
Accurate Timing Analysis using SAT and Pattern-Dependent Delay Models

D. Tadesse∗, D. Sheffield∗, E. Lenge◦, R. I. Bahar∗, J. Grodstein†

∗Brown University, Division of Engineering, Providence, RI 02912
†Intel Corporation, Hudson, MA 01749

◦Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract

Accurate delay modeling beyond static models is critical to

garnering better correlation with post-silicon analysis. Further-

more, post-silicon timing validation requires a pattern-dependent

timing model to generate patterns. To address these issues, we

propose a timing analysis tool that integrates a data-dependent

delay model into its analysis. Our approach solves for the delay

by using the concept of circuit unrolling and formulation of timing

questions as decision problems for input into a SAT solver. The ef-

fectivness and validity of the proposed methodology is illustrated

through experiments on benchmark circuits.

1. Introduction

As the complexity of a chip increases due to advances in IC

technology, so do the pre- and post-fabrication test and debug chal-

lenges. Although pre-silicon test tools attempt to ensure correct

circuit functionality, verification through exhaustive simulation is

unattainable. This puts the burden on the post-silicon process,

which has been recognized as a growing and intractable problem.

Static timing analysis (STA) has been used for many years as

a pre-silicon tool to help design high-performance integrated cir-

cuits. However, STA tools (being static) generally do not deal well

with input patterns. The post-silicon world, on the other hand, re-

quires specific test patterns. Specifically, post-silicon timing vali-

dation requires a pattern-dependent timing model to generate pat-

terns for a number of reasons. Among them are:

• Speed Testing to determine if manufactured parts meet a

speed specification based on their process corner.

• Delay-Fault Testing to determine if parts have defects that

affect their behavior at speed.

These patterns also may be used for hypothesis generation for:

• Fault Isolation for determining which gate’s delay is differ-

ent from pre-silicon estimates due to a delay fault.

• Speed Debug for determining which of multiple sensitized

paths converging on a failing latch is indeed the speed lim-

iter.

In each case, the reliance of post-silicon debug on patterns

makes it difficult to take advantage of the large pre-silicon static

timing effort, resulting in redundant effort and schedule impact. In

short, static timing is not post-silicon friendly.

In this paper, we will propose a pattern-dependent delay model.

Our approach solves for the delay by using the concept of circuit

unrolling and formulation of timing questions as decision prob-

lems for input into a SAT solver. The goal is to answer timing

questions in the context of specific input patterns. For the pur-

poses of this paper, we will focus on one application: determining

the longest critical delay-path through a cone of logic. We will not

only generate a critical path, but the input vector that stimulates it.

All delays will take into account pattern-dependent effects such as

data-dependent gate delays and multiple-inputs switching.

Such a tool could easily generate test patterns for the paths it

finds. Furthermore, in doing so, it could help shed light on the

relative importance of the different sources of miscorrelation be-

tween STA and measured silicon speeds. Though there are many

potential sources (see, for example, [9]), there is little real silicon

data that identifies one as the most important.

Post-silicon timing is starting to come into its own as a research

topic [10, 13]. In addition, there has been much prior work in re-

lated areas. For example, STA with dynamic sensitization was

well studied in the early 1990s [8, 17, 19, 20]. Unfortunately, this

work was too CPU intensive to be commercially practical. More

recent work has explored modeling the effects of crosstalk on de-

lay [7, 11], input slope on delay [5], crosstalk on noise [6], and on

the effect of multiple-inputs switching on delay [1, 16, 22]. How-

ever, these approaches use either static techniques or min-max

switching windows. Min-max approaches are limited, as the exis-

tence of a short path from one input vector and a long path from

another vector does not guarantee existence of intermediate paths.

The idea of formulating circuit properties as decision problems

is not new. The technique presented in [2] used a SAT-based search

algorithm for leakage power reduction, while the work of [21] used

a SAT solver to compute combinational circuit delay. However,

their approach was limited to a floating mode delay, which as-

sumes that the primary inputs and all other nodes start at unknown

values and make one transition to a defined value. Our approach is

based on a transition-mode, which calculates the delay for a pair

of actual vectors. This approach is much better defined than for

a floating mode approach and it also fits naturally for post-silicon

work.

