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Abstract— We present a waveform based variational static
timing analysis methodology. It is a timing paradigm that lies
midway between convention static delay approximations and full
dynamic (SPICE-level) analysis. The core idea is to break the
modulation of waveforms processed by a circuit into two parts:
(a) non-linear circuit elements e.g., transistors, diodes etc. and
(b) linear elements: transmission line, RLC network etc. The
non-linear and linear parts of the circuit are then solved using a
combination of current-source modeling, model order reduction
methodology, perturbation analysis and learning-based Galerkin
methods which helps us get SPICE-like accuracies. The proposed
method is potentially as robust and 10-20X faster than current-
source based gate modeling methodologies.

I. INTRODUCTION

Static timing analysis (STA) is the current method of choice
for analyzing and verifying the timing constraints in digital
ASICs. Static timing methodologies are at root based on a
simple abstraction of the waveforms at different nodes in any
given circuit – modeling the waveforms with two numbers, a
slew and a delay – which are propagated in a conservative way
through the circuit graph. This methodology is “vectorless”
and avoids the expense of dynamic simulation [12] [8] [11]
to estimate timing. Due to the phenomenal advancement in
drawing extremely small transistor dimensions and the push
for aggressive design styles to achieve better chip functionality,
the voltage waveforms commonly observed in modern chips
differ significantly from the assumptions of STA. We often
observe non-idealities in the waveforms that are not captured
by a conventional static timing analysis tool, for example,
overshoots, spikes, ringing etc.

Tables for traditional table-lookup gate level models have
to be generated for different loading conditions to accurately
predict the circuit behavior in real designs. It is often quite
difficult to exhaustively characterize the cells for all possible
loading conditions. Thus, approximate equivalent capacitance
models are generated for the interconnects [10] to do a look-up
in the table of the gate models. Due to these approximations
and the intrinsic limitations of the models, the generated output
waveforms do not match the real circuit behavior. The problem
is more severe in the case of non-linear loading conditions
as is the case when other gates are on the fan-out of the
driver. The problem is exacerbated due to large changes in
transistor and interconnect characteristics in the presence of
process variations.

Recently, the research efforts have focused on two key
aspects of the problem:

• modeling the gate behavior in the presence of non-ideal
waveforms, bias and loading conditions and

• efficiently simulating linear interconnect networks.

The most successful amongst the gate models have been
the current-source models [7] [4]. They represent the output
current and impedance of a logic gate as a function of input
voltage in tabular form. As for the linear interconnect network,
there are fairly mature techniques for applying model order
reduction ideas to solve the resulting large linear circuit
equations efficiently [9]. Together, this strategy results in a
substantial improvement over table-lookup based strategies,
but there are still some drawbacks to the approach. Once
the models for the gates and the interconnect network are
generated, they are simulated using time-step integration tech-
niques [14] which can lead to long analysis times. In the
presence of large variations in the manufacturing process, the
problem of extracting these models becomes more complicated
as one has to extract the model information not only for
the nominal condition but also for different settings of the
process parameters resulting in huge model sizes. Finally, in
most static timers, the more detailed waveform information is
discarded after a single stage; only the delay/slew numbers is
retained.

We present an efficient algorithm for generating accu-
rate and robust models of logic gates incorporating that is
also suited for incorporating variational information. We also
present a scheme for efficient simulation of these models along
with reduced interconnect networks resulting in a variational
static timing analysis framework. Section 2 presents the basic
background on static timing analysis and some of the com-
mon approaches. Section 3 describes the key pieces of our
algorithm including variation aware model generation for the
logic gates and their co-simulation with interconnects. Section
4 presents our experimental results where we demonstrate the
efficacy of the proposed methodology using simulation exam-
ples of non-ideal waveforms. The time taken for generating
these waveforms is potentially 10-20X faster than the current-
source models. Finally, Section 5 offers concluding remarks.
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II. BACKGROUND: STATIC TIMING ANALYSIS

