile from the network. Finally, the system is
equipped with an ATMEL FPSLIC configurable platform,
featuring an AVR microcontroller and 40K gate FPGA. FPSLIC
is the one of the lowest power consuming reconfigurable systems
on the market. The key feature of the system is that there are both
hardware and software versions of tasks. The problem is one of
partioning the work between the two resources, given the new
model of regenerative energy. Each task can be run on the
microcontroller or on the FPGA. Thus the MicrelEye has access
to both the bitfile necessary for hardware reconfiguration and the
executable necessary for software execution. At runtime, using the
algorithm presented, the approach will pick between the two
versions to use to run tasks as they arrive dynamically. The
challenge however is that the tasks do not fit on the hardware at
the same time, and thus task executions must be scheduled onto
the resources.
The tasks that we have developed for execution are thresholding
and edge detection. Thresholding converts a frame from its full 8-
bit, gray scale representation (or 24-bit, RGB representation) to a
single bit representation for each pixel. It converts each pixel to
either white or black, depending on a threshold value. The
resulting images can be thought of as a silhouetted version of the
original image. This is useful for object detection. Edge detection
is a key step in object detection and tracking. In our case it is
carried out by multiplying nine neighboring pixels with the

Laplacian matrix, taking their absolute value and determining if it
is above a certain threshold. This technique is refereed to as
Laplacian edge detection.

Figure 7. MicrelEye: Video Node Prototype

With our prototype, we first characterized the task execution and
hardware reconfiguration costs, which are summarized in Table 2.
We, then, implemented a vision application control flow, shown
in Figure 8, that is used for object detection and tracking, using
the thresholding and edge detection tasks. A threshold value, τ, is
used to detect the percentage of successfully tracked objects
during the execution of the application to determine the next task
that needs to be executed. We ran the random, all-software, all-
hardware, and reconfigure-if-able approaches on nice different
sequences of test frames, captured by the video sensor. Each
sequence leads to a different number of detected objects over
time, triggering the thresholding task with different frequencies
given a fixed threshold, which in our case was 40%.

Table 2. Measured Energy Values for MicrelEye System
Application Reconfiguration

Energy (mJ)
SW
Energy
(mJ)

HW
Energy
(mJ)

Thresholding 25.0 8.93 4.48

Edge
Detection

37.4 28.08 6.60

The numerous experiments on this platform are summarized in
Figure 9, where the percentage of missed deadlines is shown for
the six different approaches on the nine different frame sequences.
The experiments show that the statistical approach presented in
the previous sections is indeed close to or identical to the
percentage of missed deadlines by the oracle, even on real video
applications. Also the approach far outperforms the random, all-
software, all-hardware, and reconfigure-if-able approaches. The
all-hardware and the reconfigure-if-able approaches perform
worse than expected, because of their bias towards using the
hardware implementation over the software implementation. The
version of FPSLIC used in the prototype does not support partial
reconfiguration, and hence reconfiguration is costly, causing
reconfiguration favoring approaches to deplete the stored energy
quickly. Additionally, due to limited I/O capabilities of the FPGA
the potential to fully parallelize the hardware implementation is
limited. However, our approach also outperforms the all-software
approach, since it intelligently uses a combination of hardware
and software.

 6

Figure 8. Thresholding and Edge Detections Application Flow

0

10

20

30

40

50

60

1-1
00

0

10
01

-200
0

20
01

-30
00

30
01

-40
00

40
01

-50
00

50
01

-60
00

60
01-7

00
0

700
1-8

00
0

80
01-9

00
0

Frames

Pe
rc

en
ta

ge
 o

f M
is

se
d

D
ea

dl
in

es

Random All SW
All HW Reconfigure If Able
Statistical Oracle

Figure 9. Deadline Misses for Various Frame Sequences

6. CONCLUSION
In this paper, we discussed the paradigm shift caused by
regenerative energy sources, as compared to traditional battery
powered systems, in power aware scheduling of task executions.
Additionally, we presented the need to integrate reconfigurable
devices into sensor networks nodes, given the growing number of
low-power FPGAs coupled with the need for fairly sophisticated
fast computation on sensor network nodes. We presented a
statistically based approach to schedule tasks onto hardware and
software and to reconfigure hardware. We evaluated the approach
using extensive simulations, where our approach was found to be
very close in value to the oracle, which is aware of the near future
in terms of task arrival and energy availability. Finally, we
presented a prototype system, for which our system has been
developed and implemented. Again we showed the large
advantage in terms of deadline misses that our approach has over
the random, the all-software, the all-hardware, and the
reconfigure-if-able approaches.