The unrolling technique was first described in [15], but our

work is most similar to [6]. Like them, we convert a collection of

timed combinational gates to a larger collection of zero-delay gates

by unrolling it (similar to Bounded Model Checking [3, 4]). That

is, we quantize continuous time into a priori fixed time points,

make a separate copy of the network at each time point, and stitch

the copies together using our delay model. Our immediate con-

tribution is to extend this formulation past the use of the simple

constant-delay gates used in [6] by including data-dependent de-

lays and multiple inputs switching. We will show that this im-

poses significant challenges, and requires us to move from a sim-

ple transport delay model to a more complex inertial-delay model.

Furthermore, while [6] attacked the problem of crosstalk analysis,

we will attack general pattern-dependent timing problems. Our

long-term contribution (beyond this paper) will be the use of this

delay model for many of the post-silicon timing areas previously

mentioned.

978-3-9810801-2-4/DATE07 © 2007 EDAA

2. Circuit Unrolling

Our approach is based on unrolling a circuit using data depen-

dent delay information for each gate. We first explain the unrolling

procedure with a constant delay, for ease of illustration, followed

by enhancements needed to handle data dependence information.

2.1 Unrolling Basics

The constant-delay model is a simple representation of the de-

lay behavior of a gate. For any given gate, its logic function is

modeled as a perfect, infinite-bandwidth zero-delay boolean gate.

Its temporal function is modeled as a perfect delay line after the

boolean gate. Thus, if its delay is d, then its output at any time t is

simply a Boolean function of its inputs at time t− d. This is often

called a transport-delay model.

Figure 1. Simple Circuit (Constant delay model)

Consider the simple circuit shown in Figure 1, with delay val-

ues as shown on each gate. We will basically “unroll” the net-

work, making a separate copy of the network at every time point.

This approach is similar to the popular unrolling techniques used

for Bounded Model Checking [3, 4]. The small network of timed

gates will thus become a larger network of zero-delay gates.

Figure 2. Unrolled network (constant delay model)

Figure 2 is a straightforward unrolling of Figure 1, beginning

with output node Q, for t = 0, 1, 2, and 3. We are considering the

primary inputs (A and B) to be outputs of flip-flops, whose values

can change once at t = 0 from previous-cycle values Ap and Bp

to the current values A0 and B0. We assume that continuous time

has been discretized into evenly-spaced time points t = 0, t = 1,

t = 2, etc.

Q0 corresponds to unrolling the node Q at t = 0. Naı̈vely, it

would be a function of inputs A at t = −2 and B at t = −3. In-

stead of this negative time, we use the previous-cycle input values.

That is, when the path length is greater than the value of time we

are unrolling for, the output node becomes based on the previous

cycle’s values instead. Similar conditions are exhibited at t = p,

and t = 1 as well. At t = 2, Q is now a function of input A at

t = 0, but still depends on B from the previous cycle. In the next

time point, t = 3, Q3 is a function of B at t = 0, and A at t = 1.

Note that Q3 is a function of A at t = 0 instead of t = 1. This

corresponds to our assumption that the primary inputs are released

by flip-flops once per clock cycle, and do not change value until

the next rising/falling clock edge.

We have now created an unrolled network that is completely

Boolean, with no timing behavior. In our global flow, we would

start at a primary output node and work backwards to the primary

inputs unrolling as shown. We now consider unrolling a network

using a more realistic data-dependent delay model.

2.2 Unrolling using DataDependent Delay

Before describing the unrolling using a data-dependent delay

model, we first highlight the impact of input transition on delay

through a simple NAND gate example. Using SPICE simulation,

we obtained the delay values shown in Table 1 as a function of

input values for a NAND gate with inputs A and B and output C.

The logic values for the output are also included in the table.