A. Problem

The problem of static timing analysis (STA) can be de-
scribed as follows. We have a digital circuit (Fig. 1) that has
inputs IPi for i=1,2,..,I and outputs OPj for j=1,2,..,J. The
waveforms at these terminals can be represented as wv(IPi)
or wv(OPj ).The circuit has Ck circuit blocks for k=1,2,..,K
connected by interconnect networks INl for j=1,2,..,L. The
problem is to find information about the characteristics of
the waveform at the output OPj e.g. delay, rise/fall-time,
overshoot etc. as a function of a particular set of input
waveforms {wv(IP1),wv(IP2),..,wv(IPI)}. The information
about the output waveforms is to be obtained in the presence
of global parameter variations for the underlying transistor
models.
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Fig. 1. Representation of a digital circuit with logic gates and interconnect
network

B. Previously Proposed Solutions

In traditional STA methodologies, logic levels and corre-
sponding valid transitions between them are propagated from
one stage (gate) to another. A voltage transition at a particular
circuit node has the topology of a saturated ramp. However,
conventional STA simplifies the transition by approximating
it with a linear saturated ramp. Accordingly, the signal transi-
tions are modeled using just two parameters: arrival time (AT)
and slew. Earlier table-lookup delay models were motivated
by this abstraction, where these two parameters would be
tabulated as a function of input slew and an output load
capacitance. These models can have significant inaccuracies as
transitions in modern designs are quite different from a linear
ramp. Also, seemingly insignificant details of the waveform
can affect the delay of the next stages by appreciable amounts.
Moreover, interconnects are often very resistive which means
that they can hardly be modeled by a single capacitance.

Significant progress has been made in addressing these
problems resulting from the underlying assumptions and ap-
proximations of transition STA. The simplest, straightforward
and most accurate solution is to do a full SPICE [11] analysis
of the complete circuit. As this is often seen as computational
impractical, the alternative approach is fine grained model-
ing of the digital gates. That is, instead of characterizing
a waveform with a delay and slew number, waveforms are
represented using a host of different values like, overshoot,
spikes, decay number (time taken to reach from 10% to 1%

of logic value) etc. apart from the regular metrics of delay and
slew (time taken to reach from 10% to 90% of Vdd). These
methods are ad hoc at best. They lack a methodical strategy
for characterization of the waveforms.

The approach that seems the most promising at handling this
problem models the input and output interfaces of digital gates
along with applying model order reduction (MOR) techniques
for efficiently simulating large, linear interconnect networks,
e.g. BLADE [4]. However, most of these methods use a lot
of “black magic” to make the models work. Also, they suffer
from slow simulation speeds because of the SPICE-like time-
step integration techniques involved in solving the reduced
circuit equations. To date, variation aware modeling support
is also missing or is, at best, ad hoc in such methodologies.

We seek to solve these problems using a method we term as
waveform pushing. In this approach, a given input waveform
is sequentially “pushed” through the various interconnects and
logic networks of the circuit till it reaches the output. Complete
waveforms are solved for at each stage of waveform pushing.
This is different from the standard static timing analysis (STA),
because in our case, we keep track of the actual shape of the
waveform with respect to time, while in STA, only numbers
related to certain (hopefully) key waveform characteristics e.g.,
delay, rise/fall-time etc. are moved around across the gates and
interconnects. Thus, we seek to use the complete waveforms
during fast simulation of our digital circuits to get an accurate
behavior of the circuit under a particular test condition.

III. MODELING METHODOLOGY

Our waveform based variational static timing analysis
methodology uses four basic numerical techniques. First, per-
turbation analysis allows us to pre-characterize not only the
performance of a single, fixed gate instance, but the entire
range of behavior of a gate topology. A novel Schur-transform-
based model order reduction technique accelerates treatment
of parasitic components in the compressed representation. A
combination of time-varying modeling and Schur-complement
manipulations allow us to rigorously obtain models of I/O
loading effects. Finally, a combination of waveform compres-
sion and Galerkin approximation allows us to pass a highly
compressed representation of the full waveform through a
complete circuit analysis. In this section, we present a brief
description of each of these methods.

