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Abstract

Solid frameworks and toolkits for design and analysis of
embedded systems are of high importance, since they enable
early reasoning about critical properties of a system. This
paper presents a software toolkit that supports the design
and performance analysis of real-time component-based
software architectures deployed on heterogeneous multi-
processor platforms. The tooling environment contains a set
of integrated tools for (a) component storage and retrieval,
(b) graphics-based design of software and hardware archi-
tectures, (c) performance analysis of the designed architec-
tures and, (d) automated code generation. The cornerstone
of the toolkit is a performance analysis framework that au-
tomates composition of the individual component models
into a system executable model, allows simulation of the
system model and gives design-time predictions of key per-
formance properties like response time, data throughput,
and usage of hardware resources. We illustrate the effi-
ciency of this toolkit on a Car Radio Navigation benchmark
system.

1. Introduction

Design and development of current software-intensive
systems requires support from powerful Computer-Aided
Software Engineering (CASE) tools. Software tools, like
Rational Rose [2], have proven to be efficient for design
phases of the software development. They provide a broad
functionality from a diagram consistency checking to state-
chart simulation and code generation.

However, for the development of real-time embedded
system, the above software tools often lack a decent
function for performance verification. Real-time systems
are characterized by their strict end-to-end response-time,
throughput, and robustness requirements. Early verifica-
tion of these constraining requirements already at the design
phase reduces technical risks and production costs. Soft-
ware tools (like VTune [4] and HProf [5]) exist that provide
full-fledged functionality for all kinds of performance ver-
ification and optimization, but they require source code of
an application and cannot be used at the design phase.

The software tools providing both design and
performance-analysis facilities can be divided into
two categories: commercially available and academia-
based ones. The LinuxLink [6] toolkit from TimeSys
is an example of a commercial tooling environment that
enables design, performance assessment and optimization
of software products on Linux platforms. The performance
assessment is provided by an embedded simulator based
on Rate-Monotonic Analysis (RMA), which limits its
applicability when a heterogeneous hardware platform
is used. Academia-based tools provide various analysis
techniques, ranging from formal methods to simulation-
based techniques. The Sesame environment [14] features
modeling and simulation methods and tools for the efficient
design of heterogeneous embedded multimedia systems.
The Real-Time Calculus Toolbox [7] deploys an efficient
analytical approach with algebra operators for resource
load and events curves.

Presently, a trend is noticeable to build complex soft-
ware according to principles of component-based software
engineering (CBSE). CBSE brings a number of valuable
benefits for an embedded system designer. It enhances
the design modularity through the component encapsula-
tion and explicit interface descriptions, and it allows the
reuse of software entities, which reduces production cost.
However, none of the above-mentioned tools support de-
sign and performance analysis of component-based sys-
tems. The amount of available CASE tools for component-
based real-time systems is rather limited. CB-SPE Tool [9]
features graphical design and performance assessment of
systems built from conventional software components. It
adopts RT-UML profile annotations for components and
composes these annotations into a system Queuing Network
(QN) model at the component-assembly phase. Analysis of
the QN model leads to the predicted system performance.
The SEESCOA Tool [8] enables designing software sys-
tems from components with specified timing contracts and
run-time monitoring of these contracts. Both of the tools
provide solid performance-assessment functionality. How-
ever, these tools lack design-support features, like reposi-
tory, large-scale visualization and automated code genera-
tion. The SAAM tool [1] based on the powerful SAAM
method, provides architecture evaluation of various extra-
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functional properties. Unfortunately, the tool does not ad-
dress performance analysis at sufficient level of detail and
accuracy. The DARPA Evolutionary Design of Complex
Software (EDCS) program [11] focuses on the development
and integration of tools to support architecture composi-
tion and evaluation of CORBA-based systems. Rapide is
a primary example of an EDCS tool. It allows to browse
through and animate complex sequences of events gener-
ated by an architecture simulation. The tool is efficient for
understanding and validating the complex behavior of dis-
tributed component-based architectures.