Transitions Delays Logic Value

at Output

A ↓, B 1 476ps 1

A 1, B ↓ 850ps 1

A ↓, B ↓ 285ps 1

A ↑, B 1 259ps 0

A 1, B ↑ 384ps 0

A ↑, B ↑ 460ps 0

Table 1. Delay Characterization for NAND gate (from

SPICE)
There are three input transitions that lead to a rising node C

and three input transitions that lead to a falling node C. We will

have a rising node at C if A falls and B stays high (A ↓, B 1),

A is a constant high and B falls (A 1, B ↓) or both A and B fall

(A ↓, B ↓). Similarly, a falling node C can occur if input A rises

and B holds at high (A ↑, B 1), A holds at high and B rises (A 1,

B ↑) or both inputs rise (A ↑, B ↑). We see that there is a wide

range of delay values in our gate-delay model given the different

possible input transitions. Similar results would be found for other

gate types. In our implementation approach, this gate-delay char-

acterization is assumed to have been done as a preprocessing step

for all the gates in our library. While gate characterization is not

a trivial process, our approach does not address this step. Instead,

our timing tool is independent of the characterization and requires

as a starting point a library of gate delays that have been acquired

in any appropriate characterization process.

A transport-delay model cannot completely model the data de-

pendent delay behavior just described. Consider a simple buffer

with rising delay d = 10 and falling delay d = 1. Assume its

input starts low, then rises at t = 20 and falls at t = 21. Accord-

ing to a transport-delay model, the output should start low, rise at

t = 30, and fall at t = 21. In other words, our transport-delay

model breaks when the input moved faster than the gate delay.

To better handle this situation, we now move to an inertial-delay

model, which rejects any input pulses shorter than the gate delay.

Given the above assumption for inertial-delay and the gate de-

lays acquired during characterization, an accurate data-dependent

delay model can be constructed, to be used later when the net-

work is unrolled. We explain the delay model using a 2-input

NAND gate; however, the process can be generalized to all other

gate types. Assume data-dependent delays for the NAND gate as

shown in Table 2 which is a simplified version of Table 1.

The output will rise at time 10 if

C(10) ↑ = A(4) · A(5 : 9) · B(5) + (1)

A(1) · B(0) · B(1 : 9) +

A(6) · A(7 : 9) · B(6) · B(7 : 9).

Transitions Delays Logic Value
at Output

A ↓, B 1 5 1

A 1, B ↓ 9 1

A ↓, B ↓ 3 1

A ↑, B 1 3 0

A 1, B ↑ 4 0

A ↑, B ↑ 5 0

Table 2. NAND gate delays used for the unrolling exam

ple.

Intuitively, each line of the equation corresponds to one of the

three falling-input cases in the table. Using the delays given in

Table 2, the first line shows C rising at t = 10 as a result of A

falling at t = 5 (i.e., A(4)·A(5)) and B staying constant high (i.e.,

B(5)). We further require that A remain low without glitching,

hence A(4) · A(5 : 9)). Note that we allow B to go low after

t = 5, since this would only maintain the rising output transition.

Similarly, the two other possible conditions that lead to a rising

node at C at time t = 10 are expressed in lines 2 and 3 of Eqn. 1.

The corresponding falling node can be described in a similar

manner and combined with rising delay to describe the conditions

for a transition at node C. That is,

C(10) ↓ = A(4) · A(5 : 9) · B(4) · B(5 : 9) + (2)

A(6) · A(7 : 9) · B(7 : 9) +

A(6 : 9) · B(5) · B(6 : 9)

C(10) = C(10) ↑ +C(9) · C(10) ↓. (3)

The value at node C at time t = 10 will either be high (if it rises

at t = 10, or if it was previously high and does not fall at t = 10),

and would be low otherwise.

We have now described the timed gate output as an untimed

combinational function of the gate inputs. This model can be eas-

ily extended to include other elements that affect delay of a gate.

For example, to include the effect of fan-out on delay, we can ex-

press the gate delay, Dg for a particular input transition, Y , using

the following formula:

Dg(Y) = α(Y) + β(Y) · γ, (4)

where α(Y) is the inertial-delay for transition Y , β(Y) is the

fanout ratio (inversely proportional to the drive strength of the

gate) for the same transition Y , and γ is the total capacitance

seen at the output of the gate. This extension requires collecting

additional delay information during the gate delay characteriza-

tion process; however, such constant load analysis is typically part

of standard delay characterization. With this extension, instead

of accessing a single value to obtain Dg(Y) during the unrolling

process, the delay is computed “on the fly” using Equation 4. Us-

ing this new delay value during the unrolling process will lead to

more accurate delay information. However, it is important to note

that including the fanout extension will not significantly impact the

complexity of the unrolling process since we are using a constant

load; the total number of clauses generated, whether or not fanout

is considered, should be about the same. Algorithms that handle

the unrolling will be explained in Section 4.

