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Abstract

As the trend in reconfigurable electronics goes towards
strong integration, FPGA devices are becoming more and
more interesting. They are already used for safety-critical
applications such as avionics [9]. Latest FPGA’s also en-
able new techniques such as dynamic partial reconfigura-
tion (DPR), allowing new possibilities in terms of perfor-
mance and flexibility. Their use in safety-critical systems
is considered as impossible nowadays since they must be
strictly validated, and DPR brings many new issues. In-
deed, the tools used for DPR must be certified, which is
barely impossible for the current DPR tools provided by
the vendors. We have developed a simple flow upon the
usual static one for Xilinx FPGA’s that does not require
any support of the vendor tools for DPR. This lessens the
complexity of tools certification, and make a step towards
enabling the certification of DPR for safety-critical appli-
cations. Moreover, under strong hypotheses, and by using
safe design principles, we show how the complexity of cer-
tifying DPR can be reduced.

1. Introduction

It is getting hard nowadays to avoid the use of reconfig-
urable devices such as FPGA’s in embedded applications.
Numerous designs use them, even in safety-critical systems
such as avionics [9]. In the future, FPGA’s are undoubtedly
going to be even more present. Moreover, FPGA’s with an
enormous amount of gates and integrated features (CPUs,
DSPs, etc.) are becoming available, which makes these kind
of devices an interesting option for a System-on-Chip (SoC)
solutions.

These new devices also enable new techniques such as
dynamic partial reconfiguration, a technique that consists in
changing the configuration of a part of a circuit while the

rest of it pursue its task. By using DPR, it becomes possible
to experiment new solutions for building efficient electronic
systems [11] [12] [7].

But electronic systems used in professional electronics
and more specifically in avionics have to be very strictly
validated in order to guarantee a high level of security. Be-
cause of this, safety-critical systems using FPGA’s are gen-
erally built using very safe design principles. This way, it
is possible to keep control on their behaviour and to guar-
antee their correct operation at each level and at each step
of the design. Unfortunately, the use of DPR causes addi-
tional problems regarding certification since it increases the
global complexity of a design. Most problems can actually
be avoided by using simple DPR mechanisms and applying
conservative design principles similar to those already used
in safety-critical systems based on FPGA.

However the tools used to create the different configu-
rations also require certification. DPR tools certification is
at present still considered as being very hard or impossible
since they are proprietary tools. This paper is focused on
this issue. A new DPR flow has been developed which im-
plements the minimal steps needed to be able to perform
DPR on Xilinx latest FPGA’s. The flow is based on the
parsing of the bitstream and do not necessitate any specific
tool from Xilinx. The bitstream organisation being rela-
tively simple, this solution is interesting regarding valida-
tion and brings closer the possibility of certifying hardware
using DPR on Xilinx FPGA’s.

Section 2 of this paper will present dynamic partial re-
configuration in more details, section 3 will discuss certifi-
cation issues, section 4 will introduce the main concepts on
which our solution is based, section 5 will present our min-
imal flow and its interest, section 6 will discuss the results
we get using our flow, and the solution it brings for certifi-
cation, and finally section 7 will discuss some limitations.
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2. Dynamic Partial Reconfiguration

Dynamic partial reconfiguration is a technique that al-
lows to reconfigure a part of a FPGA while the rest of it is
still running. This brings new possibilities in terms of per-
formance and flexibility [11] [12] [7]. For example, better
performances can be achieved by adding dynamically more
resources to process a computation. Flexibility is possible
by changing parts of the system while running. That means
that one system would be able to implement more func-
tions than usual or to adapt itself to its environment. Usual
designs use a static configuration that cannot be changed
while running: thus most of its abilities should be included
at once and the system would have to be dimensioned so that
it could include them all. By using DPR it is only needed to
have enough space to fit the biggest module, so less modules
will have to be present in the system. Therefore, it enables
to use less resources.

DPR provides interesting potential applications in many
domains, including software-defined radio [14], evolvable
hardware [12], wearable electronics [10]. But it is essen-
tially studied in academic researches. Many different works
have already used DPR in their approach, and this is not
limited to solutions using FPGA’s ([6], [4], [11], [12], [7],
[5]). This paper concentrates its efforts on FPGA’s from
Xilinx, which are the only big reconfigurable matrices able
to use dynamic partial reconfiguration since the Virtex-II
pro model (i.e.: the VII-pro, V4, and the V5). Up to now
using DPR on those devices is clearly not as mature as the
usual static use of FPGA’s, and is still experimental in many
ways. Moreover, it requires proprietary closed source tools
and can only be used with the Integrated Design Environ-
ment (IDE) of the vendor. Most steps are hidden, and this
makes validation impossible.

