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ABSTRACT

Characterizing setup/hold times of latches and registers, a
crucial component for achieving timing closure of large digital
designs, typically occupies months of computation in industries
such as Intel and IBM. We present a novel approach to speed
up latch characterization by formulating the setup/hold time
problem as a scalar nonlinear equation h(τ) = 0 derived using
state-transition functions, and then solving this equation by
Newton-Raphson (NR). The local quadratic convergence of NR
results in rapid improvements in accuracy at every iteration,
thereby significantly reducing the computation needed for ac-
curate determination of setup/hold times. We validate the fast
convergence and computational advantage of the new method on
transmission gate and C2MOS latch/register structures, obtaining
speedups of 4-10× over the current standard of binary search.

I. INTRODUCTION

Finding the setup and hold times of latches and registers is a
crucially important prerequisite for static and dynamic timing analysis
of digital circuits [1]–[3]. As devices shrink, clock speeds become
ever faster, and design margins become increasingly squeezed in
high-speed digital systems, it becomes important to determine these
quantities with the highest possible accuracy to ensure that timing
analysis makes neither unduly optimistic nor pessimistic predictions
[2], [4]. Optimism in setup/hold times can cause failure of the
fabricated circuits, while pessimism leads to inferior performance.

Determining latch setup/hold times is intrinsically more computa-
tionally challenging than finding, e.g., delays of combinatorial gates.
The main reason is that whereas linear gate/interconnect models [5]
often produce acceptable approximations for combinatorial gates,
memory effects and nonlinearities are crucial for latch dynamics.
Indeed, central to the setup/hold time problem is to determine the
onset of metastability [6], a fundamentally nonlinear dynamical phe-
nomenon peculiar to latches and bistable circuits. As a result, detailed
transistor-level transient simulation [7] of latch circuits using accurate
(and computationally expensive) device models is essential for the
latch setup/hold problem. The prevalent technique for setup/hold time
characterization is to investigate clock-to-q delay1 for various trial
setup/hold skews via a series of transient simulations embedded in a
binary search process.

The computational expense of latch characterization in current
industrial practice (especially in large microprocessor design houses
[8], [9]) cannot be overstated. Setup/hold times need to characterized
for every register/cell of every standard cell library, each typically
containing hundreds or thousands of cells, for all process-voltage-
temperature (PVT) corners. It is not uncommon, today, for months
to be spent running simulations on large computer clusters simply for
determining setup/hold times of latches and registers. Therefore, even
relatively modest reductions in computation can have a disproportion-
ately positive domino impact on microprocessor design cycles. As we

1See Section II for an explanation of setup/hold times, clock-to-q delay and
other relevant concepts.

describe in more detail later in the paper, the new setup/hold time
characterization method presented here results in speed improvements
of some 4 ∼ 10×, depending on the accuracy desired.

The currently prevalent binary search method for finding setup/hold
skews may be considered to be a guided trial-and-error approach for
finding a data-vs-clock skew τ that leads to the onset of metastability.
In this paper, we adapt ideas from mixed-signal/RF simulation [10]–
[12] to propose a new technique for finding this skew directly, by
expressing it as the solution to a scalar nonlinear equation h(τ) = 0,
where τ can be the setup or the hold time. Our formulation uses
the nonlinear state-transition function [13], [14] of the differential
equations describing the latch, and incorporates a threshold condition
to detect onset of metastability.

We then solve the equation h(τ) = 0 numerically using the well-
known Newton-Raphson (NR) method [15]. Because NR has the
property of quadratic convergence as it approaches the solution, it
is able to “zoom in” on the correct solution (i.e., increase accuracy)
much more rapidly than binary search. As a result, it provides
significant computational advantage over binary search in higher
accuracy regimes, as we demonstrate in Section IV. We note that
the computational advantage results in spite of the fact that NR on
h(τ) = 0 requires computation of the derivative dh

dτ – indeed, this extra
gradient information is a core differentiator against binary search
and is crucially responsible for NR’s convergence. (Readers familiar
with RF/mixed-signal simulation will note connections with shooting
methods [10]–[12] and with transient sensitivity computation [16],
[17] in Section III, which contains mathematical and algorithmic
details of the technique).

