A Middleware-centric Design Flow for Networked Embedded Systems *

F. Fummi, G. Perbellini, R. Pietrangeli, D. Quaglia

University of Verona - Department of Computer Science - Strada le Grazie, 37134, Verona, Italy
{fummi,perbellini,pietrangeli,quaglia} @sci.univr.it

Abstract

The paper focuses on the design of networked embedded
systems which cooperate to provide complex distributed ap-
plications. A milestone in the effort of simplifying the im-
plementation of such applications has been the introduction
of a service layer, named middleware, which abstracts from
the peculiarities of the operating system and HW compo-
nents. However, the presence of the middleware has not
been yet introduced in the design flow as an explicit di-
mension. This work presents an abstract model of middle-
ware supporting different programming paradigms; it can
be used as component in the design flow and allows to sim-
ulate and develop the application without doing premature
assumptions on the actual HW/SW platform. At the end of
the design flow the abstract middleware can be mapped to
an actual middleware. The methodology has been analyzed
both theoretically and practically with the actual applica-
tion on a wireless sensor network.

1 Introduction

In recent times, interest in Ambient Intelligence has in-
creased considerably [1]. In this context, typical appli-
cations consists of Networked Embedded Systems (NES)
which are integrated into human environments and ex-
change data through communication networks.

GATEWAY
=

AN
f AN

BODY SENSOR REMOTE SERVICES

NETWORK

Figure 1. Health-care application of NES.

Fig. 1 illustrates an example of health-care application
in which a body sensor network monitors patient’s param-

*Research activity partially supported by the FP6-2005-IST-5-033506
ANGEL European Project

978-3-9810801-2-4/DATEQ07 © 2007 EDAA

eters (e.g., temperature, blood pressure, and motion) and
transmits them trough the Gateway to a Remote Service to
control/monitor the user health (e.g., hospital). Tradition-
ally, many NES applications have been developed without
support from system software [1] excepts for device drivers
and operating systems. State-of-the-art techniques [2] for
NES focus on simple data-gathering applications, and in
most cases, the design of the application and the system
software are usually closely-coupled, or even combined as
a monolithic procedure. Such applications are neither flexi-
ble nor scalable and they should be re-written if the platform
changes. The use of a middleware layer is a novel approach
to fully meet the design and implementation challenges of
NES applications. Middleware has often been useful in
traditional systems to bridge the gap between the operat-
ing system and the application and to make inter-operable
distributed processes. All middleware services should re-
spect the constraints of NES, i.e., limited amount of mem-
ory, reduced processing power, scalability, and heterogene-
ity. Furthermore, there are at least four different program-
ming paradigms. Nowadays, the choice of the middleware
to design NES application is based on the following criteria:
programming skills of the system architect [3] and platform
constraints [4]. The down-side of this approach is a more
complex design flow. In fact, the same application cannot
support different platforms, limiting application re-use, in-
teroperability and scalability.

Various proposals have been made to solve this issue.
In the context of software engineering the Model-Driven
Architecture [14] shifts the focus of software development
from writing code to building platform-independent mod-
els. Some works [5] support true interoperability between
different applications, as well as between different im-
plementation platforms and ensure scalability of the NES
technology by proposing a universal application interface,
which allows programmers to develop applications without
having to know unnecessary details of the underlying plat-
form. Such works define a standard set of services and in-
terface primitives called SNSP (Sensor Network Services
Platform), to facilitate the development of Wireless Sen-

sors/Actuators Network applications.

The goal of this paper is to present a middleware-centric
design flow for NES, where the middleware plays a decisive
role in the design process. This proposal has three main
advantages:

(1) It provides a set of abstract services supporting the
programming paradigms of different actual middleware im-
plementations: the Abstract Middleware Services (AMS).
AMS facilitates the design flow by providing an interface
which abstracts the specific HW/SW platform and meets
the skills of the designer as far as programming paradigm
is concerned.

(2) The application can be simulated at early stage of the
design flow.

(3) The AMS can be mapped to Actual Middleware Ser-
vices (ACMS) to execute the application on the actual plat-
form; this guarantees the correct trade-off between level of
abstraction and efficiency of implementation.

