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Abstract

Today, wireless networks are moving big amounts of data
between mobile devices, which have to work in an ubiq-
uitous computing environment, which perpetually changes
at run-time (i.e., nodes log on and off, varied user activ-
ity, etc.). These changes introduce problems that can not
be fully analyzed at design-time and require dynamic (run-
time) solutions. These solutions are implemented with the
use of run-time resource management at the middleware
level for a wide variety of embedded systems. In this pa-
per, we motivate and propose the characterization of the
dynamic inputs of wireless protocols (e.g., input to the IEEE
802.11b protocol coming from IPv4 data fragmentation).
Thus, through statistical analysis we derive patterns that
will guide our optimization process of the middleware for
run-time resource management design. We assess the ef-
fectiveness of our approach with inputs of 18 real life case
studies of wireless networks. Finally, we show up to 81.97%
increase in the performance of the proposed design solution
compared to the state-of-the-art solutions, without compro-
mising memory footprint or energy consumption.

1 Introduction

Today the most popular implementation of the Network
layer in mobile devices implementing wireless networks is
the Internet Protocol (IP from now on). Its instantiations
in embedded systems include the IPv4 [1] and the IPv6 [2]
protocols. At this level data fragmentation is performed at
run-time (also known as packetization). More specifically,
bigger datagrams/packets that come from the higher layer
(e.g., TCP, UDP, etc.) have to be broken down to smaller
pieces of data, in order to fit to the Maximum Transmission
Unit (MTU from now on) of the lower layer (e.g., Ethernet,
WiFi, etc.). These smaller packets usually do not have the

same size as the MTU. Therefore, this data fragmentation
results in packets with many different sizes during run-time.
These variable-sized packets constitute the dynamic input
of the wireless protocol and the Dynamic Memory (DM
from now on) allocator, which is responsible for their allo-
cation to the physical memory of the hardware system [16].
The physical memory is usually a SRAM on-chip memory
module or an off-chip SDRAM memory module of an em-
bedded system. The DM allocator normally resides on top
of the basic Operating System (OS) services. In that sense,
it is part of the middleware and it is called by the wireless
protocol according to the dynamic input.

The DM allocator itself is a very complex algorithm and
the standard DM allocation solutions are activated with the
standardized malloc/free functions in C and the new/delete
operators in C++. The standardized DM allocators, which
try to handle memory fragmentation of general purpose
computers with ’one-size-fits-all’ solutions, fail to handle
efficiently the type of memory fragmentation produced by
the specialized dynamic inputs produced by the Network
layer, which produce a very specific pattern of fragmen-
tation. This pattern is a bimodal distribution of allocated
sizes. This failure results in mediocre performance and in-
creased memory fragmentation. Due to the latter, ultimately
also the memory size limit can be reached with even more
disastrous consequences. Therefore, specialized DM allo-
cators are needed [5] [4] to achieve better results. Note that
they are still realized in the middleware as a thin layer below
the OS and usually not in the hardware of the platform.

More specifically, we propose in this paper a specialized
DM allocator design that increases performance of memory
allocation and de/allocation up to 81%. The proposed, spe-
cialized design exploits inherent characteristics of the dy-
namic inputs of the wireless protocols (which are produced
by the data fragmentation at the IP layer). These character-
istics set the final memory fragmentation outlook that the
DM allocator must deal with. The major contribution of
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our work is the speed optimization of the memory alloca-
tion subsystem at the middleware level, without increasing
the final energy consumption and memory footprint, com-
pared to the standardized state-of-the-art solutions. The re-
mainder of the paper is organized as follows. In Section 2,
we describe some related work. In Section 3, we analyze
the dynamic inputs. In Section 4, we enumerate the rele-
vant de-fragmentation techniques in DM allocator design.
Also, we explain our proposed approach of a specialized
DM allocator design. In Section 5 we present the simula-
tion results of our proposed DM allocator and compare it
with state-of-the-art solutions. Finally, in Sect. 6 we draw
our conclusions.