We validate the new method in detail using two prototypical
register designs: a transmission-gate based master-slave register and
a C2MOS edge-triggered register. Our experiments confirm that NR’s
gradient-directed quadratic convergence results in speed advantages
(of ∼ 4−10×), especially at higher accuracies.

The remainder of the paper is organized as follows. We first provide
some background on the latch setup/hold time problem in Section II.
In Section III, we develop the new state-transition equation based
formulation around general nonlinear differential algebraic equa-
tions (DAEs) of latches/registers to express the problem of finding
setup/hold times as h(τ) = 0; we then present a detailed description
of our NR-based numerical algorithm to solve this equation. In
Section IV, we validate the new method on prototypical register
structures and provide detailed comparisons against binary search
techniques.

II. TERMINOLOGY AND BRIEF BACKGROUND

Latches and edge-triggered registers are crucial and ubiquitous
building blocks in all digital designs. Typically, each register has a
clock line and a data line [18] . For reliable transfer of data through
the register, the data line must be stable a certain amount of time
(known as the setup time) prior to the active clock edge. Similarly,
the data input line must be held stable for a certain amount of time
(known as hold time) after the active clock edge to avoid problems in
sampling the data. The active clock edge is defined as the transition
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edge of the clock at which data transfers occur; it is the low to
high/high to low transition for a positive-triggered/negative-triggered
register.

A concept often used in the context of latch setup/hold times is
the clock-to-q delay, i.e., the delay measured from the 50% transition
of the active clock edge to the 50% transition of the output of the
register. Setup skew is the delay from the 50% data transition edge to
the 50% active clock transition edge; similarly, hold skew is the delay
from the 50% active clock transition edge to the 50% data transition
edge.

Clock-to-q delay is often plotted against setup/hold skew [6], [18]–
[20]; this plot is generated using a series of transient simulation,
one for each setup/hold skew. Generation of this plot is typically
followed by the extraction of one special setup skew point on the
plot, for which clock-to-q delay increases by a certain amount, e.g.,
a typical number is 10%. This setup skew point is taken as the setup
time. We will revisit this process of characterization in more detail in
Section IV (see, for example, Fig. 3(a) for a graphical representation
of the above procedure).

This manual characterization process, typically automated using
binary search, provides an estimate of setup time but lacks accuracy
since the determination of setup time is performed via interpolation
from the plot drawn from data obtained from simulations. Refinement
of setup time is typically performed by identifying an interval around
the estimate of setup time from the plot and running many transient
simulations in that interval in a sequence that follows binary search
methodology to narrow down to the more exact value of setup time
corresponding to the 10% increase in clock-to-q delay. A similar
procedure applies for the characterization of hold time.

III. NONLINEAR STATE-TRANSITION FORMULATION FOR

REGISTER SETUP AND HOLD TIME DETERMINATION

Uc(t)

Ud(t)

Ud(t + tau)

time(t)

Active Edge

Fig. 1. Clock and Data Waveform.

In this section, we establish the formulation of finding setup time
as an equation and then describe the numerical algorithm to solve
it using Newton-Raphson. The methodology developed here will be
generic in nature and can be applied for the characterization of hold
time also.

A. Setup-time Formulation

We begin with a nonlinear circuit system that can be represented
by the following vector differential algebraic equation [14].

d
dt

�q(�x)+�f (�x)+�bu(t) = 0. (1)

In (1), for an order n system,�x∈R
n is the state vector of internal node

voltages and branch currents; �q ∈ R
n and �f ∈ R

n are the charge/flux
and the current terms respectively and �bu(t) ∈ R

n represents all the
input source voltages.

