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ABSTRACT 
In highly power constrained sensor networks, harvesting energy 
from the environment makes prolonged or even perpetual 
execution feasible. In such energy harvesting systems, energy 
sources are characterized as being regenerative. Regenerative 
energy sources fundamentally change the problem of power 
scheduling for embedded devices. Instead of the problem being 
one of maximizing the lifetime of the system given a total amount 
of energy, as in traditional battery powered devices, the problem 
becomes one of preventing energy depletion at any given time.  
Coupling relatively computationally intensive applications, such 
as video processing applications, with the constrained FPGAs 
that are feasible on power constrained embedded systems, makes 
dynamic reconfiguration essential. It provides the speed 
comparable to a hardware implementation, but it also allows the 
dynamic reconfiguration to meet the multiple application needs of 
the system. Different applications can be loaded on the FPGA, as 
the system’s needs change over time. The problem becomes how 
to schedule the dynamic reconfiguration to appropriately make 
use of the regenerative energy source, to ensure the proper 
availability of energy for the system over time. 
In this paper, we present a methodology for carrying out dynamic 
reconfiguration for regenerative energy sources, based on 
statistical analysis of tasks and supply energy. The approach is 
evaluated through extensive simulations. Additionally, we have 
evaluated our implementation on our regenerative energy, 
dynamically reconfigurable prototype, known as the MicrelEye. 
Our approach is shown to miss 57.7% less deadlines on average 
than the current approach for reconfiguration with regenerative 
energy sources. 
1. INTRODUCTION 
In an effort to provide long, or even perpetual, lifetime distributed 
embedded nodes, with the fast and flexible functionality of 
dynamically reconfigurable systems, systems are being developed 
that utilize both low power and dynamically reconfigurable 
components. Hardware execution is known to be more energy 
efficient, and with the flexibility of FPGAs, the integration of 
FPGAs into sensor nodes is posed to present great benefits, 
especially since there are now low-power solutions that integrate 
FPGAs on chip (such as ATMEL), and there is continuing 
research into low-power FPGAs. Aside from limited energy 
availability, another key challenge facing sensor networks is the 
highly limited computational resources. Dynamic reconfiguration 
allows the execution of different types of task with the speed and 
the energy efficiency of hardware. The different tasks can be due 
to the fact that the nodes are equipped with multiple sensors or 
because the complexity of the task dictates that it is divided into 
subtasks, as is the case with our video sensor prototype presented 
in subsequent sections.  