Contribution. In this paper we present the CARAT
(Component Architectures Analysis Tool) toolkit for design
and performance analysis of real-time component-based
software systems. The toolkit supports the complete design
cycle and consists of the following integrated tools: a repos-
itory, graphical editors, a performance analyzer, a visualizer
and code generator. The underlying methodology for per-
formance analysis (PA) is based on composable component
models and simulation of multitasking hardware resources.

The rest of this paper is as follows. Section 2 explains
the overall PA methodology. Section 3 describes the archi-
tecture of the toolkit. Section 4 discusses the benefits and
limitations of the toolkit.

2. Performance-Analysis Methodology

This section briefly describes our methodology, pro-
posed earlier in [12], for design-time performance analy-
sis of CB architectures on multiprocessor platforms. Fig. 1
shows an overview of the methodology, which consists of
three (partly) iterative design phases. The Modeling phase
involves software component and hardware IP (Intellectual
Property) blocks development. It results in composable
software and hardware component models, representing ab-
stract specification of the component behaviour and re-
sources provision/requirements. The System Design phase
aims at the software and hardware composition and deploys
rules for composition of the above-mentioned models into
an executable system model. The Performance Analysis
phase includes a number of techniques enabling prediction
of the system behaviour and performance by simulation of
the obtained executable system model.

The component models are the cornerstone of the frame-
work. The models of the same type are composable to en-
able an automated composition of the system model. The
models are stored as XML files in a component package.

For software components, the framework introduces
three types of models: resource, behaviour and process
models. Typical models for hardware IP blocks are mem-
ory, communication and processor performance models.
The resource model specifies resource requirements (e.g.
number of claimed CPU instructions) of each accessible in-
dividual operation of a component. The behaviour model
describes the operation’s underlying calls to operations of
other interfaces of other components. The process model
specifies the processes activated and running within an ac-

Figure 1. The performance analysis methodology.

tive component. Note that all these component models
should be supplied by the component provider.

The PA framework introduces performance models for
hardware IP blocks. For instance, a performance model for
a processing core defines its instruction type (RISC, CISC
or VLIW) and execution frequency. The data for perfor-
mance models can be obtained from supplier data sheets.

As input for the system-design phase, the designer has
system requirements and various third-party hardware and
software components stored with their corresponding mod-
els in a repository. The designer selects the software compo-
nents that together satisfy functional requirements and may
satisfy extra-functional requirements. The designer speci-
fies component composition by tailoring, instantiating and
connecting the selected services. A hardware-architecture
specification can be done in parallel. In most of the cases, a
hardware platform is pre-specified. If not, the designer se-
lects hardware components from a repository and chooses
a specific topology, number of processing nodes, types of
memory, communication means and scheduling policies.

Once the software and hardware architecture are speci-
fied, the mapping of the software components on the hard-
ware nodes can be made. The mapping defines for a com-
ponent on which processor it will be executed.

The model-composition rules, defined by the framework,
are used to synthesize all involved component and hardware
models into an executable system model. Briefly, the system
model represents a set of tasks (running in a system) with a
detailed description of: (a) synchronization constraints be-
tween the tasks, (b) a sequence of operations and interac-
tions executed by each task, (c) execution time and commu-
nication load imposed by each operation within a task, and
(d) task period, jitter, offset and deadline.

The obtained executable system model is used for perfor-
mance analysis. The PA results in predicted system prop-
erties (throughput, task latencies, number of missed dead-
lines, utilization of HW resources) that should be validated
against the specified system requirements. If there is a mis-
match between them, the system-design and analysis phases
should be re-iterated. During the iteration, the designer



may: (a) try out other available software components and
hardware IP blocks, (b) make a different SW/HW mapping
or (c) apply different scheduling policies.

3. Architecture of the CARAT Toolkit

The CARAT toolkit is implemented in Java and real-
ized as a number of Eclipse plug-ins. This enables easy
installation and high portability. The data specification and
exchange between these plug-ins are organized by XML-
based model structures. The architecture of the toolkit,
which is depicted in Fig. 2, consists of the following mod-
ules: Repository, Graphical Designer, Performance Ana-
lyzer, Visualizer and Code Generator. A brief description
of these modules is given in the following paragraph.

Figure 2. Architecture of the CARAT toolkit.