A. Perturbation Based Variation Aware Modeling

We start with efficient representation of the state vectors as
a fuction of small variations in some circuit parameter (λ). The
state vector is composed of the voltage at the capacitive nodes
and current through inductors in a circuit. The parameter (λ)
could by any process parameter e.g., vth, tox etc. or parameters
of the input waveform e.g., rise-time, or other parameters like
the supply voltage or the W, L of transistors. This functional
representation is done using perturbation analysis [5] [13] of
the underlying circuit equations.



SPICE solves a standard circuit simulation problem by
casting it into an equation of the form:

dq(x, t)
dt

+ i(x, t) = 0 (1)

Here, x is the state-vector of system. For sake of simplicity,
we would be dropping the ‘t’ parameter. We could rewrite the
equation as a function of the underlying parameter λ.

q̇(x, λ) + i(x, λ) = 0 (2)

If we expand i and q around some fixed x0 and λ0, we
can rewrite Equation 2 in the form of Equation 3 after some
massaging of the terms.
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We can now discretize the equation at time points tn and
tn+1. Taking the backward Euler method as an exmaple, and
with some algebraic manipulations, we can get a recursive
relation for obtaining ∆xn+1 as a function of variations in
lambda (∆λ).

∆xn+1 = Kn+1
x ∆xn − Kn+1

λ ∆λ (4)

If we use a linear approximation to compute the change in
initial state of the system using the equation

∆xt0 =
∂x

∂λ
∆λ (5)

Then, we can rewrite Eqn (4) as

∆xn+1 = Kn+1
lin ∆λ (6)

For small variations in λ, Eqn (6) can give the state-
vector for the circuit at all time points using a simple scalar
multiplication. This, in essence, means that once we have
pre-characterized a circuit, we don’t need to re-simulate it
for getting the output waveforms when circuit simulation
conditions (λs) are varied (for example, shape of waveform,
model parameter of transistors).

B. Gate Modeling Via Schur Complements

The Norton equivalent components for the input/output of a
circuit (Figure 2) can be obtained by computing schur comple-
ments [6] of the detailed, time-varying circuit equations. The
basic idea is to rewrite the state-space equation in terms of just
one variable (the input or output node). The scalar elements in
that equation would automatically give the norton equivalent
circuit components.

For a non linear circuit, we start with its approximate
linear representation to compute the schur complement and
the equivalent input/output model for the circuit. We start
with the charge-current equation used by SPICE during circuit
simulation.

q̇ + i = 0 (7)
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Fig. 2. Norton equivalent model of a logic gate. Note that all elements
(R,C,I) in the resulting model are time varying.

Jacobians of charge and current give the capacitance and
conductance matrices, respectively, at a particular point in the
state-space(v0).

dq

dv


v0

= C &
di

dv


v0

= G (8)

The Jacobians obtained during SPICE simulation at each
time-step are used to construct an approximation of the
non linear circuit composed of only linear elements. The
linear circuit has the same number of nodes and voltage
sources as the non-linear parent circuit. The capacitance and
conductance values of the linear network are such that the
resulting capacitance and conductance matrices of the linear
network matches that of the non-linear circuit at each time-
point (linearization point) in its state-space. The voltage values
for the linear circuit are forced to take the same values as their
corresponding nodes in the non-linear network by introducing
new pseudo current sources at the different nodes. The values
of these current sources are chosen in such a way so as to
balance the resulting state-space equation for the linear circuit
(Eqn (9)).

Cv̇ + Gv + I = 0 (9)

Thus, we would have a different linearized approximation of
the non-linear circuit at each simulated time step. For this
linear network, we now compute the equivalent output model.
The values of current, capacitance and conductance elements
of this generated model would be time varying.

The equivalent output model for the linear network is
obtained by rewriting Eqn (9) as Eqn (10).