A typical register consists of many transistors, a clock source and
a single or multiple data source(s); it is therefore a nonlinear circuit
system. Now, suppose uc(t) is a scalar waveform representing the
clock of the register and ud(t +τ) (obtained by shifting ud(t) towards
its left by τ time.) represents the data waveform of the register. Here
we make an assumption that ud(t) is the waveform with only one

transition going from high to low or low to high and its transition edge
coincides with the active edge of uc(t) (refer Fig. 1). The rationale
behind this choice of ud(t) comes from the fact that we are trying
to establish the methodology for the determination of setup time and
therefore a data waveform like ud(t + τ) is needed to monitor the
output waveform of the register for different values of τ’s, which is
typically understood as the setup skew of the data waveform w.r.t the
clock. The limiting value of τ , for which the rise time of the output
waveform i.e. clock-to-output delay (tC−Q) increases by a certain
amount determines the setup time of the register. tC−Q is the delay
measurement from the 50% transition of the active clock edge to the
50% transition of the output waveform.

If we separate the input sources of a register into a clock input
source and a data input source, the differential equation for it can be
written as following based on the pattern of (1):

d
dt

�q(�x)+�f (�x)+�bcuc(t)+�bdud(t + τ) = 0. (2)

In order to detect the limiting value of τ , we will monitor a single
output waveform, given by�cT�x. Here,�c will typically be a unit vector
which selects an output node. The typical behavior of the output
waveform for different values of τ’s is shown in Fig. 2(a). It can be
noted from Fig. 2(a) that the clock-to-output delay increases as the
setup skew decreases; output waveform even fails to complete the
transition for much lower values of τ’s as it happens for τ3 and τ4
shown in the figure. Apart from this, it is also true for any kind of
register that if the setup skew is larger than a certain amount then
the clock-to-output delay is independent of setup skew, this constant
clock-to-output delay is the characteristic of any register and can be
termed as the ”characteristic clock-to-output delay”.

We are interested in finding a value of τ , for which the tC−Q
of the output waveform increases by a certain amount compared
to its characteristic clock-to-output delay, i.e. the output waveform
corresponding to the τ is only able to reach at some value r, less
than the 50% of its final value at time t f , where t f denotes the time
at which the output waveform reaches to its 50% transition for large
setup skews.

The above situation is also explained graphically in Fig. 2(b),
in which two output waveforms corresponding to setup skews τ1
and τ2 are shown, having tC−Q1 and tC−Q2 clock-to-output delay
respectively. Here we assume that tC−Q1 is the characteristic clock-
to-output delay and therefore independent of setup skew of value τ1
and larger than that. As defined above, t f is the time at which the
output waveform, w.r.t. setup skew equal to or greater than τ1, reaches
to its 50% transition. The other output waveform w.r.t. τ2 manages
to reach at value r, much less than the 50% of its final value, at
time t f . Therefore, τ2 qualifies as the setup time according to our
specification. The next paragraph outlines how to find the value of
τ2 (setup time) given r and t f .

Let �φ(t;�x0, t0 = 0,τ) be the state-transition function of (2). We
assume that the initial condition �x0 = �x(t = t0) is fixed at some
value. Therefore, r, t f and �x0 are known and fixed quantities, the
only unknown is τ and the condition we are seeking to satisfy is that
the output is at value r at time t f , i.e., �cT�x(t f ) = r. Writing this in
terms of the state transition function, we obtain

�cT�φ(t f ;�x0,0,τ)− r = 0,

or �cT�φ τ (τ)− r = 0,

where �φ τ (τ) ≡ �φ(t f ;�x0,0,τ).

(3)

Hence, the nonlinear equation which we need to solve to get the
optimal value of τ is

h(τ) ≡�cT�φ τ (τ)− r = 0. (4)



3

C_Qt
3

4

tf

2Clock Edge
1

time

(a) Output for τ1 > τ2 > τ3 > τ4.

C_Qt
1

C_Qt
2

tf

r

2
1

Clock Edge

time

(b) Clock to Q delay.

Fig. 2. Behavior of output waveform for different setup skews.