The paper is organized as follows. Section 2 classifies
the actual middleware approaches according to their pro-
gramming paradigms. Section 3 and Section 4 introduce
the proposed solution describing the AMS services and the
AMS-based design flow. Section 5 discusses the simula-
tion environment cooperating with AMS to simulate the
whole NES model and in Section 6 we show how to map
the abstract middleware services on an actual middleware.
Finally, in Section 7 we experimentally evaluate the effec-
tiveness of the Middleware-centric design flow.

2 Middleware classification

Middleware services can follow different programming
paradigms [6].

Database. With this approach, the NES network is
viewed as a distributed database where users extract data
through SQL-like queries. TinyDB [11] is a query-
processing middleware for WSN based on TinyOS.

Tuplespace. This kind of middleware derives from
Linda [9], a coordination language for concurrent program-
ming in which processes communicate by reading and writ-
ing tuples on a shared repository called tuple space. Tu-
ples can be seen as vectors of typed values; they are anony-
mous and thus are selected through pattern matching on
their type/value contents. Some examples belonging of this
class are: T-Spaces [8] and TinyLime.

Object-oriented (OOM). Applications based on object-
oriented middleware consist of distributed objects interact-
ing via location-transparent method invocation. Typically,
this middleware offers /) an interface definition language
(IDL) which is used to abstract over the fact that objects can
be implemented in any suitable programming language, 2)
an object request broker which is responsible for transpar-
ently directing method invocations to the appropriate tar-
get object, and 3) a set of services (e.g. naming, time,

transactions, replication etc.) which further enhance the
distributed programming environment. Ice [10] is a new
object-oriented middleware platform that allows developers
to build distributed client-server applications with minimal
effort.

Message-oriented (MOM). Message-oriented middle-
ware increases the flexibility of an architecture by enabling
processes to exchange asynchronous messages. This ap-
proach is quite suitable in pervasive environments such as
NES, where most applications are based on events. In this
programming model, sources “publish” data to the entire
network and interested sinks “’subscribe” to specific topics.
The network then only forwards them downstream if there
is at least one subscriber on that path. Mires [12] proposes
an asynchronous communication model that is suitable for
event-driven NES applications.

3 Abstract Middleware Services

Any middleware type provides different services (or
API) to the application designer. Apart from core features,
almost all middleware approaches presented in Section 2
offer several services that simplify the application develop-
ment by providing access to particular operating systems
and HW functionality.

Database Services Database middleware provides the
user with a query system which hides distribution issues.
We can summarize the services provided by the database
middleware in a unique service:

query : insertion, update or request of data contained in
the distributed architecture.

The following pseudo-code represents a simplified ver-
sion of an application based on database middleware.

string request="SELECT temp
FROM table WHERE temp>8"
response = middleware.query (request) ;

Tuplespace Services In Tuplespace middleware data is
represented by elementary structures called fuples stored in
the so-called ruple space. Each tuple is a sequence of typed
fields (e.g., <”temperature”, 25, XYZ>) and the commu-
nication between processes is implemented by writing and
reading tuples in the tuple space. The main services pro-
vided by the programming paradigm are:

read b (template) : to read a tuple from the fu-
ple space without removing it; the calling process is
blocked until a matching tuple appears.

read.nb (template) : like the previous service, but in
this case the operation returns null if no matching
tuple exists in the tuple space.

take b (template) : toread and remove a tuple from
the tuple space; the calling process is blocked until a
matching tuple appears.

takenb (template) : like the previous service, but in
this case the operation returns null if no matching
tuple exists in the tuple space.

write (tuple) : toinserta tuple in the tuple space.

In read and take operations, a template should be
specified to describe the type of the requested tuple. The
template itself is a tuple whose field contain either values
(actuals) or ”wild cards” (formals). Typically, if multiple
tuples match a template, the one returned by the read or
take operations is selected non-deterministically.

The following pseudo-code represents a simplified ver-
sion of an application based on tuplespace middleware.

while (1) {
response = mw.takenb(<"temp",?>) ;
if (response!=NULL AND
response[1l] > 800)
execute_operation;
endif;}

Object-oriented Services A typical object-oriented
middleware provides /) a mechanism to describe an object
interface and to map it to an actual object implemented in
common programming languages, 2) a mechanism to pro-
vide the client with a local reference of the remote object,
and 3) a public repository in which instances of the actual
object have been registered. Let Srv and SrvImpl be the
name of the object interface and of its actual implementa-
tion respectively, then the middleware should provide the
following services:

register (obj,name) to register an instance of
SrvImpl into the public repository and to assign it
a public name.

lookup (name) : to obtain a local object of type Srv.