3. Certification of safety-critical systems

The main concern when designing for a critical appli-
cation is to lose control on the effective compliance of the
products with the initial system specifications. For applica-
tions in the civil aeronautical world, this is not acceptable
and led to the definition of development standard: the DO-
178B standard for software developments [2] and the DO-
254 standard [1] for hardware developments. The added
value of these standards is to define common rules and re-
quirements for all steps of the product life cycle, from the
plans defining all the processes to be implemented in the life
cycle, to the maintenance policy describing how the prod-
uct upgrades will be managed ([8], [3]). In order to comply
with a large scope of applications, the standards propose a
tailoring taking into account the criticality of the services
to be provided, from level D (low criticality) to level A
(high criticality). For each level, the standards define the

processes to be followed, the controls to be performed on
these processes, the required independence level to execute
them.

In order to make certification authorities accept a system
for a critical application, every requirement of the system
must be translated into component requirements and func-
tionalities. 100% of these functionalities must then be val-
idated. Moreover, every step of the design flow as well as
the tools must be validated and traceability must be main-
tained through the entire development process. This enables
to prove that the product works as expected at each step and
each level of the design flow. A way to certify a complex
system is to decompose it in sub-modules that are easier to
validate. The frontiers of the modules must then correspond
to implemented functions and embody a same level of crit-
icality. Modules interfaces must be validated as well.

Certification is difficult to obtain for FPGA designs since
they bring specific complexities. They are programmable,
they have a configuration memory and use configuration
mechanisms. They increase integration by providing possi-
bilities to put several functions into one device. The FPGA
flow has specific additional steps like bitstream generation
and loading. In normal operation mode, integrity of the con-
figuration memory needs to be ensured. Indeed it can be
altered by soft-errors, generated for instance by SEU (fre-
quent in avionics).

Static designs for FPGA’s are already used in many sys-
tems for avionics. Nowadays several solutions exist to fa-
cilitate certification for FPGA designs. For complex FPGA-
based application, one can use a modular design: mod-
ules are placed and routed and validated separately. Inter-
module communications are realised by using external I/O’s
in order to further guarantee independence between mod-
ules, and avoid failure contagion.

Certification of the usual static configuration hardware of
the FPGA can be obtained by the fact that this mechanism
is used by a great numbers of designs. Every issue is fol-
lowed and corrected by the component vendor and there are
a great number of tests. To ensure the configuration mem-
ory integrity, some systems are continuously monitored by
an external controller using CRC and readback capabilities
of the configuration port of the FPGA.

A later main problem encountered when using FPGA’s
in critical applications is the certification of IP blocks and
third-party code which are necessary to have a competitive
development process.

Upon these issues, in order to use DPR in critical appli-
cations, other problems arise:

• Certification of the DPR tools (which are proprietary)

• Partial bitstream validation

• Internal reconfiguration port and hardware (ICAP) val-
idation



• Transient state during reconfiguration process

• Several functional modes for a single module

• More complex designs (particularly if a complex
scheduling is used)

4. FPGA reconfiguration

There are four important concepts to know in order to un-
derstand how to dynamically reconfigure a FPGA: the con-
figuration interfaces, the bitstream, the bus macros and the
constraints.

4.1 Configuration interfaces

FPGA’s have a special memory layer dedicated to its
configuration which is called the configuration memory.
Configuring the FPGA actually means writing configura-
tion data in this memory. Access to configuration mem-
ory can only be done through the configuration interfaces
of the device. There are multiple interfaces for configura-
tion in the latest Virtex FPGA’s: several external interfaces
(Select Map, JTAG and serial), and one internal interface.
In this paper we concentrate exclusively on the Select Map
port and on the internal port. This internal port is called the
ICAP (Internal Configuration Access Port).

Figure 1 shows Select Map and ICAP ports. As we can
see, the ICAP could be described as a simplified version
of the Select Map port. Both of them are basically com-
posed of a data port, a clock signal, and status/control sig-
nals. For the ICAP, these signals are the WRITE signal
for writing or reading, the BUSY signal (which indicates
if the component is ready to send readback data) and the
CE (Chip Enable) signal. The Select Map port contains ex-
tra control pins enabling to specify the configuration mode
(CONFIG MODE), to specify the start of the configuration
(CONFIG START), to know when the configuration is fin-
ished (DONE), or to reset the whole FPGA configuration
(RESET FPGA). The data width of these ports is config-
urable: it can have a width of 8 or 32 bits.

When configuring the FPGA data are written to a recon-
figuration port. These ports allow configuration readback
which enables to read to the internal configuration mem-
ory. The ICAP is accessible from the user-logic plane of
the FPGA, thus it enables self-reconfiguration (i.e. configu-
ration of the device by its own logic). There are two ICAPs
in V4 and V5 FPGA’s (one in the upper half, one in the
lower half).