Capturing energy from the environment is referred to as energy 
harvesting or energy scavenging. Systems that obtain or 
supplement their energy supply with energy captured from the 
environment are characterized as having regenerative energy 
sources. These systems are fundamentally different from battery-
powered systems because instead of working with a limited total 
available energy, they must optimize for proper operation given 
limited energy availability at any instance in time [7]. As a result, 
there are instances, where it may be beneficial to consume energy. 
Additionally there can be considerable variability in energy 
availability. This information may be predictable, depending on 
the characterizability of the energy sources. Regenerative energy 
for sensor networks is a novel approach for overcoming a critical 
problem of power consumption. For certain applications, 
especially networks deployed in open spaces, solar energy 
harvesting can be a very dependable source of energy for 
operation. Finally, with regenerative energy sources, sensor 
networks can adapt themselves to perpetual operation [8][4]. 
Energy can be harvested from various renewable sources. There 
exist several prototype systems with various regenerative energy 
sources. [12] gives a history and a survey of different types of 
energy harvesting systems, including their own ambulatory 
motion energy harvesting shoe prototype. [2] provides a system 
for vibration energy harvesting.  The Prometheus project [4] and 
the Heliomote project [5] are prototypes for utilizing solar power. 
[14] discusses the feasibility of a network consisting of mobile 
nodes that roam the environment in search of energy for all the 
nodes, taking the concept to the robotics realm. A few papers have 
taken a look at the scheduling aspects of regenerative energy 
systems, including [1][15] which utilize dynamic voltage scaling 
to approach the problem and [10][11] which provide an online 
scheduling approach, which is independent of a dynamic voltage 
scaling approach. 
In this work, however, we consider systems that require the speed 
of hardware, but because of complexity of the application or the 
limited nature of the hardware, need to have the flexibility of 
software. Dynamically reconfigurable resources bridge this gap, 
and provide the speed of an FPGA, but with the flexibility of 
being reconfigured on the fly at runtime, and hence allowing 
much more complicated applications on a limited FPGA resource. 
With the increasing demand for real-time and computation 
intensive applications, such as sophisticated video and audio 
processing applications, on limited embedded systems such as 
sensor networks, the need to carry out dynamic reconfiguration 
becomes even greater. Reconfigurability in sensor networks has 
been explored by [16] for their PicoRadio low power, sensor 
network, to accommodate for different networking protocols. [9] 
examined dynamic software reconfiguration in sensor networks, 
using a constraint programming based approach. They verified 
their results using a simulation of a one-dimensional tracking 
application. The combination of a regenerative energy system, 
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enabled with dynamic runtime reconfigurarabilty has first been 
examined by [3].  The paper, however, presents a simple approach 
to runtime reconfiguration, which we enhance in this paper with 
great improvements in terms of deadline misses. The paper shows 
that runtime reconfiguration is feasible and useful. They use a 
high power consuming system as a proof of concept. Here on the 
hand, we take a look at a real low power system equipped with the 
FPSLIC architecture and solar energy harvesting ability. Also, the 
paper [3] has worked under the assumption that if there is enough 
energy to reconfigure the hardware, then it is beneficial to 
reconfigure the hardware. This assumption is not necessarily true. 

Table 1. Example 

Task 
Type 

SW Energy 
Requirement 

HW Energy 
Requirement 

Reconfiguration 
Cost 

1 25 10 
2 15 2 

10 

 

Figure 1. Example 
Consider the following example where you are given two types of 
tasks, 1 and 2, and three tasks total. Table 1 gives their energy 
requirement for execution in software and in hardware. The 
reconfiguration cost for the hardware is also given. Figure 1 
demonstrates the “reconfigure if able” approach, where the top 
curve represents the energy stored. During the start of execution 
of task 1 and 2, there is enough energy to reconfigure and run the 
tasks in hardware. During the execution of the second task, the 
energy stored is depleted and not replenished. As a result, there is 
not enough energy to execute the third task, either in hardware or 
in software. On the other hand, had we saved the reconfiguration 
obtained for the first task and run the second task in software, 
there would have been enough energy to execute the third task in 
hardware. Thus violating no deadlines. The example demonstrates 
that a reconfiguration of the hardware, even when there is a large 
availability of energy, can be more costly in the future, when there 
may be a limited amount of energy. Maintaining a valuable 
reconfiguration could be more valuable for low energy periods 
than a less valuable reconfiguration, even if it wastes energy in the 
short term. 

2. PROBLEM FORMULATION 
In this paper, we specifically address the problem of scheduling 
tasks onto hardware or software for execution, while manipulating 
the energy provided by regenerative sources. This is coupled with 
problem of determining when to reconfigure the FPGA. 

More formally, the problem can be formulated as given tasks, 
heterogeneous resources, and a regenerative energy source, the 

objective is to ensure the execution of the largest number of tasks, 
within their availability interval. (In the case of dependencies 
between tasks, without violating a dependency.) Each task i is 
characterized by an arrival time (ai), a hard deadline (di), an 
energy requirement for execution on hardware (Hi) and on 
software (Si), and a type distinguishing which reconfiguration 
profile they require from the library. Task types identify whether a 
reconfiguration is needed between the execution of two 
consecutive tasks. Tasks of different types require a 
reconfiguration. There is both a processor on which a software 
implementation can be executed, as well as hardware resources 
with a known reconfiguration cost (or costs). There is also the 
possibility of porting the reconfiguration data from an external 
source. Finally, there is a regenerative energy source with an 
energy buffer, whose energy loss over time we assume to be 
insignificant, and an external source of energy, which can vary 
significantly over time. The energy buffer, however, has a limited 
storage capacity, and after it reaches its capacity any additional 
energy is not captured by the system. 