The following fragment of application uses the service
provided by a remote object.

Middleware mw=new Middleware (host, port) ;
Srv mySrv=(Srv)mw.lookup ("Service") ;
mySrv.do () ;

The following pseudo-code represents a fragment of an
application which creates an instance of SrvImpl and reg-
isters it in the public repository.

Middleware mw=new Middleware (host, port) ;
SrvImpl mySrvImpl=new SrvImpl () ;
mw.register (mySrvImpl, "Service");

Message-oriented Services Publish/Subscribe frame-
work is an asynchronous messaging paradigm in which
publishers post messages to an intermediary broker and sub-
scribers register subscriptions with that broker. In a topic-
based system, messages are published to "topics” or named
logical channels which are hosted by a broker. Subscribers
in a topic-based system will receive all messages published
to the topics to which they subscribe and all subscribers to a
topic will receive the same messages. The current program-
ming model uses the following services:

publish (Message, Topic) : to publish a message to
the topic.

subscribe (Topic) : to subscribe to a particular topic.

on_receive (Message) invocated when the sub-

scriber receives a message.

The following pseudo-code represents a fragment of ap-
plication based on message-oriented middleware.

main() {
Topic topic = "temperature';
middleware.subscribe (topic) ;}
on.receive (Message msg) {
if (msg[l] > 800)
execute_operation;
endif;}

3.1 AMS implementation

Based on the previous analysis we introduce a set of ser-
vices and interface primitives, called Abstract Middleware
Services (AMS), which should be made available to an ap-
plication programmer independently on the implementation
on any actual middleware. Each programming service, pre-
viously described, should be seen as a component of AMS.
AMS library has been implemented using SystemC. This
allows to simulate each component of the whole distributed
application at different level of abstraction by using the
Transaction Level Modeling (TLM) library, thus providing
an early platform for software development. Following the
TLM fashion we have defined three AMS implementations
(AMS_1, AMS_2 and AMS_3), usable in different abstrac-
tion levels of the application design flow, as shown in Sec-
tion 4.

4 AMS-based design flow

Fig 2 shows the design flow based on the AMS. A typ-
ical NES application is a distributed application composed
by a set of interactive modules running on a heterogeneous
HW/SW embedded architecture (network nodes interact

Choice of the
programmmf paradigm

Application @
requirements

|
SwW | Middleware | HW | Network

communicating through abstract MW /\

‘\ X Refinement

| simulation

Description of the whole application as a set of modules
AMS_3

g

& validation

System/Network | I |
partitioning _,_+— |/

~ v

Model of the system to be designed
(abstract MW interacting w/ the network) __, N
AMS_2 model) | |\ Refinement

:

HWSW | ¥ & validation
| partitioning S \

Model of the SW Hardware Network N\
™__model T__model \" \ Refinement
AMS_1 | | simulation

‘\ , &validation

| v

et Actual MW
Application J [O+S]‘[HW] [Network]

\ simulation

!

Mapping ito actual

Figure 2. Design flow.

through communication network) to carry out the function-
ality. During the first step of the design flow proposed in
this paper, the designer has to specify the application re-
quirements (performances, functionalities, power consum-
ing, etc.) and choose the programming paradigm; a pro-
gramming model should substantially support the develop-
ment of the application hiding hardware and communica-
tion issues from the programmer as far as possible. Ide-
ally a programming paradigm allows to program the net-
worked platform as a single “virtual” entity, rather than fo-
cusing on individual nodes. The choice of the programming
paradigm depends on the application designer skills and on
the type/nature of the application.

Therefore, in this phase the NES application will be built
using the abstracted services provided by the AMS_3, based
on the programming paradigm chosen, to verify and sim-
ulate the functional property of the application. Further-
more, because of the separation of the application model
from the middleware, the application development can be
done in parallel with the design of the HW/SW platform
or even without knowledge about the final platform. Then
System/Network partitioning is applied to this model. Some
modules are mapped to network nodes and simulated with
a network simulator; an integer number of modules can be
assigned to each node. We refer to the model of the node
under design as System model. Communications between
nodes are described as network communications in the Net-
work model which reproduces the behavior of network pro-
tocols such as TCP/IP or ZigBee/802.15.4. The System
model, modeled using the services of AMS_2, interacts with
the Network model (horizontal arrow in Figure 2). In this
phase, an performed of the communication protocols, sim-
ulated by the Network model, can be evaluated. The AMS_2
API services used to design the NES application as the same
of the previous design step; however, in this case, the imple-
mentation of the AMS_2 services is different to allow the
interaction with the network simulator.