2 Related Work

Software optimizations of wireless network algorithms
have been extensively studied in the related literature. [6,11]
are good overviews about the vast range of proposed tech-
niques to improve the performance and energy consumption
of wireless networks. These improvements are achieved
with the transformation of the algorithms at the Network
layer. Hardware optimizations of wireless devices have also
been extensively studied in the related literature. [15] is a
good overview about the vast range of proposed hardware
solutions to improve the efficiency of data manipulation at
the Network layer. These solutions come in the form of
specialized hardware network protocol processors or other
specialized hardware memory allocation modules. On the
one hand, the software approaches optimize performance
and energy-efficiency metrics with the implementation of
novel algorithms, thus changing the source code of the orig-
inal implementation. On the other hand the hardware ap-
proaches propose optimizations with the design of novel
hardware architectures. Our proposed approach is comple-
mentary to the above approaches, because it does not pro-
pose changes of the algorithms or the underlying hardware
architecture, instead it proposes changes in the middleware
according to the dynamic inputs of the wireless protocol.
Thus, we achieve additional optimizations (by exploiting
explicitly the inherent characteristics of the inputs) on top
of the ones achieved in the related work.

Finally, the work presented by different groups regarding
workload characterization [9], scenario identification [7]
and scenario exploitation [8] is very relevant in the context
of our proposed approach. The above works focus on defin-
ing the characteristics of the run time situations that trig-
ger specific application behavior, which has significant im-
pact on the resource usage of the applications under study.
This leads to a specific pattern, which can be exploited as
a concrete scenario during the optimization process at the
middleware level and reduce significantly the use of the re-
sources in an embedded system.

3 Dynamic Inputs of Wireless Protocols

We have carefully analyzed 18 different network input
traces, which come from 18 different 802.11b networks in
5 different buildings of the Dartmouth Campus (over a 17-
week period) [9]. These input traces are the result of IPv4
data fragmentation. To make IPv4 more tolerant of differ-
ent networks the concept of fragmentation was added so
that a device could break up the data into smaller pieces.
This is necessary when the Maximum Transmission Unit
of the Data Link layer is smaller than the datagram size of
the Transport layer. For example, the maximum size of a
datagram in TCP is 65,535 bytes and the maximum packet
size in IEEE 802.11b is 1,500 bytes. In order to send the
datagram from TCP, through IPv4, to IEEE 802.11b, the
datagram has to be split to smaller packets. Therefore, each
65,535-byte datagram will be split in 1,460-byte packets
(assuming that the IP header consumes 40 bytes) and a sin-
gle datagram will be sent over 45 packets (i.e., 65535/1460
= 44.88). It is very common to have datagram sizes which
are not divided exactly by the MTU size and thus the Data
Link layer packets have in fact various sizes after the data
fragmentation. For each network input trace we have evalu-
ated the occurrence of packet sizes during the transmission
and receival of 1,000,000 packets. It is very important to
stress that without such an extensive analysis of the afore-
mentioned dynamic inputs, the researcher is most likely to
reach wrong conclusions related to the links between the
data fragmented inputs and the resulting memory fragmen-
tation (as we will demonstrate in the following subsections).
Therefore, we consider the extensive analysis and dynamic
input characterization as the most essential part of this pub-
lication.

The input pattern actually is a bimodal distribution
of run-time memory requests between the Acknowl-
edgement (ACK) and the Maximum Transmission Unit
(MTU) packet size. The ACK packets are mostly used in
the Transmission Control Protocol (TCP) to acknowledge
the receipt of a packet (in order to increase TCP’s reliabil-
ity). Apparently, ACK packets are sent quite often and rep-
resent on average 43% of the total packets. Thus, the ACK
packet size (i.e., the IP header size of 40 bytes) is the most
popular packet size. The MTU is a Data Link layer restric-
tion on the maximum number of bytes of data in a single
transmission (i.e., of one 1500 byte packet in the case of
IEEE 802.11b). The MTU packet size is the second most
popular packet size and averages 26% of the total packets.

It is interesting to note that regardless of the number of
packets that we analyzed (i.e., samples from 1000 to 100000
packets as seen in Fig. 1), the percentage of ACK or MTU
packets for the average of all the input traces remained al-
most the same (i.e., less than 2% variance). This was some-
thing that we did not anticipate and we interpreted that for a



Figure 1. Histograms of all the packet sizes in
18 different network input traces for a sample
of 1,000,000 packets

well selected number of traces, even the analysis of a small
dynamic input trace can lead to valid conclusions (i.e., just
1000 packets per trace). Also, we had expected to have
more MTU sized packets than any other size (but it is actu-
ally the ACK packet size that is more frequently requested).
As can be seen in Fig. 1, no other sizes are present that rep-
resent a significant percentage of the total packets after the
data fragmentation. On average, each packet size has 0.02%
of the total packets. In all the input traces, more than 1200
different sizes were counted.