2.1 Assumptions 
A key assumption in this work is that there exists both a software 
and a hardware version of tasks. The system can handle the case 
where certain tasks have only a single implementation, but the 
potential for energy savings is diminished if there is only a single 
implementation of tasks. From the viewpoint of the problem 
formulation, this only changes the reconfiguration cost that has to 
be characterized off-line. In addition to the reconfiguration cost, 
the energy consumption of hardware and software task executions 
must be profiled to determine the best execution strategy. If this 
information is not available, it may be collected during the 
execution of the first few occurrences of the task. 
To complete the problem formulation, we impose two 
relationships among the hardware, the software, and the 
reconfiguration energy cost for each task, i, (Hi, Si, Ri 
respectively). First, we assume that software execution is more 
convenient than performing reconfiguration followed by hardware 
execution. This is expressed by the following equation: 

iii RHS +≤ . The assumption ensures that software 
execution makes sense. Otherwise, there would be very little 
reason to use the software version, unless we were able to 
parallelize software and hardware executions.  Reciprocally, the 
cost of running a task on hardware is less expensive, in terms of 
energy, than running a task on software, ignoring the cost of 
reconfiguration, as given the following equation: ii SH ≤ . If 
this assumption were not valid, then hardware execution would be 
significantly less energy efficient than the software execution, and 
hence there would be no benefit to using the hardware from an 
energy viewpoint. 

2.2 Key Observations 
A few a key observations can be made about the problem, which 
can help in the formulation of the problem solution. 

1. At any given moment, only the last reconfiguration is 
important for future reconfigurations and scheduling. 

2. If there is a large supply of energy (i.e. larger than what is 
needed to fill the storage to capacity), then carrying out 
reconfigurations is valuable and can be carried out without 
negatively affecting the execution of tasks in the future. 
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3. If the current task has a large differential between its 
software execution and its hardware execution cost, then a 
reconfiguration is valuable. 

4. If the current task is frequent, then a reconfiguration is 
valuable. 

3. STATISTICAL APPROACH 
The key observations presented in the previous section have lead 
to an approach that uses statistically gathered information about 
task arrival and energy availability characteristics to carryout 
appropriate reconfigurations. Recall that for tasks of different 
types, a reconfiguration is required between consecutive 
executions on hardware, whereas tasks of the same type do not 
require reconfiguration. By evaluating the expected energy after a 
number of future task executions, we can determine the benefit of 
carrying out a reconfiguration now. The expected energy 
availability can be estimated by the following equation: 

( ) FEExpEExp

FEExpHREEExp

jtypejtype

Ajcurrent

⋅+−

⋅+−−=

=≠ )()(

)()(
 (1) 

For the current task i of type j, Ecurrent is the current available 
energy, R is the reconfiguration cost (we assume without loss of 
generality that it is constant for each task), Hj is the cost of 
running tasks of type j on hardware, and Exp(EA) is the expected 
additional energy to be added to the energy storage because of the 
refill effect of the scavenger source. Exp(Etype ≠ j) is the expected 
cost of running the next task, of a type other than j on software, 
and Exp(Etype =  j) is the expected cost of running the next task of 
type j on hardware, scaled by the likelihood of such a task type 
occurring. F represents the number of tasks into the future the 
analysis is carried out for. This is formalized below. 
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In the previous equations, TT refers to the number of task types, 
Ni refers to number of occurrences of tasks of type i, Si refers to 
the energy cost of running task i on software, and Hi refers to the 
energy cost of running task i on hardware. Equations (2) and (3) 
calculate the expected energy cost of running the next task. To 
determine the proper expected cost, we have to estimate the 
probability that the next task type is other than the current one. 
This is obtained by multiplying the actual cost (S or H) by the 
probability that the task is (or is not) of the same type of the 
current one. The probability is obtained by averaging the sum the 
number of occurrences observed for a certain task type. 
This sort of analysis can be used to determine if it is appropriate 
to reconfigure the hardware or not. If it is observed that the 
expected energy cost is negative, or even below a certain 
threshold, then the reconfiguration is not carried. Equation (2) and 
(3) assume that task of the same type have the same hardware and 
software energy costs. This may not necessarily be the case. The 