Then a traditional design flow is applied to the System
model, while the different parameters of the Network model

can be tuned to improve performance. In particular, HW/SW
partitioning is performed on the System model to map func-
tionalities to HW and SW components according to sev-
eral constraints (e.g., performance, cost, and component
availability). SW components interact with HW compo-
nents (named Hardware model) and HW components inter-
act with the Network model (horizontal arrows in the Fig-
ure 2). Also in this case, the AMS_3 API services as the
same of the previous design steps, but the implementation is
different to communicate with the network simulator, simu-
lating the Network model, and the hardware simulator, sim-
ulating Hardware model.

Finally, SW functionality is then mapped to the appli-
cation running on an actual middleware (e.g., TinyDB, Tu-
plespace, etc.) and its operating system. Synthesis is ap-
plied to HW modules to build actual components. An actual
network is deployed according to its model. At this phase
the NES application can be run on real HW or simulated
using s simulating platform, like TOSSIM for WSNs.

5 Simulation environment

One of key advantages of the design based on abstract
middleware is that simulation can be done at the early stage
of the design flow. With reference to Figure 2 there are
different simulation mechanisms and capabilities at the dif-
ferent levels of the design flow.

At the first stage, the whole application is described as
a set of SystemC functional modules interacting together
through the interface provided by abstract middleware (i.e.,
AMS_3). Simulation mechanisms are provided by the Sys-
temC simulation environment in which each function and
the middleware are considered as concurrent processes.

At the second stage, system/network partitioning has
been performed and the system model of each node interacts
with other nodes through communication links described in
the network model. At this level a different version of the
abstract middleware library (i.e., AMS_.2) is used; it pro-
vides the same interface to the application code but commu-
nications are implemented through packet exchanges. Sys-
tem models are simulated by the SystemC simulator while
packet delivery is simulated by a network simulator. A
cooperation between the two simulation environments is
needed; in particular, the network simulator must provide
SystemC with an API to transfer packets from system mod-
els to the network and viceversa; for this purpose some ap-
proaches are available [13].

At the third stage, HW/SW partitioning has been per-
formed. HW components are simulated by SystemC and
interact with the network model as in the previous stage.
Also the software is simulated by SystemC; a third version
of the abstract middleware library (i.e., AMS_1) is used; it
provides the same interface to the application code but com-
munications are implemented through calls to HW func-

tions. These calls will be replaced by an actual operating
system in the final deployment stage.

6 Mapping to actual MW

Starting from the NES application designed using the
AMS library, the final design step involves a mapping be-
tween the Abstract Middleware Services and the Actual
Middleware Services (ACMS). The mapping allows to run
the application on the actual middleware used by the Net-
worked Embedded System or its simulator (e.g., TOSSIM).

This section describes how to implement the mapping
between AMS and ACMS. The actual middleware services
are already described in Section 3 classified according to the
programming paradigm. It is important to underline that the
actual middleware can fall either into the same class of the
abstract services or into another class; in the former case,
the mapping is very simple while in the latter, the mapping
implies a paradigm interpretation and conversion.

This section describes the mapping from tuplespace ser-
vices to database services.

A tuple T is an ordered set of elements
T =< ej,eq,...,e, >, where n represents the number
of tuple elements. Before presenting the mapping rule be-
tween tuplespace middleware and database middleware, let
us partition the tuple space into subsets of homogeneous tu-
ples; then a database table is created for each subset P; as
shown in Fig. 3.

Homogenous Database

Tuples Space Tuple Subsets Tables

<435,"Paper2’,2003>

ID(int) | Title(string) | Year(int)
435 Paper2 2003
1681 Paper1 2006

<435,"Paper2',2003>

<1681,"Paper1”,2006>

<“Temperature”,27>

<“Pressure”,510>

ID(string) | Value(int)
Temperature | 27

<T ", 27>

<1681,"Paper1”,2006>

Pressure 510

<“Pressure”,510>

Figure 3. Example of transformation of a tu-
ple space into database tables.

The relationship between the read service of the tu-
plespace middleware and the query of the database middle-
ware can be described as follows.