The resultant Boolean network can be analyzed with any Boolean

solver. For our purposes, we generate network-satisfiability clauses

in product-of-sums (CNF) form and then use a high-quality public-

domain SAT solver. We can ask the SAT solver any timing analy-

sis question by adding a small number of extra clauses; the exact

details of this are described in the following section.

3. Timing Analysis as a Boolean

Satisfiability Problem

We are now ready to pose our timing analysis question as a

decision problem. The first step is to convert the network itself into

CNF form for a SAT solver. We do this in the standard manner,

generating satisfiability clauses [12] for each gate in the network.

We then add a small number of clauses to represent the particular

query we would like to make. Any query about timing must be

translated into product-of-sum clauses. To illustrate this process,

let us focus on the specific question of finding the latest rising

transition at the output.

If glitches were not an issue, a simple binary search would

quickly narrow down the answer. Assume we know that no rising

transition can occur after t = 100 (e.g., from a simple topological

search). We would first add the two clauses Q0 = 0 and Q100 = 1
and call the SAT solver. It would return true if there were a tran-

sition anywhere in the range (0,100). If so, we might next remove

these two clauses and instead add the two clauses Q50 = 0 and

Q100 = 1 and try again. We would thus quickly narrow in on

the latest transition, with only a logarithmic number of calls to the

solver. Thus, by simply adding two trivial timing clauses to our

satisfiability clauses, the SAT solver can find any input patterns

that generate transitions within a given range.

However, if glitches do exist, and we need to detect them, then

a binary search is not sufficient. Consider the circuit Q = OR

(BUF(A), INV(A)), where the buffer delay is 10, the inverter de-

lay is 9, and the OR delay is 1. Though the output is logically a

constant 0, a rising input will cause a unit glitch at t=10. Our ini-

tial query would tell us that there is indeed no way for the output

to be low at t = 0 and high at t = 100 (assuming again that inputs

change once at t = 0), causing the binary search to abort. We

would thus miss the glitch.

We might consider, as an extreme, doing a linear search, check-

ing for a rising transition at every single time point, from latest

to earliest, and stopping when we find one. Our first call to the

SAT solver would add the clauses Q99 = 0 and Q100 = 1. If this

failed, we would instead try Q98 = 0 and Q99 = 1, until we found

a transition. Though somewhat slow, this might seem foolproof.

Unfortunately, even the linear search is imperfect. Consider

setting our buffer delay to d = 9.7 and our inverter delay to d =
9.6. Remember that, though analog gate delays are continuous, we

quantize time into digital intervals. If we quantize to single units,

both the buffer and inverter will have d = 10, and the glitch will

“vanish.” So, if we make our quantization interval too large, we

may lose glitches; if we make it too small, compute time for our

linear search will suffer.

Instead, we steer a middle course. We first do a linear search,

using a fairly coarse time discretization, to narrow down what re-

gion the latest transition is in. Once we have found that region, we

do another linear search of just that region, using a finer-grained

discretization. Using a modulus of 10, for example, we would first

divide our search space into 10 pieces and search for transitions in

the ranges t = 90 − 100, t = 80 − 90, t = 70 − 80, etc. If we

found a transition in t = 80 − 90, the next iteration would use a

step-size of 1, searching for transitions in t = 89−90, t = 88−89,

t = 87 − 88, etc.

Like the binary search, this takes O(log(P)) calls to the SAT

solver to split down an interval into P portions. It is indeed an

N-ary search (with N = 10 in this example) — by setting N sig-

nificantly larger than 2, we resemble a linear search more closely,

and hence miss fewer glitches. Of course, due to the initial coarse

discretization, we may miss some glitches.