energy cost, may be determined by other parameters. Our model is 
robust enough to handle this case. When determining the expected 
cost of task types, the energy cost of the tasks can be calculated 
using the individual task characteristics, instead of the task type 
characteristics. 
This analysis can be extended to order-two statistics, that is where 
we maintain statistics on the possibility of a task following 
another task. We maintain statistics on the pairs of tasks, instead 
of individual tasks. As a result, Equations (2) and (3) will be 
replaced by Equations (4) and (5), respectively. 
 

∑
∑=≠

=

≠

−
=

TT

ljl
lTT

k
k

lj
jtype S

N

N
EExp

1,

1

,

1
)(   (4) 

jTT

k
k

jj
jtype H

N

N
EExp

1
)(

1

,

−
=
∑

=

=    (5) 

There are various ways to compute the expected additional 
energy, and this question extensively studied in [8]. As shown in 
Equation (6), we use the product of the expected length of time 
until the arrival of the next task, D, and the estimated available 
power, Pexpected. 

)()( exp DExpPEExp ectedA ⋅=    (6) 

4. SIMULATION RESULTS 
Simulations were conducted to determine the effectiveness of our 
approach. A comparison with five other approaches, detailed 
below, is presented. 
Random – The random approach aims to run a task on hardware 
50% of the time. If there is not enough energy, then it attempts to 
run the task on software. If the random approach does not run the 
task on hardware, it attempts to run the task in software. If there is 
not enough energy, the task misses its deadline. 
All-hardware – The all-hardware approach always runs the task 
on hardware. If there is not enough energy, it misses the deadline. 
Reconfigure-if-able – The reconfigure if you have enough energy 
approach aims to run the tasks on hardware, by reconfiguring if 
needed. If there is not enough energy to reconfigure, then the task 
is run in software, and if there is not enough energy to run the task 
in software, then the deadline is missed. This approach was the 
one taken by [3]. 
All-software – The all-software approach always runs the task on 
software. If there is not enough energy, it misses the deadline. 
Statistical – The statistical approach calculates the expected 
energy after the execution of two tasks, with the approach 
presented in section 5. If the task is not run on software, as in the 
random and the reconfigure-if-able approaches, it attempts to run 
the task in software, and if there is still not enough energy it 
misses the deadline. 
Oracle – The oracle approach is aware of the immediate harvested 
energy profile and future tasks. It is used to provide a lower 
bound, as it has the greatest amount of information to make the 