B. Newton-Raphson Methodology

In this paper, we propose to solve the nonlinear equation (4) via
Newton-Raphson and this subsection, in particular, discusses all the
details in relation to run NR on (4).

We first note that (4) is a scalar equation in a scalar unknown. In
order to solve it via NR, we need to be able to do two things: 1)
evaluate h(τ) given any τ and 2) evaluate dh(τ)

dτ for any τ . Evaluation
of h(τ) can be done by running a transient simulation with the given
τ and then evaluating (4). To compute dh(τ)

dτ , we need to evaluate
d

dτ
�φ(t f ;�x0,0,τ). We next develop the procedure to do this.
First, we write out (2) with all dependencies on τ shown explicitly

for clarity:

d
dt

�q(�x(t,τ))+�f (�x(t,τ))+�bcuc(t)+�bdud(t + τ) = 0. (5)

Next, noting that d�φ
dτ is simply d�x(t,τ)

dτ , we differentiate the entire
equation with respect to τ , interchanging the order of differentiation
w.r.t. t and τ in the first term :

0 =
d

dτ

[
d
dt

�q(�x(t,τ))+�f (�x(t,τ))+�bcuc(t)+�bdud(t + τ)
]

=
d
dt

[
d

dτ
[�q(�x(t,τ))]

]
+

d
dτ

[
�f (�x(t,τ))

]
+�bdu′d(t + τ)

=
d
dt

[
d�q(t,τ)

d�x
d�x
dτ

]
+

d�f (t,τ)
d�x

d�x
dτ

+�bdu′d(t + τ).

(6)

Since we want to evaluate dh(τ)
dτ at any given value of τ , e.g. at τ∗,

we can define the following terms for the ease of understanding.

C†(t) =
d�q(t,τ)

d�x

∣∣∣∣
τ=τ∗

,

G†(t) =
d�f (t,τ)

d�x

∣∣∣∣∣
τ=τ∗

,

and �m†(t) =
d�x(t,τ)

dτ

∣∣∣∣
τ=τ∗

.

(7)

Rewriting (6) for τ = τ∗, we get:

d
dt

(
C†(t)�m†(t)

)
+G†(t)�m†(t)+�bdu′d(t + τ∗) = 0 (8)

Solution of (8) can easily be obtained using any integration method,
e.g. BE, TRAP etc. [13], [14]. We write the solution of (8) using BE
as

C†(ti)�m†(ti)−C†(ti−1)�m†(ti−1)
ti − ti−1

+G†(ti)�m†(ti)+�bdu′d(ti + τ∗) = 0,

(9)

which can be simplified as

�m†
i =

(
C†

i

∆t
+G†

i

)−1 (
C†

i−1

∆t
�m†

i−1 −�bdu′d(ti + τ∗)

)
. (10)

Subscript i denotes to the fact that the corresponding quantity has
been evaluated at t = ti; ∆t = ti − ti−1 is the time step used in the
integration.

We need to know the value of �m†
0 to start the integration process

and it turns out that we can safely take �m†
0 to be equal to �0. The

reason for this choice is that �x0 =�x(t = t0) will not change for any
particular value of τ and thus enabling �m0 to take the value �0.

Evaluating (10) from t = t1 to t = t f (i.e. i ∈ 1,2, . . . , f ) will give

�m†
f = d�φ τ

dτ

∣∣∣
t=t f ,τ=τ∗ .

And finally we can obtain the scalar

dh(τ)
dτ

∣∣∣∣
t=t f ,τ=τ∗

=�cT d�φ τ
dτ

∣∣∣∣∣
t=t f ,τ=τ∗

. (11)

Next subsection presents the algorithm for running NR on (4).