Finally, we reach to the conclusion that the pattern
present in the dynamic inputs of the wireless networks, only
the ACK packet size and the MTU packet size have a sig-
nificant percentage. We insisted on showcasing this impact
that the analysis of a few traces or small samples can have
on our evaluation, because in the research domain of Dy-
namic Memory allocation, the researchers up to now typ-
ically draw their conclusions based on just one or two
inputs and very limited samples (sometimes even synthetic
ones [10, 16]).

4 High-performance DM allocation

The datagrams that come from TCP are fragmented into
smaller packets and are placed in a queue before they are
sent through the Data Link layer to their destination ad-
dress. The size of this queue and the order that the blocks

are placed and forwarded varies from system to system. In
terms of packets, the default maximum number of packets
that a queue can accommodate in Linux kernel v.2.4 is 100
and in Linux kernel v.2.6 is 1000 [12]. The packets that re-
side in the queue need to be stored in the memory of the
system. It is the responsibility of the DM allocator to give
a valid memory address to each request of memory alloca-
tion every time that a packet arrives in the queue. It is also
the responsibility of the DM allocator to return the mem-
ory back to the system, when the packet is forwarded and
it does not need any longer to occupy any memory space.
The allocation and de-allocation of memory blocks, in or-
der to accommodate the packet needs, eventually leads to
(internal and external) memory fragmentation [16]. Vari-
ous techniques and strategies are used for the design of DM
allocators in order to prevent and eliminate internal and ex-
ternal fragmentation. It is important to highlight the soft-
ware module/algorithms that have the most impact on the
design of high-performance DM allocation. For an exten-
sive overview of DM allocator design choices the reader can
refer to [3].

Many choices exist in the DM allocator design space
and thus the final design can be very complex. The design
choices of the state-of-the-art DM allocators are made arbi-
trarily in respect to dynamic input and the data fragmenta-
tion present at the queue of the Network layer and the re-
spective memory fragmentation. In fact, the state-of-the-art
in DM allocator designs are usually build according to the
memory fragmentation outlook of a wide range of applica-
tions, which are completely unrelated to the dynamic inputs
of the wireless protocols (the typical set of memory frag-
mentation benchmarks can be seen in [10]). In this subsec-
tion, we are going to propose a novel DM allocator design,
which is tuned to the specific memory fragmentation out-
look of the inputs of the wireless protocol. Our target is not
to replace the standard DM allocator designs, which might
be already available in an embedded system. In contrast,
our target is to supplement them and thus propagate mem-
ory allocation and de-allocation requests, which come from
the wireless protocol, to our proposed DM allocator instead
of the standard DM allocator. The rest of the memory re-
quests can still be satisfied by the standard DM allocator.

The first step is to translate the data fragmentation
present at the Network layer into a pattern of dynamic in-
puts, which actually sets the memory fragmentation out-
look. This is done by evaluating statistically the frequency
of any given packet size that has to be placed in the queue
and allocated in the memory before it is forwarded. In Sec-
tion 3, we have shown that the MTU packets and the ACK
packets are the most important and frequently used packets
sizes for the IEEE 801.11 wireless networks. It is only nat-
ural that in the case of other networks the different packet
sizes and the MTU will vary. Therefore, the same procedure



must be followed in order to evaluate the packet sizes that
are used most frequently in each different implementation
of the Data Link layer.

The second step is to implement the correct design deci-
sions targeting performance (without compromising mem-
ory fragmentation). The statistic results which characterize
the dynamic inputs, which are collected at the previous step
are used in order to predefine the block sizes that will be
used by our proposed DM allocator. Therefore our pro-
posed optimized design will be centered on the dynamic
input pattern (namely the bimodal distribution of sizes).
We propose the following systematic procedure to select
and define our DM allocator internals. Note that only the
parameters regarding the exact sizes is specific to 802.11b.
All the rest of the proposed design choices are generic.