4. Implementation Algorithm

Our timing analysis tool takes a gate-level netlist, identifies the

primary output node and its corresponding fan-in and stores the

fan-in as a Directed-edge Acyclic Graph (DAG). At this point, we

are ready to find the delay of this primary output by calling the

function FIND DELAY() with this DAG and initial delay estimates

as parameters. The pseudo-code for this function is shown in Fig-

ure 3. The function includes the three major components of our

approach: unrolling the network at various time points, generating

time constraints, and iteratively calling the SAT solver until the

Boolean constraints are satisfied. The logic and timing constraints

are generated using the unroll () and find rising transition() func-

tions respectively. The process to find the delay is an iterative part

of the FIND DELAY() function.

Procedure FIND DELAY(DAG, max delay, min delay) {
1. stepsize = 1
2. unroll(min delay, max delay, stepsize)
3. time = max delay
4. while(!find rising transition(time))
5. time = time − stepsize
6. if(accuracy = 0 decimal point)
7. return(time)
8. stepsize = stepsize / 10
9. unroll(time − 1, time, stepsize)

10. while(!find rising transition(time))
11. time = time − stepsize
12. if accuracy = 1 decimal point
13. return(time)
14. stepsize = stepsize / 10
15. unroll(time − 0.1, time, stepsize)
16. while(!find rising transition(time))
17. time = time − stepsize
18. if accuracy = 2 decimal point
19. return(time)
20. . . .

Figure 3. Procedure FIND DELAY.

The min delay and max delay passed to the function are initial

lower and upper bounds on the critical path delay of the output.

Note that 0 may be used if a lower bound is not available. The first

step in our implementation is to unroll the network for each time

point between these minimum and maximum delay estimates in

steps specified by the stepsize. Next, the timing question is trans-

lated into timing constraints. The find rising transition() routine

generates these timing constraints (for example, node X is low at

the starting timepoint and high at the end), combines them with the

logic constraints from unroll() and poses the timing/satisfiability

question to the SAT solver.

There are two levels of iteration in FIND DELAY(). The first

one iterated over successively more accurate step sizes (1, 0.1,

0.01, . . .) while the second one iterates over successively decreas-

ing time points (given a certain step size). The second level of

iterations are represented by the while loops in the pseudo-code.

For a given unrolled network, each iteration of the while loop is

done for time points starting at max delay (which has to be greater

than or equal to the true delay) and for time points decreasing by

the current step size until the actual delay value is reached (i.e.,

until the SAT solver finds a delay value that matches the timing

question posed). To illustrate this, assume that an output node has

a latest rising transition at 20.67ps and the initial estimate from

a topological analysis is 25ps; note that the initial estimate is a

rough upper-bound. The network is first unrolled for time points

25, 24, 23, . . . until the min delay is reached. In the first while

loop in Line 4, find rising transition() will generate the timing

constraint for the conditions of a rising delay at t = 25ps. These

constraints will be sent to the SAT solver as the timing question

Does the circuit rise at 25ps? Since 25ps is not the rising delay,

the SAT-solver will provide a not-satisfiable solution prompting

the function find rising transition() to be called again for t = 24.

This iterative process continues until we reach t = 21ps. At this

time point, the response from the SAT solver will be positive (sat-

isfiable solution) which denotes that the delay for the stepsize =

1 resolution is 21ps. If the accuracy required is higher than this

resolution, the stepsize is adjusted and the iteration continues.

Next, a new unrolled network is generated for time points 21.0,

20.9, 20.8, . . . , 20.0 and in the second while loop (Line 10) find ri-

sing transition() will be iteratively called until time point t =
20.7ps is reached. At this point, the stepsize = 0.1 iteration will

stop due to a satisfiable solution from the SAT solver. This search

then moves to the stepsize = 0.01 iteration to zoom into the actual

delay value of 20.67ps using the steps outlined above.

Note that the granularity of the time points directly impacts the

size of our unrolled network. A smaller step size leads to a larger

unrolled network which translates to a bigger decision problem

that has to be solved by the SAT solver. Fine grained granularity

is possible, but the computation will be expensive. Thus, trade-

offs between accuracy of delay and computation time can be de-

termined using the stepsize parameter. When the time point that

satisfies the specified accuracy is found, that time point is returned

as the response to the timing analysis question that is posed. For

instance, if an accuracy of only 1 decimal point is required for the

example above, the procedure FIND DELAY would have returned

the value 20.7 from Line 12 in the pseudo-code. The high level

iterative search to find the delay with the specified accuracy can

be done as a binary search or by using any other efficient search

algorithm. The above routine is one such approach.