7. REFERENCES
[1] A. Allavena and D. Mossé, Scheduling of Frame-based Embedded

Systems with Rechargeable Batteries. In Proceedings of IEEE
Workshop on Power Management for Real-Time and Embedded
Systems (in conjuction with RTAS'01), 2001

[2] Y. Ammar, A. Buhrig, M. Marzencki, B. Charlot, S. Basrour and M.
Renaudin, Wireless sensor network node with asynchronous
architecture and vibration harvesting micro power generator. In
Proceedings of the 2005 Joint Conference on Smart Objects and
Ambient intelligence: innovative Context-Aware Services: Usages
and Technologies, 2005.

[3] I. Folcarelli, A. Susu, T. Kluter, G. De Micheli, A. Acquaviva, An
opportunistic reconfiguration strategy for environmentally powered

devices. In Proceedings of the 3rd Conference on Computing
Frontiers (CF '06), 2006.

[4] X. Jiang, J. Polastre, and D. Culler, Perpetual Environmentally
Powered Sensor Networks. In Proceedings of the Fourth
International Conference on Information Processing in Sensor
Networks: Special track on Platform Tools and Design Methods for
Network Embedded Sensors (IPSN/SPOTS), 2005

[5] HelioMote Project.
http://research.cens.ucla.edu/portal/page?_pageid=56,55124,56_551
25&_dad=portal&_schema=PORTAL

[6] A. Kansal, D. Potter and M.B. Srivastava, Performance Aware
Tasking for Environmentally Powered Sensor Networks. In
Proceedings of ACM Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS),
2004.

[7] A. Kansal, J. Hsu, M. B. Srivastava, V. Raghunathan, Harvesting
Aware Power Management for Sensor Networks. Proceedings of the
43rd Design Automation Conference (DAC ‘06), 2006.

[8] A. Kansal, J. Hsu, S. Zahedi, M. B. Srivastava, Power Management
in Energy Harvesting Sensor Networks. ACM Transactions on
Embedded Computing Systems (in revision), May 2006.

[9] S. Kogekar, S. Neema, B. Eames, X. Koutsoukos, A. Ledeczi, and
M. Maroti. Constraint-guided dynamic reconfiguration in sensor
networks. Proceedings of the Third international Symposium on
information Processing in Sensor Networks (IPSN '04), 2004.

[10] C. Moser, D. Brunelli, L. Thiele and L. Benini. Real-time
Scheduling with Regenerative Energy. In The Proceedings of 18th
Euromicro Conference on Real-Time Systems (ECRTS ‘06), 2006.

[11] C. Moser, D. Brunelli, L. Thiele and L. Benini. Lazy Scheduling for
Energy Harvesting Sensor Nodes. In The Proceedings of Fifth IFIP
Working Conference on Distributed and Parallel Embedded Systems
(DIPES ‘06), 2006.

[12] J.A. Paradiso, T. Starner, Energy Scavenging for Mobile and
Wireless Electronics. Pervasive Computing, pp. 18-27, January-
March, 2005.

[13] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M.B.
Srivastava, Design Considerations for Solar Energy Harvesting
Wireless Embedded Systems. In Proceedings of the Fourth
International Conference on Information Processing in Sensor
Networks: Special track on Platform Tools and Design Methods for
Network Embedded Sensors (IPSN/SPOTS), 2005.

[14] M. Rahimi, H. Shah, G. Sukhatme, J. Heidemann, and D. Estrin.
Studying the Feasibility of Energy Harvesting in a Mobile Sensor
Network. In Proceedings of the IEEE International Conference on
Robotics and Automation, 2003.

[15] C. Rusu, R. Melhem, and D. Mossé, Multi-version Scheduling in
Rechargeable Energy-aware Real-time Systems. In Proceedings of
IEEE Euromicro Conference on Real-Time Systems (ECRTS ’03),
2003.

[16] T. Tuan, S.F. Li, J. Rabaey. Reconfigurable platform design for
wireless protocol processors. Proceedings 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing.
Proceedings, 2001.

≥ τ
< τ

Thresholding

Edge
Detection

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