‘ read(<ei,e2,...,€n>) ‘

4

SELECT *
FROM Pi
WHERE columni = e:1 AND

columnn = en

The WHERE condition has to be composed by the AND

operation of the template actual fields, skipping the “wild
cards” elements. Tuples can be also extracted from the tu-
ple space using the destructive fake operation; the corre-
sponding implementation in a database middleware can be
described as follows.

take (<e1,e2, ..., en>)

4

SELECT *

FROM Pi

WHERE columni = e1 AND
columnn = en

DELETE

FROM Pi

WHERE columni = e1 AND

columnn = en

Finally, a write operation of the tuplespace middleware
can be translated into an INSERT or UPDATE command,
based on the existence of the record in the table.

write(<ei,e2, ..., en>)

4

If (SELECT *
FROM Pi
WHERE columni = e1 AND

columnn = en
UPDATE ..
else
INSERT ..)

7 Experimental analysis

The proposed middleware-centric design flow has been
applied to an application for the scenario depicted in Fig. 1,
in which a mobile terminal (GW) works as a gateway be-
tween a body sensor network (BSN) and a remote service
(RS). Several BSN monitor the body temperature of a group
of people; the GW checks the received data and informs the
RS if some sample exceeds a given threshold. This appli-
cation has been modeled by using the AMS_3 library and
then mapped to two different middleware paradigms, i.e.,
Tuplespace and Database.

The abstract application uses the Tuplespace services of
the AMS_3 library. Fig. 4 shows SystemC code for the three
actors of the application (BSN, GW, RS). Fig. 4.1 represents
the application code running on each sensor node which
samples the body temperature and then makes its value
available by using the tuplespace write service. Fig. 4.2
represents the application code running on the GW which
extracts (take service) available temperatures and checks
for values above 40 degree; in this case, the GW generates
an alarm through the write service. Fig. 4.3 represents
the application code running on the RS to verify whether
an alarm has been raised (take service). Finally, Fig. 4.4
describes the instantiation of the all actors (50 nodes have
been simulated).

SC_MODULE (BSN) { // BSN.h @
sc_port<AMS_if> bsn_port;
void run();
SC_CTOR (BSN) :bsn_port (“bsn_port”) {
SC_THREAD (run) ;
end_module () ;

! }

SC_MODULE (GW) { // GW.h @
sc_port<AMS_if> gw_port;
void run();
SC_CTOR(GW) : gw_port (“gw_port”) {
SC_THREAD (run) ;
end_module () ;

void BSN::run(){ // BSN.cc)",
while (1) { void GW::run() { // GW.cc
for (int i=0;i<NUM_SENSOR;i++) { while (1) {
Tuple t = ..<TEMP>..; Tuple=gw_port->take (..<TEMP>..) ;

if (tuple[1]1>40)
gw_port->write (..< ALARM >..);

bsn_port->write(t);

wait (20, SC_SEC); wait (1, SC_MS);
} }

} }

SC_MODULE(RS) { // RS.h int sc_main(int argc ,char *argv[l) {
sc_port<AMS_if> rs_port; BSN *b = new BSN(“BSN”) ;
void run(); GW *gw = new GW(“GW") ;
SC_CTOR(BAN) : rs_port (“rs_port”) { _

RS *rs = new RS(“RS”);

SC_THREAD (run) ; AMS_3 *mw=new AMS_3 (“AMS_3");

end_module () ;

}

void RS::run() { // RS.ce
while (1) {

b->bsn_port (mw->mw_port) ;
gw->gw_port (mw->mw_port) ;
rs->rs_port (mw->mw_port) ;
rs_port->take (..<ALARM>..) ; sc_start(-1);

wait (1, SC_MS); return 0;

) ONRE @

Figure 4. Application described by using the
AMS _3 library.

Code | Simulation | MW
lines | time [sec.] calls

AMS_3 60 0.37 51300
Tuplespace | 151 1.06 51300
Database 170 6.60 66974

Table 1. Simulation performance.

The abstract model has been simulated in the SystemC
environment to verify the correct implementation of func-
tionalities. As reported by Table 1 the simulation is faster
than real-time (0.37 s for a 100 s simulation). Then, the ab-
stract code has been mapped to two actual implementations
based on different middleware paradigms. The Tuplespace
application can be used with actual TinyOS motes; the GW
and the RS are Java applications interacting with NesC code
on sensor nodes through a tuplespace middleware imple-
mentation. In this case, a ono-to-one mapping of tuplespace
service calls has been done. The application has been simu-
lated in the TOSSIM environment with a network of 50 sen-
sor nodes. The Database application is a distributed appli-
cation based on Database services. The different actors are
Java applications running on Linux operating system and
the middleware is based on a MySQL server.