⇒ (sC + G)v = −I

⇒ Y v = −I
(10)

The last equation can be rewritten by breaking the variable
v into two parts: v = [v1v2]T where v1 is the state-variable
corresponding to the output node of the circuit and v2 is the
set of all other state-variables. Thus, the state-space equation
can be rewritten in terms of these variables:

Y11v1 + Y12v2 = I1

Y21v1 + Y22v2 = I2

(11)

Substituting the variable v2 in the equations gives

(Y11 − Y12Y
−1
22 Y21)v1 = I1 − Y12Y

−1
22 I2

⇒ Yeqv1 = Ieq

(12)



Rearranging the terms, we get the equivalent input/output
conductance, capacitance and current source values (note that
these expressions hold on a per-timepoint basis):

Ceq =C11 − C12G
−1
22 G21 − G12G

−1
22 C21

+ G12G
−1
22 C22G

−1
22 G21

Geq =G11 − G12G
−1
22 G21

Ieq =I1 − G12G
−1
22 I2

− s(C12G
−1
22 − G12G

−1
22 C22G

−1
22 )I2

(13)

Note that in Eqn (13), Ieq has a first order term in ‘s’. The
way this term of the current source is actually computed is
by taking a numerical derivative of I2 with respect to time.
Experimental results have shown that this first order term is
very important for the model to function correctly. Perturbation
method described in the previous subsection could be easily
employed to obtain the equivalent conductance in the form
G = Geq + Gλ∆λ. Similar parameter dependent components
for I and C can also be extracted. Due to space limitations,
we are not presenting the detailed methodology.

A similar strategy can be used to compute the equivalent
input model for the non linear circuit. Usually, the input equiv-
alent model for a non linear digital gate has only capacitive
term. However, due to the particular method of construction
of our approximate linear network for the non-linear circuit,
the generated model has a current source, as well, to account
for the pseudo current sources used to satisfy Eqn (9).

C. Model Order Reduction for Interconnects

Parasitic extraction of interconnects results in large number
of linear passive components. It is very expensive to directly
solve the resulting system of equations. The standard approach
to reduce the cost is to use model order reduction (MOR)
techniques [9] to compress these equations. If we have a state-
space equation of order N such that the state vector x is of
length N as shown in Eqn (14)

Cẋ+Gx = Bu

y = Lx
(14)

We can obtain a reduction matrix V [9] of size N × q such
that x � V z. Thus, Equation(14) can be rewritten using the
variable z as

C̃ż+G̃z = B̃u

y = L̃z
(15)

where, C̃ = V T CV , G̃ = V T GV , B̃ = V T B and L̃ = LV .
The order of the resulting system of equations (Eqn (15)) is
q where q � N and hence, Eqn (15) is very easy to solve.

D. Combining Linear MOR and Time Varying Gate Model

Once we have the equivalent time varying model for the
logic gates and the reduced order models for the linear
interconnect network, we need to solve a combined set of
state-space equations incorporating the two. For concreteness,
we take the example shown in Figure 3. The RC network
represented by the box consists of a large number of R, L

and C elements. This linear interconnect network is interfaced
with some non-linear circuit elements which are represented
by their equivalent time varying norton models. The driver
represented with its output model is shown on the left side of
the interconnect network and the fan-out load represented by
the equivalent input model is shown on the right.
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Fig. 3. An linear interconnect network coupled with a time varying equivalent
model for a nonlinear circuit

In order to solve this circuit, we need to interface the two
circuit blocks: linear network and time varying equivalent
model using the current and voltage values at the nodes 1
and 2. Thus, we could rewrite the state-space equation for the
whole circuit as:

Itho +
v1

Rtho

+ Ctho v̇1 + i1 = 0

Ithi +
v2

Rthi

+ Cthi v̇2 + i2 = 0

v1 =
[
1 0 0 · · 0

]
v = bT

1 v = b̃T
1 z

v2 =
[
0 1 0 · · 0

]
v = bT

1 v = b̃T
2 z

C̃ż + G̃z + b̃1i1 + b̃2i2 = 0

(16)

New sets of matrix equations can be generated for Eqn
(16) from the reduced order state-space equation for the
interconnect network by adding 4 new variables viz. v1, v2, i1
and i2 and their corresponding 4 new equations. The resulting
set of equations can then be solved either directly or through
the method proposed in the next subsection.