5. Experiments and Results

Our timing analysis tool has three component; network un-

rolling, generating SAT clauses to represent the circuit and its tim-

ing constraints, and solving the resulting decision problem with a

SAT solver. We chose to use the ZChaff SAT solver, from Prince-

ton University, with our tool [14]. ZChaff has been shown to han-

dle a large number of clauses (i.e., 1 million variables and 10 mil-

lion clauses). We expect this capacity to meet our needs. The

first and main goal of our experiments is to highlight the differ-

ence between the delay values that are reported by a static timing

tool and those from our SAT-based timing analysis tool. Although

several commercial STA tools are available, we chose to compare

our results to SIS [18] because of controllability and ease of use.

Specifically, the experiments tried to determine the longest critical

delay-path through a network of gates. For our purposes, the net-

work of gates was determined by the fan-in cone of a primary out-

put of each circuit. Using this approach, one could find the critical

delay-path in any circuit by identifying the primary output with

Circuits Depth Transition SAT-Delay SIS-Delay % Difference Run time(s) Avg.# Clauses

con1[fl] 6 Rising 15 18 16.7 4.5 19713
Falling 15 18 16.7 4.5 19772

ecc3[d2out] 8 Rising 23 29 20.7 20.5 79914
Falling 24 29 24.1 22.0 37158

t481[v16.0] 9 Rising 22 27 18.5 41.3 44541
Falling 23 28 17.9 36.5 42843

vg2[25.1] 10 Rising 25 29 13.8 69.8 72434
Falling 26 29 10.3 132.8 186748

5xp1[v7.2] 11 Rising 34 41 14.6 57.3 139548
Falling 35 41 17.1 46.1 147460

clip[v9.3] 13 Rising 35 47 25.5 57.1 206870
Falling 41 49 16.3 73.6 245877

rd[73[v7.0] 14 Rising 43 53 18.9 191.8 523420
Falling 39 54 27.8 163.8 469184

apex[v117.3] 15 Rising 40 58 31.0 100.5 197860
Falling 37 57 35.1 113.4 173645

sao2[v10.1] 16 Rising 45 58 22.4 181.8 356620
Falling 48 58 17.2 222.5 382923

ex4[v128.5] 17 Rising 46 65 29.21 267.8 355708
Falling 53 66 19.7 225.6 440688

duke[v22.6] 21 Rising 51 83 38.6 182.1 369880
Falling 50 81 38.3 193.2 375606

Table 3. Critical path analysis results for selected MCNC benchmark circuits

the largest delay. We selected circuits from the MCNC benchmark

suite using range of depth and size as selection criteria.

The benchmark circuits were mapped for delay using the map

-n 1 -AFG command from SIS with a library of basic gates

(2-input NOR/NAND and INV). The static timing analysis tool

within SIS requires that each pin-to-pin delay of a gate in the

above library be assigned two delay values (one for the rising tran-

sition and another for the falling transition). On the other hand, our

data-dependent tool requires a series of delay values for each gate

that corresponds to the various rising and falling conditions. This

implies that every combination of possible transitions can have a

unique delay. To make a fair comparison between the STA tool

and the data-dependent tool, the delay values for SIS and our data-

dependent tool have to be similar. However, the two delay com-

ponents are not identical because SIS only allows for pin-to-pin

delays based on a single input transition. As a good approxima-

tion, when creating the SIS delay library, a pin-to-pin delay was

determined by the maximum of all corresponding delays. For ex-

ample, if the data-dependent falling delays for a 2-input NAND

gate are 2ps (first input rising), 3ps (second input rising) and 5ps

(both inputs rising); the pin-to-pin falling delay for either input

would be 5ps.