 4

decisions. However, it has limited foresight, and hence is not 
optimal. 
In order to determine the exact characteristics of the system that 
would make a specific approach more useful, we carried out 
extensive simulations.  In these simulations, we utilized a 
randomly generated harvested energy profile, and then varied one 
component of the system: software execution cost, hardware 
execution cost, or reconfiguration cost. The experiments used two 
types of tasks, whose arrival times and deadlines were randomly 
generated. The reconfiguration cost, the hardware cost, and the 
software cost of the two tasks were determined by a ratio based on 
the real measurements made on the prototype system described in 
the next section. The ratio of the reconfiguration cost to task 1’s 
software cost to task 1’s hardware cost to task 2’s software cost to 
task 2’s hardware cost is 30:30:6:6:4. In the graphs the average 
deadline misses are presented, for the six different approaches. 
The statistical approach almost consistently outperforms the other 
approaches, by missing fewer deadlines. It misses only marginally 
more deadlines than the oracle, which has perfect knowledge of 
future tasks and the future harvesting energy profile. 
Figure 4 presents the results of varying the software costs. The 
two tasks’ software costs were obtained by multiplying the 
baseline software costs by a factor, which is plotted along the x-
axis. The ratio of the software costs of the two tasks was 5:1. The 
hardware and reconfiguration costs were kept constant. In these 
simulations, we varied the factor by which all the software costs 
were multiplied. As is expected, the all-hardware approach 
performs poorly, regardless of the software cost. When software 
costs are very low, all of the approaches, except the all-hardware 
approach, perform well missing no or very few deadlines. 
However, the statistical approach outperforms all the other 
approaches, except the oracle, for the full range of software costs.  
Figure 5 presents the results from varying the hardware costs in a 
similar fashion, except that the x-axis represents the factor 
multiplied to the baselines hardware costs. In these simulations, 
we varied the factor by which all the baseline hardware costs were 
multiplied, as we did with the software costs in the previous 
figure. The ratio of 3:2 was maintained for the hardware costs of 
the two tasks. The all-software approach’s performance is same 
for the different hardware costs, as would be expected. The 
hardware based approaches, however, do not perform as well as 
the all-software approach in the previous figure, because there is a 
reconfiguration cost that must be paid, even if the cost of running 
the task on hardware is 0. The statistical approach performs very 
well compared to the other approaches and is very close to the 
oracle in all of the test cases. On average the statistical approach 
misses 35.3%, 82.6%, and 87.4% less deadlines than the all-
software, the reconfigure-if-able, and the all-hardware 
approaches, respectively. 
In Figure 6, we keep all the variables of the problem constant and 
vary the ratio of the reconfiguration cost to the task execution 
costs. As would be expected, Figure 6 shows that the performance 
of the all-software approach is the same regardless of the 
reconfigurations cost. As the reconfiguration cost becomes too 
large to make hardware execution feasible, the reconfigure-if-
able, statistical, and oracle approaches converge to the 
performance of the all-software approach. The all-hardware 
approach performs very poorly throughout, because it misses 
tasks when there is not enough energy to reconfigure, even if there 
is enough energy to run that task in software. The statistical 
approach is almost equal to the oracle, which has both task and 

energy information for the near future. Also, the algorithm 
consistently outperforms the reconfigure-if-able, the all-software, 
and the all-hardware approaches, with the exception of one test 
case where there is a reconfiguration cost of 0. On average the 
statistical approach misses 42.7%, 57.7%, and 68.2% less 
deadlines than the all-software, reconfigure-if-able, and all-
hardware approaches, respectively. 
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Figure 4. Deadline Misses for Various Software Energy Costs 
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Figure 6. Deadline Misses for Various Reconfiguration Costs 

5. CASE STUDY – MICRELEYE 
This work has been targeted to the MicrelEye platform, shown in 
Figure 7. This node harvests power from a single solar cell and  is 
equipped with a battery, which is used when the solar cell’s 
energy availability is not sufficient. The MicrelEye features an 
Omnivision 7640 video sensor, which requires computation-
intensive processing on the captured images. Also, image 
recognition is real-time constrained:  processing time should 
match the frame rate of the video sensor. The system has a 
Bluetooth transceiver and hence is capable of networking with 
other MicrelEyes or with a network gateway. This implies that 
reconfiguration bitstreams can be downloaded from the network. 
Thus, the reconfiguration cost can include the cost of 
downloading the bitfile from the network. Finally, the system is 
equipped with an ATMEL FPSLIC configurable platform, 
featuring an AVR microcontroller and 40K gate FPGA. FPSLIC 
is the one of the lowest power consuming reconfigurable systems 
on the market. The key feature of the system is that there are both 
hardware and software versions of tasks. The problem is one of 
partioning the work between the two resources, given the new 
model of regenerative energy. Each task can be run on the 
microcontroller or on the FPGA. Thus the MicrelEye has access 
to both the bitfile necessary for hardware reconfiguration and the 
executable necessary for software execution. At runtime, using the 
algorithm presented, the approach will pick between the two 
versions to use to run tasks as they arrive dynamically. The 
challenge however is that the tasks do not fit on the hardware at 
the same time, and thus task executions must be scheduled onto 
the resources.  
The tasks that we have developed for execution are thresholding 
and edge detection. Thresholding converts a frame from its full 8-
bit, gray scale representation (or 24-bit, RGB representation) to a 
single bit representation for each pixel. It converts each pixel to 
either white or black, depending on a threshold value. The 
resulting images can be thought of as a silhouetted version of the 
original image. This is useful for object detection. Edge detection 
is a key step in object detection and tracking. In our case it is 
carried out by multiplying nine neighboring pixels with the 