As illustrated in figure 2, an intermediate logic block, the
configuration engine, is present between the configuration
port and the memory. The configuration engine manages
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Figure 1: Select Map and ICAP ports
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Figure 2: FPGA configuration chain

the configuration of the FPGA and the access to its config-
uration memory. This engine uses a simple packet-oriented
communication model.

4.2 Bitstreams

The bitstream is the configuration file for the FPGA. It
consists in the data to be written to one of the configuration
interfaces of the device. A bitstream is simply a sequence of
packets, each packet containing a header and its data. The
headers specify where the data will be written and the num-
ber of datawords present in the packet. Data can be used
to program the configuration engine or can be configura-
tion data that will be written into the configuration memory
of the FPGA. Bitstreams structure is simple to understand,
and is explained in details in the Xilinx documentation ([13]
and [15]).

Configuration data are composed of frames. A frame is
the smallest configurable part of the FPGA. In V4 and V5
FPGA’s, a frame is composed of 41 ∗ 32 bits. Physically, it
represents a tile of the logic contained in the device that has
the height of a row of the FPGA, and the width of a fraction
of a FPGA column. Each frame in the device has a unique
address. This frame address is composed of several fields,
concatenated: minor address, column, row, location, and
type. Knowing the address of a frame, it is possible to find
its position in the FPGA, and vice-versa. Configuring any
region of a FPGA actually comes to write the configuration
data for all the frames that compose this region.

A typical packet writing a frame is presented in fig 3.
The header is composed of an address writing instruction,
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Figure 3: Bitstream packet writing one frame in configura-
tion memory

the address of the frame, then a frame writing instruction.
The data of the packet are the frame bits. A packet like this
one can be followed by packets telling the configuration en-
gine to copy this frame at other places of the configuration
memory. This technique, called ”Multiple Frame Writing”
is used to reduce the size of the bitstream. Packets can con-
tain several frames. In this case, the configuration engine
automatically increments the frame address and writes the
next frame to the next address1. Knowing this, it is possible
to identify the packets containing frames in the bitstream,
and associate each frame with its address (and thus, its po-
sition in the FPGA).

Typically, a bitstream that configures completely a
FPGA is composed of three parts: the first is composed of
several packets that initiate the device, the second is one
long packet containing all the frames, and finally the last
is composed of several packets that close the configuration
process and start the FPGA.

4.3 Bus macros

Synthesis softwares provide no possibility to impose
specific routing between two blocks. Routing is determined
by the routing algorithm, which is impossible to predict.
This is a problem for DPR since there are multiple con-
figurations for a region of the system, and thus routing of
communication resources between the reconfigurable re-
gion and the fixed part can change. This can lead to con-
tention and prevent the application from working.

Nevertheless, the usual static flow makes it possible to
create pre-routed blocks. One can force a signal to pass
through a specific entry of a look-up table (LUT), and in-
sert such a block in a design. These blocks are called ”bus
macros”. Using them, the routing will stay the same in ev-
ery configuration of the subset since the synthesis applica-
tion will use it in the design without trying to reroute it.
The simplest bus macro consists in two pairs of intercon-
nected LUTs (see figure 4). It enables a 1-bit bidirectional
communication between two modules. As a configurable

1When using automatic incrementation, two empty frames are added at
the end of each consecutive sequence of frames configuring a row.
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logic block (CLB) contains 8 LUTs, two complete CLB’s
are needed to transmit a byte in one direction between two
modules. Bus macros must be designed following the com-
munication needs between the modules, and their respective
positions in the device.

4.4 Constraints

Another problem with synthesis softwares and DPR is
the placement of the resources used in the design. To be able
to reconfigure a reconfigurable region, a way of locating it
in the device is needed. The solution here is to force this
region to be placed inside a specific and identifiable area of
the FPGA. This is made possible by using placement con-
straints. Constraining a logic function in a region requires
to correctly evaluate the size of the area beforehand.

5. A minimal flow

The flow we propose is illustrated on figure 5. It is com-
posed of six steps: static synthesis, bitstream parsing, frame



selection, concatenation and packetisation, bitstream finali-
sation and reconfiguration.

Static synthesis: the first step is the static synthesis of
each configuration of the system. The usual static flow is
used here. Each design must be divided in a fixed part and
a reconfigurable region using constraints, and bus macros
must be designed and placed between them if they commu-
nicate. One complete bitstream per reconfigurable region
configuration is created.

Bitstream parsing: during this step, the bitstreams are
read and every frame they contain is extracted. For each bit-
stream a set with all the frames is created. As the bitstream
organisation is known, it is possible to associate each ex-
tracted frame with its position in the FPGA.

Frame selection: as every frame composing the recon-
figurable region is identified, it is possible to find all of them
in the frames extracted in the previous step. Therefore, in
this step, every frame from this region is selected from the
complete set of frames for each bitstream.