Figure 2. Example: Memory allocation for
a 1000 Byte request by our proposed high-
performance DM allocator

A.-Proposed blocks:More specifically, we propose to
predefine ’special’ memory block sizes equal to each packet
size that represents at least 10% of the overall packet sizes.
The rest of the predefined memory blocks should be power-
of-two sizes up to the MTU size. In the case of the IEEE
802.11b, this means that one ’special’ predefined memory
block of 40 Bytes and one ’special’ predefined memory
block of 1500 Bytes are present. The rest of the predefined
memory blocks should be the 64 Byte block, the 128 Byte
block, the 256 Byte block, the 512 Byte block and the 1024
Byte block. Therefore, we are able to satisfy the most popu-
lar memory requests without any internal fragmentation and
satisfy the remaining less popular requests with reasonable
internal fragmentation. Most importantly, the design deci-
sion of having fixed sized blocks, predefined at compile-
time, gives the performance advantage of not having to cal-
culate the block size for each request at run-time.

B.-Proposed coalescing and splitting blocks:Also, we
propose not to use any further splitting or coalescing at the
physical level of the memory blocks. We do not need to
coalesce any blocks in order to deal with external fragmen-
tation, because we already know the maximum requested
block size (i.e., the MTU packet memory request). Addi-
tionally, we do not need to split any blocks in order to deal
with internal fragmentation, because we have predefined
block sizes that prevent most of the internal fragmentation
(i.e., the internal fragmentation produced by the popular re-
quests). Most importantly, both the splitting and the coa-
lescing mechanisms are very computationally intensive for
the platform hardware, thus slowing down substantially the
allocation and de-allocation respectively. Also, these mech-
anisms have to access the physical memory significantly in
order to transform the old block sizes to new ones. The ac-
cesses to the memory reduce performance because of the la-
tency associated with each memory access. Especially these
choices allow us to save a lot in terms of execution time (as
shown in Section 5).

C.-Proposed pools:We propose to use a number of pools
equal to the number of the predefined block sizes. In the
case of the IEEE 802.11b, we use 2 ’special’ pools, which
hold the 40 Byte and the 1500 Byte blocks, and 5 pools,
which hold the 64 Byte, 128 Byte, 256 Byte, 512 Byte and
1024 Byte blocks. This lean memory pool organization is
preferred instead of more complex ones, because it allows
the fastest access to the memory pool, which will service
each request. In the worst case, 8 memory accesses will be
needed in order to find the pool which holds the block size
relevant to the request. Finally, performance-costly move-
ment of blocks between pools is not used, because it is al-
ready made irrelevant with the decision not to support any
coalescing or splitting mechanisms.

D.-Proposed fit algorithms:We propose to use among
the pools the Exact Fit and First Fit algorithms. The Exact
Fit is used only among the ’special’ pools, while the First
Fit is used among the rest of the pools. Among the blocks,
within the pools, we propose the use of only the First Fit
algorithm. We have chosen this configuration for our pro-
posed DM allocator, because it requires the least accesses
in order to find the memory block to service the memory
request. The latency of each memory access is made very
explicit in the DM allocator, whose primary concern is to
manage the memory, because their number increases ex-
ponentially if the wrong combination of pool sizes and fit
algorithm is used.

We will illustrate our proposed DM allocator design with
an example of a 1000 Byte request (as shown in Fig. 2). Ini-
tially, our DM allocator checks if the first 2 ’special’ pools
have blocks with exactly the same size as the request (i.e.,
Exact Fit). Because our DM allocator did not find a match,
it continues and traverses every pool until it finds a pools



with blocks big enough to satisfy the request. Eventually,
it reaches the 1024 Byte block pool. Inside the pool it tra-
verses with First Fit the first two 1024 Byte blocks, which
are allocated and returns the third block, which is free and
satisfies the request. Note that a request for a 1200 Byte
block would check finally the 1500 Byte block pool and it
would be satisfied with a 1500 Byte block.

5 Performance Evaluation and Comparisons

In this section, we will evaluate our proposed DM al-
locator and compare it with the state-of-the-art Linux DM
allocator (which is considered the best DM allocator [10]).
We will provide the simulated results of both of them for
the input traces that were analyzed in Section 3. We show
the results for the Linux IPv4 data fragmentation of TCP
datagrams, which are to be sent with the Linux implementa-
tion of the IEEE 802.11b wireless LAN protocol. The TCP
inputs for the IPv4 data fragmentation are taken from the
18 different input network traces of the Dartmouth Cam-
pus [9]. All our simulations are made for a queue size of
1000 elements, which is the default value for the Linux ker-
nel 2.6. All the results regard the allocations needed to fill
and empty the queue, thus they correspond to 1000 mem-
ory allocations and 1000 memory de-allocations. We have
developed a framework and automated tool support [13] to
customize and specialize easily any DM allocator and thus
validate the effectiveness of our proposed methodology. We
provide results for the performance (i.e., execution time),
memory footprint, memory accesses and energy consump-
tion of our proposed DM allocator and the Linux DM allo-
cator. The energy estimations are made using the model
in [14]. For the energy measurements we assume a flat
memory hierarchy with a single on-chip SRAM memory.