E. Efficient Differential Equation Solution Using Galerkin
Method and Schur Transform

The Galerkin method [3] is a standard spectral technique to
solve a system of equations of the form

L(y(x)) + f(x) = 0 (17)

where L is any linear differential operator. We start with
assuming that our solution is in the form

y(x) ≈ u(x) =
N

Σ
j=1

cjφj(x) (18)

where φj(x) are a set of basis vectors for j=1,2,..,N. We define
the residue of Eqn (17) as

r(x) = L(u(x)) + f(x) (19)

For obtaining the coefficients cj we try making the residue
orthogonal to the set of basis vectors which results in a set of
N equations that can be solved to get the N coefficients.∫ b

a

φi(x)[L(u(x)) + f(x)]dx = 0 i = 1, .., N (20)



As can be observed, Eqn (16) is of the form of Eqn (17).
Thus, Galerkin method can easily be employed to solve the
combined set of equations for the circuit of Figure 3. However,
we can further simplify the computation of the solution by
applying the Schur transform [6].

We start with the assumption that the solution of the state-
space equation (Eqn. 16) for all the state-vectors can be written
as a linear combination of a suitably chosen set of basis
vectors.

vi �
q

Σ
k=1

ci
kφk(x)

= ΦCi
(21)

where Φ =
[
φ1 · · φq

]
and Ci =

[
ci
1 · · ci

q

]T
We

can apply the Galerkin method to solve the system of equations
given in Eqn (16). If the basis function is a vector consisting of
voltage values at different time points, we can do the integra-
tion with respect to a basis function φk (Eqn (20)) by taking
a dot product instead of integrating the equation analytically.
Rewriting our initial differential equation (Equation 16) in the
form of Equation 20 by integrating with respect to all the basis
vectors and then rearranging the terms, we get the following
set of equations:

(C⊗∆+G⊗Iq)(IN ⊗S−1)




c1
1

cq
1

·
c1
N

cq
N


+(IN⊗S−1)




φT
1 I1

φT
1 IN

·
φT

q I1

φT
q IN


 = 0

(22)
where S and ∆ are obtained by the eigen value decomposition
of [ΦT Φ̇].

[ΦT Φ̇]S = S∆ (23)

Here, Φ̇ is the time derivative of Φ and IN is an identity
matrix of size N . Another set of reordering of these equation
would give us a huge linear matrix equation of the form of
Equation 24. (The terms in the braces represent the size of
the matrices and vectors.) However, only the block diagonal
elements of the matrices would have non-zero elements which
can be very easy to evaluate.

A(Nq × Nq)C(Nq × 1) = b(Nq × 1) (24)
Here C is a column vector consisting all the Ci’s, N is the
number of variables in Equation 16 and q is the number
of basis vectors. For perturbation models, the same set of
equations appear in the form
A(Nq×Nq)C(Nq× 1) = b(Nq× 1)+ ∆λb′(Nq× 1) (25)

These set of equations can also be solved very efficiently to
extract the coefficients of the basis vectors that satisfy the
differential equation of Equation 16. Thus, using Equation 21,
we can obtain the voltage waveforms at all the nodes in the
circuit. We can repeat the same methodology for different
driver-interconnect-load blocks and hence perform the static
timing analysis on any given circuit.

IV. EXPERIMENTAL RESULTS

We have implemented the whole flow as described in
Section III into our tool that interacts with a SPICE engine
that supports BSIM3 [1] device models.

A. Model Generation

Non-linear transistor circuit blocks are replaced by their
equivalent norton model using the Schur Complement method
(section III-B). The resulting model is a parallel combination
of time-varying current source, conductance and capacitance
elements. For each gate, an equivalent input and output model
is created. These simplified models have the variational infor-
mation included in them using the perturbation based ideas
of Section III-A. In the initial implementation of these ideas,
perturbation models have been generated with the slew of the
input waveform as the underlying parameter (λ). However, the
strategy is generic enough to be easily extended to incorporate
other parameter variations like transistor parameters eg. Vth,
tox etc. thereby, having probable applications in statistical
static timing analysis.

The linear RC network is reduced to a simplified form
by using model order reduction techniques (section III-C).
The simplified models for linear and non-linear parts of the
circuit are then finally co-simulated based on the discussions
in section III-D. Efficient computation of the resulting set of
equations is done by using the Galerkin method (section III-E).