Table 3 shows results from our first experiment. All experi-

ments were run on a Pentium D machine running at 3.2GHz with

4GB of RAM. We computed the longest critical-path delay for

various networks of gates (fan-in cones) from the MCNC bench-

mark circuits using both our tool and SIS. The first column lists the

benchmark circuits and the primary output names that correspond

to the fan-in cones. The size for the fanout cones range from 20

gates to 160 gates. The rising and falling delays are shown under

SAT-Delay and SIS-Delay. As the results show, the SIS-based de-

lay is always pessimistic and overestimates the actual critical path.

This is clearly shown in column 6 which lists the percent differ-

ence between the SIS values and those computed by our tool. The

worst case difference is close to 39%, and the best case is about

13%. We can also see from this data that the correlation between

the static and data-dependent tool deteriorates as the size of the

circuit grows.

The run time for our SAT-based tool is shown in column 7, and

column 8 shows the average number of clauses that were generated

for the SAT solver. The run time for SIS to synthesize the logic and

compute the delay values was only a few seconds. As expected,

the number of clauses generated is a function of the size of the

fan-in cones as well as the granularity of the unrolling time —

unrolling every time unit will generate more clauses than unrolling

every 10 time units. For our granularity of 1/10th of a gate delay,

the number of clauses is well within the limit of the 10 million

clauses that the SAT solver can handle. The computation time also

follows the same trend; the bigger the circuit and the smaller the

granularity, the higher the computation time. Nevertheless, the run

time to recurse through various timepoints and reach the correct

delay was always less than 300 seconds.

To further understand the strengths and limitations of our tool,

we extrapolated the data from the benchmark circuits and found

that a fan-in cone of up to 500 gates at a granularity of 1/10th of a

gate delay would still be within the limits of the SAT solver. Look-

ing at the breakdown of the run time, we were able to see that the

bottleneck is in the amount of time that the SAT solver takes to

answer the decision problems, especially as the circuit size grows.

Therefore, the efficiency of our tool will benefit from the extraordi-

nary effort that is being invested in developing faster SAT solvers.

What is clear is that our tool is able to give accurate delay values

and path information at a reasonable run-time. Furthermore, our

tool will provide not only the critical path but also the input vector

that stimulates the path. This is very advantageous in post-silicon

validation where patterns are used in speed and delay-fault testing

as well as for hypothesis generation for fault isolation and speed

debug, thus allowing the designer to minimize the vast amount of

redundant effort during post-silicon debug.

Figure 4. Path Analysis Breakdown

One cause for the difference in delay between our tool and SIS

is the amount of information that is included in the delay models.

However, our goal is to identify all other causes that contribute to

the miscorrelation. To get a better understanding, we computed

the critical path (rising and falling) for 20 MCNC benchmark cir-

cuits using both approaches and extracted the predicted paths. By

comparing each pair of paths, we were able to observe four differ-

ent scenarios. As shown in Figure 4, about 18% of the paths were

drastically different due to a multiple input switching (MIS) that

could not be identified by the static timing tool. About 23% of the

paths also had MIS that was close to the primary inputs and thus

did not cause a major change in the computed paths. However,

it was still a different path with different delay contributions and

thus affected the delay values. These two scenarios clearly illus-

trate the importance of delay models that consider MIS; without a

pattern-dependent delay model, the timing analysis tool could pro-

duce an incorrect critical path. About 31% of the paths differed

due to the fact that the data-dependent model had more detailed

delay information available during the analysis than the pin-to-pin

delay information used by SIS; i.e., it wasn’t specifically multiple

input switching that accounted for the different critical paths. Fi-

nally, about 28% of the paths were identical. However, this does

not mean that the delays were identical as well (again, due to the

differing delay models). In the post-silicon world where extracting

the correct path is a vital step in the debug and validation process,

a timing analysis tool that does not provide the correct path will

severely slow down the debug effort.

6. Conclusions and Future Work

We have presented a timing analysis tool that aims to integrate

logic and delay information into the analysis. By better accounting

for patterns and multiple inputs switching, we hope to obtain bet-

ter correlation with post-silicon analysis. Using a data-dependent

delay model, we have developed a timing analysis tool that is able

to determine the longest critical delay-path through a logic cone

by unrolling the cone and posing the timing analysis question as

a decision problem. This allows an iterative search for the delay

by using a SAT solver to answer the timing questions. The results

from our benchmark experiments show that data-dependent tim-

ing analysis using our tool is viable in terms of run-time and delay

accuracy.