Concatenation and packetisation: once all the frames
from the reconfigurable region are selected, they are placed
one after the other, in their address order. For each sequence
of frames having consecutive addresses, a frame writing
header starting at the first address of the sequence is added.

Bitstream finalisation: in this step several packets are
added to the ordered frames to compose a valid bitstream.
These are the initialisation header and the bitstream tail.
They contain instructions that start and close the configu-
ration process. One partial bitstream per reconfigurable re-
gion configuration is created during this step.

Reconfiguration: each partial bitstream can reconfigure
a part of the FPGA. This is done by writing every dataword
composing the bitstream to one of the reconfiguration
interfaces. For a self-reconfiguration, it will be the ICAP.

As we could see, this flow is based on tools from the
usual static flow. Our flow adds to it a script that realises
bitstream parsing, frame manipulation and bitstream com-
position. Every step has a low or moderate complexity.

6. Results

6.1 Experimental results

A system has been designed to test the flow. It consists
in a D8PSK modulator, this modulation is used for control
tower/airplane communications during landing of civil air-
planes. It can be reconfigured as a QAM-16 modulator. The
design has been made using Xilinx ISE 7.1. It is composed
of a Microblaze CPU which controls the reconfiguration
of the system. The reconfigurable module is constrained
in a quarter of the device (a Virtex 4 LX60 FPGA). Upon

request, the Microblaze writes a partial bitstream into the
ICAP, causing the reconfiguration of the module.

The system successfully reconfigures the module from
one modulation to another. About 2800 frames are writ-
ten during this operation. The bitstream size is about
452kB. Each reconfiguration take about 137ms to complete,
which is slow considering a theoretical ICAP bandwith of
100MHz. This is due to the Microblaze CPU.

6.2 Certification

This flow eases the certification of a solution using DPR
since it is validable. Indeed it is possible to directly check
and validate the source code of the solution, with for exam-
ple DO-178B. We implemented it as a script of only a few
hundred lines long (500 lines of python code), which does
simple operations: file reading and writing, address compu-
tations, concatenation, etc.

With this validable flow, and under the following hy-
potheses certification for partial reconfiguration can be con-
sidered:

• Consider applications with well-separated functional-
ities in the fixed and reconfigurable module. It is for
example the case in our radio application where an
entire waveform resides in the reconfigurable module.
Thus the partitioning methodology explained in sec-
tion 3 can be used.

• The communications between modules are performed
outside the component using I/O. This avoids Bus
Macros validation.

• Reconfiguration is done using the usual external con-
figuration port. This avoids ICAP validation.

• The component is stopped during reconfiguration.
This means that reconfiguration is actually static (not
dynamic), but is still a partial reconfiguration. This
avoids transient dysfunctioning problems in the fixed
part during the reconfiguration process.

• Use an external controller to compute a global CRC of
the entire configuration memory. It will prove that, af-
ter the reconfiguration process, (i) the integrity of the
configuration memory of the fixed part is preserved
and (ii) the reconfigurable region holds the expected
function. This technique is already used for static de-
signs.

For all this, either the bitstream documentation or the
modular design must be reliable and validated so that one
can check correct reconfiguration only by using the global
CRC.



7. Limitations

Latest and access-limited experimental DPR flow from
Xilinx (”Early Access” DPR flow) allows reservation of re-
sources inside modules. This allows to use long communi-
cation wires in the FPGA that passes through reconfigurable
regions. Our flow is actually unable to do so. Moreover, the
two columns in the centre of the device are not supported
by our flow at present. These columns contain among oth-
ers the FPGA clock tree configuration, and its mechanism
is not documented. The script implementing our minimal
flow is component-dependant: the positions of the differ-
ent columns composing the FPGA are hardcoded. It is also
impossible to configure the device at finer granularity than
frame level.

8. Conclusions

In this paper, a minimal flow for DPR on Xilinx FPGA
is presented. Partial bitstreams are generated from complete
bitstreams issued from the standard static flow. Only oper-
ations such as binary file parsing, packet ordering, and file
writing are needed. As such, it has been possible to build a
telecommunication avionics demonstrator using DPR with
a script of only a few hundred lines of code with no support
of specific Xilinx tools for DPR.

The certification aspects of hardware development are
also presented and show that in order to be used in spe-
cific applications such as avionics, systems and tools have
to be certified to guarantee safety. In order to certify designs
using FPGA’s some safe design principles are presented.

DPR causes additional issues regarding certification. We
show that many issues can actually be avoided by simplify-
ing DPR mechanisms and applying conservative principles
similar to those used in static FPGA designs targeting certi-
fication. However, the tools must still be validated.

This paper shows that using the flow presented here,
tools certification is made easier, which is not the case when
using current solutions for DPR provided by the vendors.
This enables to make a step towards the use of dynami-
cally reconfigurable systems in applications that require ad-
vanced certification.
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