B. Basis Vectors for Galerkin Method

The basis vectors for use in Galerkin method (section III-E)
is computed by first generating a set of possible output wave-
forms for the non-linear circuit. This is done by varying the
load capacitance. The underlying idea is that for a particular
circuit instance, the waveforms generated at the output could
differ only because of the shape (slew in our example) of input
waveform and load at the output of the circuit. Singular value
decomposition (SVD) is performed on this generated set of
output waveforms. The resulting eigenvectors corresponding
to the most significant eigenvalues above a fixed threshold are
used as a basis for the voltage waveforms during solution of
the circuit equations. This method provides us with a nice
trade-off between accuracy and simulation speed-up.

C. Simulation Results

RC
network

loaddriver

vout

Fig. 4. Test circuit: An inverter driving another inverter load with a 17 node
RC interconnect network between them.

We use the circuit set-up shown in Figure 4 as the test case
for comparing the efficacy of our modeling approach against
full SPICE simulation. In our experiments, we used one cycle
of a waveform with period of 2ns and logic transitions at
0.5ns and 1.2ns as input stimulii with different values of
rise time. The input and output models for the driver were
extracted using a stand-alone inverter driving a single, fixed
capacitive load. Figure 5 shows the input equivalent time
varying capacitance for the inverter circuit. As can be seen
from the plot, Miller multiplication results in large values of
input capacitances during the signal transition periods. Since,
the models are extracted from underlying SPICE level circuit



equations, this information about equivalent input/output ca-
pacitance and conductance of the circuit can also be used by
the circuit designers as a design tool to tune their circuit’s
behavior.

Fig. 5. Time varying input equivalent capacitance for the inverter.

After generating the model for the non-linear gates and the
interconnect network, we finally had a 7th order state-space
equation (3 from reducing the RC network of order 17 and 4
from section III-D for the gate models). Figure 6 compares the
model and output response for a cascaded driver-load set of
inverters connected through an interconnect network as shown
in Figure 4. As can be seen from the plot, there is a close
match between the SPICE and model output even for large
deviations of rise time with respect to the nominal (300ps)
where the model was trained. For extremely large variations
from the nominal, the model can be re-trained for different
“nominal” values for better accuracy. Figure 7 compares the
output waveform produced by SPICE and the model at the
input of the load gate of Figure 4. However, this time we
trained and tested the model for “spikey” input waveforms as
shown in Figure 7. We again see a close match between the
model and SPICE outputs.

Fig. 6. SPICE and model output for circuit of Figure 4 with different values of
rise time of input waveform when the model was only trained for a fixed input
rise time (λ0) = 300ps in the presence of just a single fixed load capacitance.

D. Speed-up Analysis

The modeling scheme presented in this work generates
the equivalent models for the logic gates of equal, if not
lower, complexity compared to the ones produced using the
current-source models [7] [4]. The handling of the interconnect
network is the same in both the cases. However, the waveform
generation in the current-source models is done using a full
time step integration while in our proposed methodology, we
need to just compute the coefficients of the basis vectors. (This
does however mean a small extra model generation effort in
performing the SVD computation). In our experiments, a full
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Fig. 7. SPICE and model output for a spiky input waveform at the input of
the loading gate of Figure 4.

time-step integration required evaluations at 50-100 time-steps
for simulating a single cycle while in our implementation, we
just needed 7 matrix solves. Thus, our proposed methodology
is approximately an order of magnitude faster than other
similar methods.

V. CONCLUSION

We have presented a novel static timing analysis method-
ology. The proposed method accounts for non-linear gate
capacitance effects, non-linear output driver resistance effects,
dynamic effects associated with capacitance on internal cell
nodes and multi-stage loading and Miller capacitance effects.
Also, it captures the non-ideal waveform shape effects through
SPICE-like transient, but fast simulation and the information
about the output waveforms is obtained in the presence of pa-
rameter variations of the underlying transistor and interconnect
models. Our methodology is potentially 10− 20X faster than
similar current-source models. We thus believe that our work
presents a platform for incorporating these ideas to perform
accurate, yet fast static timing analysis.
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