In Fig. 3, we evaluate the performance of our proposed
DM allocator. On the one hand, the execution-time needed
by our proposed DM allocator rests always just below 100
milliseconds with very small variations. On the other hand,
the Linux DM allocator needs on average more than 200
milliseconds and its performance varies considerably from
input trace to input trace. On average, our DM allocator
has 60.18% better performance than the Linux DM alloca-
tor. The splitting mechanism is used most of the time in
the Linux DM allocator, because for 40 Byte requests it can
only split predefined 64 Byte blocks and for 1500 Byte re-
quests it can only split predefined 4096 Byte blocks. The
situation is made even worse (in terms of performance) in
Linux during the de-allocation of blocks, because all those
split 64 Byte and 4096 Byte blocks will have to be coalesced
again. Also, our choice to employ just 7 pools (instead of
the 128 pools present in the Linux DM allocator) render
the traversing of the pools much faster. Finally, the choice
of the First Fit algorithm reduces the accumulated latency

Figure 3. DM allocator performance, memory
footprint and energy consumption

of all the memory accesses that are needed to traverse the
pools and the blocks inside them. This is much faster than
the Best Fit algorithm in the Linux DM allocator, which
needs to search all the pools and all the free memory blocks
inside a pool before it satisfies a request.

In Fig. 3, we also evaluate the memory footprint of our
proposed DM allocator. On the one hand the memory foot-
print needed by our proposed DM allocator is on average
671,210 Bytes. This is not much more than the average
requested memory, which is 621,172 Bytes. Therefore, our
prosed DM allocator has 8.05% memory fragmentation. On
the other hand, the Linux DM allocator proves very ineffi-
cient with an average memory footprint of 1,793,611 Bytes,
thus demonstrating an impressive 188.74% of memory frag-
mentation. On average, our DM allocator has 62.58% less
memory footprint than the Linux DM allocator. We also
evaluate the energy consumption of our proposed DM allo-
cator. On the one hand, the energy consumed by our pro-
posed DM allocator is on average 16,072 millijoule. On
the other hand, the Linux DM allocator needs on average
162,488 millijoule. On average, our DM allocator con-
sumes 90.11% less energy than the Linux DM allocator due
to two factors. The first factor is the implementation of
design choices that reduce memory accesses, which them-



selves consume energy. The second factor of the reduction
is the use of smaller memories by our proposed DM alloca-
tor. Our DM allocator is able to use smaller memories than
the Linux DM allocator because its memory footprint is
smaller. Consequently, smaller memories are more energy
efficient and consume less energy per access. The combina-
tion of these two factors gives the impressive reduction of
one order of magnitude.

However, a trade-off exists, namely the object code of
the DM allocator itself. Because we propose not to replace
the standard DM allocator the size of the object code of our
DM allocator must be added on top of the object code of the
standard DM allocator. Nevertheless, the 11.4 KByte object
code increase that we have, is relatively small considering
the reduction of memory footprint that our DM allocator
provides, thus it is a very desirable trade-off.

6 Conclusions

The dynamic input at the Data Link Layer is the result
of run-time data fragmentation at the Network layer. The
pattern of this dynamic input results to a pattern of mem-
ory fragmentation. If the Dynamic Memory allocator (at
the middleware) is not fine tuned to this pattern of the dy-
namic input, it will have significant internal and external
fragmentation and it will have reduced performance. In
this paper, we focus on the design of high-performance Dy-
namic Memory allocators, which are sensitive on the dy-
namic input pattern and base their design on the statistical
distribution of the memory blocks that are requested by the
data fragmentation mechanism. We show that in the case of
IPv4 data fragmentation of TCP datagrams to IEEE 802.11b
packets, the ACK size and the MTU size dominate the de-
sign and play a significant role in the fine tuning of the pro-
posed DM allocator. Finally, we show significant improve-
ments over the state-of-the-art Linux DM allocator with a
small object code size increase trade-off.
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