C. Numerical Algorithm

In this subsection, we’ll outline the procedure of finding the
optimal value of τ = τs, referred as the setup time of register, such
that it satisfies (4). (4) is rewritten below for clarity.

h(τ) =�cT�φ τ (τ)− r = 0. (12)

The above written equation has to be evaluated at time t = t f .
The algorithm for finding τs is as follows:

1) Initialize τ , �x and �m.

a) τ = τ0.
τ0 can be chosen as any positive value; a good choice will
always be less than the time period of the clock. A better
guess of τ0 will approximate to some previously known
setup time of the similar kind of registers.

b) �x(t = 0,τ) =�x0(τ).
�x0(τ) can be made same for all values of τ e.g. equal to
�x∗0; where �x∗0 can assume any arbitrary value.
A good choice of �x0(τ) will be the DC operating point
for that particular value of τ; here �x0(τ) will differ for
different values of τ’s.
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c) �m(t = 0,τ) = �m0(τ).
As explained previously, �m0(τ) will be initialized to �0
because �x0 doesn’t change for a particular value of τ .

2) Start the Newton-Raphson procedure.

For an iteration index j:

a) Divide t = 0 to t f in N points: t0, t1, . . .,tN−1. For each i
∈ {0, . . . ,N −1}, compute the following:
τ j is the value of τ being used for the iteration index j.

i) Compute �x ji using (2) (reproduced below).
Here, �x ji denotes to the fact that the quantity �x is
being evaluated at time ti for the iteration index j.
This terminology will hold for other quantities too.

d
dt

�q(�x)+�f (�x)+�bcuc(t)+�bdud(t + τ) = 0. (13)

(13) can be solved using any integration method like
BE, TRAP etc. [13], [14].

ii) After having obtained �x ji’s, compute the following:

Cji =
d�q(�x)

d�x

∣∣∣∣
�x=�x ji

and G ji =
d�f (�x)

d�x

∣∣∣∣∣
�x=�x ji

. (14)

iii) Compute �m ji using (10) as follows.

�m ji =
(

Cji

ti − ti−1
+G ji

)−1 (
Cj(i−1)

ti − ti−1
�m j(i−1)

−�bdu′d(ti + τ j)
)

.

(15)

We have now obtained �x j(N−1) and �m j(N−1).
b) Calculate h(τ j) defined in (4) as follows.

h(τ j) =�cT�x j(N−1) − r. (16)

c) Check convergence of NR using reltol and abstol [21].
If NR has converged, then we have obtained the optimal
value of τ as τ j . Stop Here.

Otherwise calculate dh(τ)
dτ defined in (11) as follows:

dh(τ)
dτ

∣∣∣∣
τ=τ j

=�cT �m j(N−1). (17)

d) Calculate τ j+1 and increment j.

τ j+1 = τ j −
h(τ j)

dh(τ)
dτ

∣∣∣
τ=τ j

,

and j = j +1.

(18)

Go to step (a) for the next iteration of NR.

The above described procedure will be applied for the computation
of τs in the next section.

IV. APPLICATION OF NR METHODOLOGY AND RESULTS

In this section, we’ll first review the existing method for the
setup/hold time characterization. We’ll then show how Newton-
Raphson is useful for the fast and more precise computation of
setup time. At the end of this section we’ll compare the results
obtained from the NR method against the binary search method to
emphasize the usefulness of Newton-Raphson based methodology for
latch/register characterization.

In one of the current existing methodology for the setup time
characterization: clock-to-output delay is first plotted against setup
skew (a typical plot of tC−Q vs setup skew is shown in Fig. 3(a)),
then the setup skew for which clock-to-q delay increases by a certain
amount e.g. by 20% is measured and considered as the setup time.
We must note here that the clock-to-q delay changes very rapidly
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Fig. 3. Setup skew vs clock-to-output delay

near to the setup time, making it very sensitive to small setup skew
changes in the neighborhood of setup time; therefore, to capture the
setup time with high accuracy, it requires many simulations to run in
the vicinity of setup time τs.

If we have identified the region around the setup time, i.e. we have
found two nearby setup skews such that it contains τs, then we can
refine the search for the setup time (using the criteria of 20% increase
in tC−Q) applying the binary search method in that interval. One such
interval is shown in Fig. 3(b) which contains the setup time point τs.