Laplacian matrix, taking their absolute value and determining if it 
is above a certain threshold. This technique is refereed to as 
Laplacian edge detection. 

 
Figure 7. MicrelEye: Video Node Prototype 

With our prototype, we first characterized the task execution and 
hardware reconfiguration costs, which are summarized in Table 2. 
We, then, implemented a vision application control flow, shown 
in Figure 8, that is used for object detection and tracking, using 
the thresholding and edge detection tasks. A threshold value, τ, is 
used to detect the percentage of successfully tracked objects 
during the execution of the application to determine the next task 
that needs to be executed. We ran the random, all-software, all-
hardware, and reconfigure-if-able approaches on nice different 
sequences of test frames, captured by the video sensor. Each 
sequence leads to a different number of detected objects over 
time, triggering the thresholding task with different frequencies 
given a fixed threshold, which in our case was 40%.  

Table 2. Measured Energy Values for MicrelEye System  
Application Reconfiguration 

Energy (mJ) 
SW 
Energy 
(mJ) 

HW 
Energy 
(mJ) 

Thresholding 25.0 8.93 4.48 

Edge 
Detection 

37.4 28.08 6.60 

 
The numerous experiments on this platform are summarized in 
Figure 9, where the percentage of missed deadlines is shown for 
the six different approaches on the nine different frame sequences. 
The experiments show that the statistical approach presented in 
the previous sections is indeed close to or identical to the 
percentage of missed deadlines by the oracle, even on real video 
applications. Also the approach far outperforms the random, all-
software, all-hardware, and reconfigure-if-able approaches. The 
all-hardware and the reconfigure-if-able approaches perform 
worse than expected, because of their bias towards using the 
hardware implementation over the software implementation. The 
version of FPSLIC used in the prototype does not support partial 
reconfiguration, and hence reconfiguration is costly, causing 
reconfiguration favoring approaches to deplete the stored energy 
quickly. Additionally, due to limited I/O capabilities of the FPGA 
the potential to fully parallelize the hardware implementation is 
limited. However, our approach also outperforms the all-software 
approach, since it intelligently uses a combination of hardware 
and software. 
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Figure 8. Thresholding and Edge Detections Application Flow 
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Figure 9. Deadline Misses for Various Frame Sequences  

6. CONCLUSION 
In this paper, we discussed the paradigm shift caused by 
regenerative energy sources, as compared to traditional battery 
powered systems, in power aware scheduling of task executions. 
Additionally, we presented the need to integrate reconfigurable 
devices into sensor networks nodes, given the growing number of 
low-power FPGAs coupled with the need for fairly sophisticated 
fast computation on sensor network nodes. We presented a 
statistically based approach to schedule tasks onto hardware and 
software and to reconfigure hardware. We evaluated the approach 
using extensive simulations, where our approach was found to be 
very close in value to the oracle, which is aware of the near future 
in terms of task arrival and energy availability. Finally, we 
presented a prototype system, for which our system has been 
developed and implemented. Again we showed the large 
advantage in terms of deadline misses that our approach has over 
the random, the all-software, the all-hardware, and the 
reconfigure-if-able approaches.  
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