The Repository provides storage and retrieval of ex-
ecutables of software components and various models
of software components and hardware IP (Intellectual
Property) blocks. The Graphical Designer contains two
editors for constructing (a) software component assem-
blies, and (b) hardware resource topologies with assigned
deployment (mapping) of the software components. The
Preprocessor takes the data from the Repository (model
specifications) and from the Graphical Designer (defined
architectures), and synthesizes the models into an exe-
cutable system model, containing description of the tasks
running in the system. The Performance Analyzer uses this
model as an input for virtual scheduling of the tasks on
the corresponding hardware resources. The Performance
Analyzer outputs an execution timeline (behaviour) for
each task on every hardware resource (processor, memory
bank and bus). The predicted timelines are interactively
drawn by the CARAT Visualizer. The Statistics Reporter
provides the designer with a broad range of data on
the predicted performance properties. If the predicted
performance satisfies the performance requirements,
the Code Generator can generate the application “glue
code” that instantiates and binds the software component
executables according to the specified component assembly.

CARAT Repository. This tool provides remote storage
of third-party component executables and their corre-

sponding models. It allows the designer to search for
components satisfying input criteria and view the compo-
nent specifications. The Repository is accessible from the
Graphical Designer, so that the components instantiation
on the graphical canvas can be performed with a simple
drag-and-drop procedure.

CARAT Graphical Designer. This module enables
specification of SW component assemblies and HW archi-
tectures (see Fig. 3).

In the SW Assembly Editor, the designer instantiates and
binds the provides and requires interfaces of the compo-
nents together, thereby specifying the static structure and
communication topology of the system. The designer may
also specify external stimuli (environmental/user events or
interrupts) for the software assembly, which will be used at
the performance-analysis phase.

Fig. 3 depicts a snapshot of the design process of a car
radio navigation (CRN) system [13], on which we have val-
idated our PA methodology and tested this CARAT toolkit.
Among the functional requirements, we had the following
performance requirements for the CRN system.

RTR1: The response time of the operation “change the
sound volume” is less than 200 ms (per one knob grade, the
knob has 32 grades).

RTR2: The response time of the operation “find and re-
trieve an address specified by the user” is less than 200 ms
(minimal inter-arrival time of the entry is 1000 ms).

RTR3: The response time of the operation “receive and
handle Traffic-Message-Channel message” is less than 350
ms (minimal inter-arrival time of the messages is 3000 ms).

Figure 3. Graphical Designer consisting of HW Ar-
chitecture Editor and SW Assembly Editor.



In the SW Assembly Editor we instantiated the following
three Robocop software components [3] in order to satisfy
functional system requirements.

• The Man-Machine Interface (MMI) component, which
takes care of all interactions with the end-user, such as
handling key inputs and graphical display output.

• The Navigation component, which is responsible for
destination entry, route planning and turn-by-turn
route guidance giving the driver visual advices. The
navigation functionality relies on the availability of a
map database and positioning information.

• The Radio component, which is responsible for tuner
and volume control as well as handling of TMC traffic
information services.

The MMI component provides its functionality via the
IGUIControl interface and requires to be bound to IPara-
meters and IDatabase interfaces. The Navigation compo-
nent provides IDatabase and IRDSDecoder interfaces and
requires IGUIControl interface. The Radio component
provides IParameters and IRDSReceiver interfaces and re-
quires an IRDSDecoder interface. By binding the interfaces
we define possible component communication.

These three components are not active (i.e. they have no
active processes implemented inside the components). The
system behaviour can be triggered by the user or environ-
mental events. To emulate these events, we created and pa-
rameterized the three following stimuli (dark-grey boxes in
the SW Assembly Editor) that actually trigger the behaviour
of the CRN system.

The VolumeTrigger emulates the user “change the sound
volume” event. The deadline for the system response time
on this event was set to 200 ms, according to the require-
ment RTR1. The minimal inter-arrival time of this event
entering the system has been calculated as follows. We as-
sumed that the user can make the complete turn of the sound
knob within 1 second. The knob has 32 grades. The min.
inter-arrival time for one grade is 1 sec / 32 grades = 31 ms.

The LookupTrigger emulates the user event “find and re-
trieve an address”. According to the requirement RTR2, the
minimal inter-arrival time and response deadline for these
events were set to 1000 ms and 200 ms, respectively.