These experiments have shown that /) an abstract model
of the application can be easily developed and simulated
through the middleware services provided by AMS_3, 2)
the mapping process supports the rapid generation of actual
implementations for very different platforms (i.e., TinyOS
motes and Linux machines), 3) the simulation of the ab-
stract application is faster than real-time and than TOSSIM
simulation allowing the rapid exploration of design alterna-
tives before generating the actual implementation.

8 Conclusions

We have presented a middleware-centric approach for
the design of complex distributed applications based on net-
work of heterogeneous embedded systems. Based on the
assumption that the presence of a middleware software sim-
plifies the design of distributed applications, we have de-
veloped an abstract middleware library providing services
belonging to different programming paradigms. The de-
signer can thus rapidly develop a model of the application
according to the preferred paradigm; this model can be sim-
ulated then mapped to different platforms for actual deploy-
ment. Experimental results show that the mapping process
supports the rapid generation of actual implementations for
very different platforms (i.e., TinyOS motes and Linux ma-
chines). Furthermore, the simulation of the abstract appli-
cation is faster than real-time and than TOSSIM simulation
allowing the rapid exploration of design alternatives before
generating the code for the actual implementation.

References

[1] Twan Basten, Marc Geilen, Harmke de Groot, ”Ambient Intelligence: Impact
on Embedded System Design”, Kluwer Academic Publishers, 2003.

[2] P. Volgyesi, A. Ledeczi, ”Component-Based Development of Networked Em-
bedded Applications”, In Proc. of Euromicro conference, 2002, pp. 68-73.

[3] Kay Rmer, ”"Programming Paradigms and Middleware for Sensor Networks”,
http://citeseer.ist.psu.edu/666689.html, 2004.

[4] V. Subramonian et al., "Middleware Specialization for Memory-Constrained
Networked Embedded Systems”, In Proc. of IEEE Real-Time and Embedded
Technology and Applications Symposium, 2004, pp. 306-313.

[5] M. Sgroi, Adam Wolisz, Alberto Sangiovanni-Vincentelli and Jan M. Rabaey,
”A Service-Based Universal Application Interface for Ad-hoc Wireless Sen-
sor Networks”, whitepaper, U.C.Berkeley, 2004.

[6] Salem Hadim and Nader Mohamed, "Middleware: Middleware Challenges
and Approaches for Wireless Sensor Networks”, IEEE Distributed Systems
Online, 7(3), Mar. 2006.

[7]1 D. C. Schmidt et al., "TAO: A Pattern-Oriented Object Request Broker for
Distributed Real-time and Embedded Systems.” IEEE Distributed Systems
Online, 3(2), Feb. 2002.

[8] T.J. Lehman, Stephen W. McLaughry, and Peter Wyckoff, T Spaces: The
Next Wave.” In Proc. of the Int. Conference on System Sciences, 1999.

[9] David Gelernter, ”Generative communication in Linda”, ACM Transactions
on Programming Languages and Systems, Vol. 7, No. 1, pp. 80-112, 1985.

[10] Michi Henning, ”A New Approach to Object-Oriented Middleware”, IEEE
Internet Computing, Vol. 8, No. 1, pp. 66-75, 2004.

[11] S.R.Madden et al., "TinyDB: An Acquisitional Query Processing System for
Sensor Networks”, ACM Trans. Database Systems, Vol. 20, No. 1, pp. 122-
173, 2005.

[12] E. Souto et al., A message-oriented middleware for sensor networks”, in
Proc. of the Workshop on Middleware for Pervasive and Ad-Hoc Computing,
2004, Vol. 77, pp. 127-134.

[13] FFummi et al., ”A Timing-Accurate Modeling and Simulation Environment
for Networked Embedded Systems”, in Proc. of the IEEE Design Automation
Conference (DAC), 2003, pp. 42-47.

[14] 7. Siegel, "Why Use the Model Driven Architecture to Design and Build Dis-
tributed Applications ?”, in Proc. of the Int. Conf. on Software Engineering,
2005, pp. 37-37.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