We propose here to apply the Newton-Raphson method in the
above identified setup skew interval to quickly narrow down to the
setup time. Since, NR has the quadratic convergence near to the
solution, we expect to get to the result much faster as compared
to the binary search method which has the linear convergence.

A. Transmission gate based master-slave register

We have chosen the simple transmission gate master-slave positive-
edge triggered register for the verification purpose. The transmission
gate master-slave register is shown in Fig. 4.

CLK

CLK

CLK

CLK
D

CLK

CLK

CLK

CLK

Q

Fig. 4. Transmission Gate Based Positive-edge triggered master-slave
register.

The clock waveform(uc(t)) used in the register is chosen such that
it makes the transition between 0V and 2.5V with a period of 10ns. It
has the rise/fall time of 0.1ns and has initial delay of 1ns. Therefore,
the active clock transition edge starts at 1ns, 11ns, 21ns...so on. The
data waveform(ud(t)) makes a low to high transition from 0V to 2.5V
with a rise time of 0.1ns at 11ns coinciding its transition edge with
the active clock edge of the clock. uc(t) and ud(t) are of the same
type as shown in Fig. 1.

For a large setup skew(τ), when we can assume that the data is
being latched reliably and clock-to-q delay is independent of τ , the
output waveform rises to its 50% value i.e. 1.25V at 11.625ns. If
the setup time corresponds to that value of τ , for which the output
waveform rises only to 1V(20% less than 1.25V) at 11.625ns, then
we set r = 1V and t f = 11.625ns in (4) and call the corresponding
setup skew as τs, which is the setup time of the register in this case.

After having set the value for r and t f , we need a suitable initial
guess of τ to start the Newton Raphson method. Initial guess of τ
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proves to be critical for the convergence of NR and should be chosen
near to the solution within the convergence range of NR.

To find a good initial guess of τ: We first start with a setup skew
interval [τL,τR], where register latches the data properly for τL and
fails to latch for τR. Therefore, this interval will contain τs. We then
narrow down the setup skew interval surrounding τs (as shown in
Fig. 3(b)) using binary search method untill the interval length falls
in the convergence range of NR.

Convergence range of NR varies with types of registers, rise/fall
time of data and clock waveforms etc.. Sensitivity of output waveform
to the changes in setup skew, affects considerably the convergence
range of NR. Convergence range will be small for high sensitive
output and large for less sensitive output.
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Fig. 5. Digits of accuracy: Newton Raphson vs binary search method.

For the circuit in Fig. 4, Newton-Raphson has very small con-
vergence range, approximating to 5-8ps. Therefore, we narrowed
down the setup skew interval to 5 ps before applying NR on it. We
can then take the initial guess of τ either as τR or τL to start the
NR method. After having the values for τ0(initial guess), r and t f ,
we apply NR(following the algorithm described in previous section)
to reach at the solution τs. The solution τs thus obtained equals
1.838398001980504e − 10 seconds; this solution has 10 digits of
accuracy and it took only 12 iterations of NR. In contrast to this,
Binary Search method took 32 iterations to give the solution of τs

with 10 digits of accuracy. Obviously, NR excels when high accuracy
is needed. We have plotted a graph showing number of iterations
vs digits of accuracy to compare the Binary Search and the NR
methodologies.

The plots in Fig. 5(a) shows how many number of iterations of
NR is needed as compared to Binary Search to add one extra bit of
accuracy in the value of τs. It is clear from the graph that NR manages
to increase bits of accuracy in much less number of iterations than
the Binary Search method, therefore it reaches very fast to the more
accurate value of setup time.