The TMCTrigger emulates the TMC messages that ar-
rive to the Radio component from a TMC station. Ac-
cording to the requirement RTR3, the minimal inter-arrival
time and response deadline for these messages were set to
3000 ms and 350 ms, respectively.

In order to activate the above-mentioned stimuli, we con-
nected each of them to the component operations that they
trigger first, once they occur.

We have observed that these three events may occur in
parallel. Therefore, we set all three behaviour triggers to
form a critical execution scenario. We call the execution
scenario critical, when it can impose a resource overload or
create a hazard for fulfilling any performance requirement.

Note that many scenarios are possible for one software ar-
chitecture. Every scenario is represented in a separate page
of the SW Assembly Editor. Once the scenarios are de-
fined, the hardware architecture and SW/HW mapping can
be specified in the HW Architecture Editor.

The HW Architecture Editor is a graphical canvas
located on top in Fig. 3. It allows (a) selection of the
processors, memory blocks and communication lines from
the repository, (b) creation of an arbitrary topology from
the selected elements and (c) mapping of the involved
software components onto the hardware elements. The
processors and memory blocks can be connected by any
type of communication lines in various styles, like star,
token ring and mixed forms. A memory block can be
specified as a local (in processor) or global memory. The
executable components can be mapped onto processing
nodes, while components representing buffers can be
mapped onto memory blocks.

Preprocessor and Performance Analyzer. This
CARAT module is a computationally complex part of the
toolkit. As input, it takes both the specified software and
hardware architectures, and the supplementary models of
the involved software components and hardware blocks.
The tool synthesizes this set of data into an executable sys-
tem model. This automated synthesis is possible because
of the compositional nature of the component behaviour,
process and resource models. The system model, outlined
in Section 2.2, represents tasks running in the system.

For the CRN system scenario, described above, the Pre-
processor synthesized three tasks (according to the number
of triggers). Each task is periodically initiated by a corre-
sponding stimulus. The periodicity and deadline parameters
of a task were assigned in accordance to the causing trig-
ger parameters. The sequence of component operations in-
volved in each task has been constructed from the behaviour
models of participating components. The processor, com-
munication and memory load imposed by each task have
been extracted from the component resource models.

The CARAT Performance Analyzer provides wide set of
schedulers for processors and communication lines and en-
ables discrete-event simulation of the system model.

The designer specifies simulation period, operation exe-
cution times for worst, best and average cases, and schedul-
ing algorithms for hardware resources (see Fig. 4.a). The
simulation unit can be set to millisecond or microsecond.

Once the configuration settings are defined, the exe-
cutable model can be simulated (virtually scheduled) on
the specified hardware nodes. The simulation results in a
task-execution timeline for each processing node, timeline
of data occupancy for busses and buffers. Besides, the re-
sults include the found maximum latency and resource load
for tasks, data throughput and total resources utilization.

The resulting performance analysis of the CRN system
is given in the next paragraphs.

CARAT Visualizer. This tool shows two types of data:



Figure 4. a) Simulation settings window; b) Syn-
thesized MSCs for the three CRN tasks.

synthesized message-sequence chart (MSC) for a task, and
task-execution timeline of the involved hardware resources.

For the above-specified CRN system scenario, the Visu-
alizer has depicted three MSC diagrams (see Fig. 4.b). For
example, the second MSC shows that the task instance is
triggered by TMCTrigger every 3000 ms and consists of
the three following operations: receiveHandleTMC(), de-
codeTMC() and updateScreen().

The predicted task-execution timelines for the three
processors and the bus load in the CRN system are given in
Fig. 5. For example, the timeline of the processor MIPS 22
shows that the three tasks share this resource and interleave
with each other. For each task instance, the timeline shows
the start, execution and completion times together with the
task deadline. Fig. 5 shows that the first instance (job)
of the TMCTrigger Radio task failed to meet the deadline.
The analysis of the timelines led to the conclusion that this
happens due to the high MIPS 22 processor-load which is
caused by the higher-priority task VolumeTrigger MMI.