The results have shown the importance of a data-dependent

timing tool in pre-silicon analysis. Future work will look to model

other factors such as fan-out and crosstalk and extend our tool to

include these models. Other avenues of extension include using

our pattern-dependent delay model for post-silicon timing to gen-

erate patterns for speed testing and delay-fault testing as well as

for hypothesis generation for fault isolation and speed debug.

7. References

[1] S. Pilarski A. Pierzynska. Pitfalls in delay fault testing. IEEE

Transactions on CAD, 16(3):321–329, Mar. 2002.

[2] F. Aloul, S. Hassoun, K. Sakallah, and D. Blaauw. Robust

satbased search algorithm for leakage power reduction. In

PATMOS ’02, pages 167–177, 2002.

[3] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu.

Advances in Computer Science, volume 58, chapter Bounded

Model Checking. Academic Press, 2003.

[4] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu.

Symbolic model checking using SAT procedures instead of

BDDs. In ACM/IEEE Conference on Design automation,

pages 317–320, 1999.

[5] D. Blaauw, V. Zolotov, S. Sundareswaran, C. Oh, and R. Panda.

Slope propagation in static timing analysis. In ICCAD, Nov.

2000.

[6] P. Chen and K. Keutzer. Towards true crosstalk noise analysis.

In ICCAD, pages 132–138, 1999.

[7] P. Chen, D. Kirkpatrick, and K. Keutzer. Switching window

computation for static timing analysis in presence of crosstalk

noise. In ICCAD, pages 331–337, Nov. 2000.

[8] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Computation

of floating mode delay in combinational circuits: practice and

implementation. IEEE Transactions on CAD,

12(12):1924–1936, December 1993.

[9] A. Gattiker, S. Nassif, R. Dinakar, and C. Long. Timing yield

estimation from static timing analysis. In International

Symposium on Quality Electronic Design, page 437, 2001.

[10] J. Grodstein, D. Bhavsar, V. Bettada, and R. Davies.

Automatic generation of criticalpath tests for a partialscan

microprocessor. In ICCD ’03, page 180, 2003.

[11] A. Krstic, J. Liou, Y. Jiang, and K. Cheng. Delay testing

considering crosstalkinduced effects. In IEEE International

Test Conference, page 558, 2001.

[12] T. Larrabee. Test pattern generation using boolean

satisfiability. IEEE Transactions on CAD, 11(1), January 1992.

[13] L. Lee, L. Wang, T. Mak, and K. Cheng. A pathbased

methodology for postsilicon timing validation. In ICCAD,

pages 713– 720, Nov. 2004.

[14] Y. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An efficient sat

solver. Lecture Notes in Computer Science, 3542:360–375,

2005.

[15] P. Maurer. Two new techniques for unitdelay compiled

simulation. IEEE Transactions on CAD, 11(9):1120–1130,

Sept. 1992.

[16] K. Nepal, H. Song, R. Bahar, and J. Grodstein. Resta: a robust

and extendable symbolic timing analysis tool. In GLSVLSI,

pages 407–412, 2004.

[17] S.Devadas, K. Keutzer, S. Malik, and A. Wang. Certified

timing verification and the transition delay of a logic circuit.

IEEE Transactions on VLSI Systems, 2(3):1063–8210,

September 1994.

[18] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K.

Brayton, and A. SangiovanniVincentelli. Sequential circuit

design using synthesis and optimization. In ICCD, Oct. 1992.

[19] J. Silva and K. Sakallah. Dynamic searchspace pruning

techniques in path sensitization. In DAC, pages 705–711, 1994.

[20] J. Silva and K. Sakallah. Efficient and robust test

generationbased timing analysis. In ISCAS, pages 660–663,

Aug. 2003.

[21] L. Silva, J. Silva, L. Silveira, and K. Sakallah. Satisfiability

models and algorithms for circuit delay computation. ACM

Trans. on Design Automation of Electronic Systems

(TODAES), 7(1):137–158, 2002.

[22] S. Sun, D. Du, and H. Chen. Efficient timing analysis for

CMOS circuits considering data dependent delays. In ICCS

’94, pages 156–159, 1994.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