Though, the number of computations required in one iteration
of NR is more than the number of computations needed in one
iteration of Binary Method, NR becomes more and more efficient
as the digits of accuracy needed in the setup time increases. In
fact, the computation time per iteration for NR increases mainly due
to the evaluation of equation (15) in each iteration. Since equation
(15) involves the inverse computation of the matrix ( Cji

ti−ti−1
+G ji), it

looks expensive in terms of time consumption. But, effectively, the
inverse computation of this matrix is of the order O( na) (a ∈ [1,2])
because of the sparsity. For the circuit shown in Fig. 4, NR took 160.5
seconds per iteration while Binary Search took 137.2 seconds. The
plots shown in Fig. 5(b) gives the comparison of computation time
for NR and Binary Search method. Clearly, NR consumes less time
than Binary Search for each additional bit of accuracy in spite of its
larger computation time per iteration. The vertical difference between
the plots shown in Fig. 5(b) gets bigger and bigger, validating our
assumption that NR will perform better with each additional bit of
accuracy.

B. C2MOS Positive-edge triggered master-slave register.

CLK
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CLK

VddVdd

D X Q

Fig. 6. C2MOS Positive-edge triggered master-slave register.

To further validate the use of NR as a fast characterization method,
we extracted the setup time information for the circuit shown in Fig. 6
using NR. We have taken the same clock and data waveform (uc(t)
and ud(t)) as used for the previous register. The output of this register
rises to its 50% value i.e., 1.25V at 11.171ns for a large setup skew.
As we did in the previous example, here also we assume that the
setup time corresponds to that value of τ , for which the output rises
only to 1V(20% less than 1.25V) at 11.171ns, thus we set r = 1V
and t f = 11.171ns in (4).

The convergence range of NR for this register is found to be
approximately 120-150ps, indicating that the output of this register is
less sensitive to the changes in setup skews as compared to the output
of the transmission-gate based master-slave register. Therefore, initial
value of τ for this register can be chosen anywhere within the setup
skew interval of length 120-150ps containing τs (setup time). After
having the numerical values for r, t f and τ0, we apply NR and get the
setup time of the register 2.514017726429020e-10 seconds, which is
accurate upto 10 digits. The plots shown in Fig. 7(a) and Fig. 7(b)



6

4 6 8 10 12
0

5

10

15

20

25

30

35

Digits of Accuracy (for setup time)

N
um

be
r 

of
 It

er
at

io
ns

Binary Search
Newton Raphson

(a) Number of Iterations vs Digits of Accuracy.

4 6 8 10 12
0

500

1000

1500

2000

2500

Digits of Accuracy (in setup time)

C
om

pu
ta

tio
n 

T
im

e 
in

 S
ec

on
ds

(S
)

Binary Search
Newton Raphson

(b) Computation Time vs Digits of Accuracy.

Fig. 7. Digits of accuracy: Newton Raphson vs binary search method.

shows the number of iterations and computation time against digits
of accuracy respectively. Once again, it is evident from the plots that
NR becomes more and more efficient than Binary Search with each
additional bit of accuracy.

Usefulness of NR will also be more prominent if we already have
some idea of the setup skew interval surrounding the τs, then it only
requires to run few iterations of NR to extract the setup time of
high accuracy. It turns out that we in fact, have a fair idea of such
setup skew interval from the previous characterization of standard
cell library containing similar registers. Hence, NR can be less time
consuming and thus very useful as it features more accuracy in less
number of iterations, in the characterization of setup/hold time.

CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a new method that directly solves for latch
setup and hold times by expressing them as solutions to a scalar
nonlinear equation, and solving this equation exploiting the quadratic
convergence properties of Newton-Raphson. We have validated the
new technique on two different registers and compared them against
binary search, confirming speedups in the range of 4−10×.

Current/future work is focused on working together with Intel to
implement and evaluate the proposed technique in an industrial timing

closure flow. We are also developing extensions of the method that
take advantage of NR’s quadratic convergence for multivariate (i.e.,
vector) unknowns, to dramatically reduce setup/hold time calculations
for simultaneously finding both setup and hold times, as well as
exploring the more complex setup/hold skew landscape for multi-
input registers and groups of registers. We anticipate that our tech-
nique will rapidly gain adoption in industry to become the standard
for latch/register setup/hold characterization for cell libraries over
process-voltage-temperature variations.
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