The bus-load timeline shows the available bus bandwidth
at each moment. The numbers on top of the bus-usage peaks
specify IDs of the tasks transferring data over the bus.

Statistics Reporter. This tool gathers all relevant infor-
mation from the simulation, processes it and stores the data
in a text file. The performance statistics resulting from the
simulation of the CRN system are depicted in Fig. 6. The
PA of the CRN system showed that the task initiated by Vol-
umeTrigger takes 90.04% of the MIPS 22 processor. The
total load of this processor equals to 93.76%. Similar type
of data for other processors is also shown in Fig. 6.

The designer of the CRN system is primarily interested
in the data related to the response-time requirements RTR1-
3. The data represented in the lower part of the statistics file
shows worst- and best-case response times and number of
missed deadlines for each of the task. The analysis of the

Figure 5. Processor- and bus- load timelines.

data leads to the following conclusions. The task initiated
by VolumeTrigger (with correspondent requirement RTR1
= 200 ms) has the worst response time = 69 ms. All the
3235 instances of the task met the specified deadline. The
task fired by LookupTrigger (with correspondent RTR2 =
200 ms) has the worst response time = 310 ms. Two task
instances out of 105 instances missed the deadline. The task
initiated by TMCTrigger (with correspondent RTR3 = 350
ms) has the worst completion time = 551 ms. All 48 jobs
of the task missed the deadline. Further analysis led us to
the conclusion that the processor MIPS 22 is over-utilized,
while the powerful processor MIPS 113 is over-specified
(load of 6.16%). The suggestion has been made to re-map
the MMI component onto this powerful processor.

4. The Toolkit Properties

Completeness and Consistency Checks. The CARAT
toolkit provides completeness and consistency checks be-
tween various design diagrams. It identifies (a) missing
component models in the repository, (b) erroneous bind-
ings between provides and requires interfaces, (c) absence
of software components on the correspondent hardware-
mapping diagram, and (d) missing hardware connections
for software component bindings.

Robustness and Efficiency. We have validated the
toolkit by designing and deploying a number of embed-



Figure 6. Statistics on performance properties.

ded systems: a PDA-based complex MPEG-4 application,
JPEG2000 decoder and the car radio navigation system.
The simulation speed of the performance analyzer was the
following. For three-four tasks simulated on three proces-
sors for 10 mln milliseconds, it takes 2-10 minutes for the
analyzer to complete. We expect linear increase of the sim-
ulation time for more complex systems.

We have also identified the prediction accuracy of the
analyzer, comparing the predicted data against the measured
data obtained from the implemented applications. For sim-
ple applications with one processor and stable operation ex-
ecution times, the accuracy is close to 100%. For CRN sys-
tem, the accuracy stays within 70-130%.

Limitations. The toolkit and analysis methodology
impose a number of limitations that needs further study.
Firstly, it provides only static mapping of software compo-
nent onto hardware resources. Secondly, it does not enable
analysis of the components whose execution times are spec-
ified by probability distribution curves. Finally, the simula-
tion techniques do not guarantee finding boundary condi-
tions: worst- and best-case response times.

5. Conclusion

We have presented a toolkit for design and PA of
component-based systems deployed on heterogeneous mul-
tiprocessor platforms. The toolkit supports the complete de-
sign cycle and enables performance analysis at the early de-
sign phase, when the source code is not available. The un-
derlying PA methodology is based on modeling of individ-
ual components and automated composition of those mod-
els. The composition results in an executable system model,
representing detailed information about processes (tasks)
executing in a system and jobs fired by these processes. The
executable model is a subject for simulation-based perfor-

mance evaluation.
The advantages of the toolkit and PA framework occur

in multiple ways. Firstly, the framework and toolkit are
generic with respect to application domains and architec-
tural styles. For instance, the toolkit can be applied to
systems designed in “pipes-and-filters”, “blackboard” or
“client-server” architectural styles. Secondly, the toolkit
enables performance predictions for heterogeneous multi-
processor platforms by (a) provision of a wide set of pro-
tocols and virtual schedulers for simulation, (b) support-
ing active and passive components, and (c) multi-processor
specification of component resource requirements.

In future plans, we focus on design-optimization algo-
rithms as a further support for the above framework.
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