
Event Driven Data Processing Architecture 
 
 

Ingemar Söderquist † 
Saab AB, Saab Avitronics 

SE-581 88 Linköping, Sweden  
Email: ingemar.soderquist@saabgroup.com 

 
 

Abstract 
 
This paper describes a data processing architecture 

where events and time are in focus. This differs from 
traditional von Neumann and data flow architectures. 
New instruction codes are defined and special circuitry is 
introduced to express and execute event and time 
operations. This results in reconfigurable software 
controlled functionality together with real-time 
performance comparable to dedicated VLSI solutions. 
The architecture is demonstrated in a real-time radar 
jammer application. The architecture is promising also 
for applications as routers and network processors. A 
prototype system on silicon (SoC), complete with signal 
memory, instruction memory, four processing units in 
parallel and interfaces for digitized signals and host 
computer, is fabricated in 0.35 µm standard CMOS. Time 
events of signal data on two simultaneous 8-bit links can 
be programmed with a time resolution of one clock 
period. Measurements verified correct function and 
performance above 400 MHz clock frequency at 3.3 Volt 
supply. Power consumption is 3.6-Watt @320 MHz. 

 
 

1. Introduction 
 
The basic radar jammer function is to deny the radar to 

detect the real target and sometimes also to create non-
existing targets. This is accomplished by recording 
incoming radar pulse at the real target, modify the pulse 
in time and frequency, and then retransmit the pulse back 
to the radar. The success to create non-existing targets 
depends strongly on the detection algorithm implemented 
in the radar, and on the pulse-to-pulse coherence attained 
by the jammer. The jammer digitizes incoming radar 
pulses, stores the pulse in memory for a short period, and 
retransmits time-delayed replicas. Each pulse in the chain 
of pulses must have exactly the same time-delay to be 
interpreted as coherent by the radar [5].  
 
† The author is also with Electronic Devices, Linköping University,  
    SE-581 83 Linköping, Sweden. Email: ingemar.soderquist@isy.liu.se  

  

Dedicated Reconfigurable

Real
-tim

e
Flexibility

A
rc

hi
te

ct
ur

e

Human machine interface

Vehicle control

Batch data processing

Event driven
Reconfigurable
RF processing

Control flow

Data flow

Event driven

RF processing

Signal processing

[1]

[2]

 

Fig 1. The three orthogonal axis encountered in 
high-speed system design. 

 
The demand for systems with very high real-time 

performance and at the same time full programmability 
poses a significant challenge for software, architecture 
and circuit design of new computation platforms. At 
highest performance where missed deadlines cannot be 
tolerated, performance and functional verification before 
fabrication and life trial becomes a prohibitive design 
challenge. The generality of common program languages 
and associated architectures results in less support for 
precise time control of programmable functionality and 
hence results in performance far less than achievable with 
ordinary dedicated VLSI design. Dedicated full custom 
VLSI design will always have optimum outstanding 
performance. Its drawback is hard coded functionality and 
therefore not flexible enough for altering system 
specifications.  

This becomes even more obvious when designing 
platforms for reconfigurable real-time RF applications 
where time constraints in the range of a single clock 

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



period are not unusual [5]. The rapid scaling of CMOS 
and the associated speed gain in digital computation have 
made digital solutions favorable compared to analogue. 
However regarding software performance we have not 
seen quite the same progress. Usually the desired system 
functionality is well modeled whereas desired time 
performance is not modeled at all. Exact the opposite 
holds for hardware part of the platform where low-level 
time performance is well predicted, but high-level system 
functionality is not visible at all. The consequence is well 
known by designers, the design process reaches a point 
where all high-level system functionality is implemented 
but system time performance is unknown. This lack of 
connection between high-level system functionality and 
low-level time performance has its origin in the early 
separation between the two, often introduced at system 
specification, and then kept all through the design process 
until final integration and system verification. 

The graph in Fig. 1 is an attempt to classify digital 
systems based on architecture, flexibility and real-time 
performance. Different architectures here control flow, 
data flow and the proposed event driven, are placed on the 
Z-axis. Increased degree of flexibility in terms of 
programmability is placed on the X-axis, and increased 
real-time performance on the Y-axis. The main part of 
today’s systems is found in the reconfigurable control 
flow area, with performance spanning different 
applications up close to the boundary given by signal 
processing. Highest performance is found for dedicated 
systems [1], using data flow architecture, point marked 
[1]. Event driven architecture is used in reconfigurable 
systems with lower performance [2], point marked [2]. 
The proposed architecture is aiming at event driven 
reconfigurable RF processing applications, upper right 
hand point in Fig. 1. 

 
 

Environment

ALU

Controller

REG
&

I/O

Conventional
memory

(operation code)

req / ack

ECU

data

event

Vector memory

(data)

 

Fig 2. Von Neumann architecture (the dotted 
line) extended to event processing architecture 
suitable to interact with environment in real time 
RF applications. 

2. Processing architecture 
 
John von Neumann computing architecture is 

dominating since EDVAC historical development in the 
spring of 1945. The architecture is widespread and today 
used in standard microprocessors. After long extensive 
progress of hardware integration technology, cost 
effective implementations of new innovative computing 
architectures might constitute alternatives or complements 
to the von Neumann architecture. Progress is seen for e.g. 
massively parallel processor architectures, data flow 
architectures, associative architectures, neural net 
architectures, biological inspired architectures and 
dedicated as well as reconfigurable architectures [3]. 

This new architecture called event driven data 
processing architecture attempts to merge functionality 
and time performance closer during the entire design 
process [8]. Event-driven behavior is modeled as a chain 
of events with associated actions, where the word action 
is used to emphasis the symbiosis between the event and 
the achievement expected as a direct consequence of the 
event. Hopefully this will both reduce the total design 
effort and increase final design performance. 

The approach is to strengthen the software means of 
expression to handle the event and the time, by adding a 
new type of machine code operation. The new operation 
is executed in an event-controlled unit (ECU) in a similar 
way as arithmetic is handled in an ALU. Fig.2 expands 
the traditional Von Neumann architecture with two major 
parts, Vector memory [4] and Event Control Unit (ECU). 

At machine instruction level event and time constraints 
is captured in a pulse package (PPG) operation code, Fig. 
3, with four operands: 

1) Event that initiate execution. 

2) Delay defines time interval to elapse between 
  event and access of vector memory to capture or 
  deliver data. 

3) Vector defines location in vector memory.  

4) Action defines future processing to be carried out 
  on data on its way to/from vector memory.  

 

Event

Delay Vector & Action

 

Fig 3. Function of one pulse package instruction, 
here action is passing parameters to phase 
modulation. 



The ECU recognizes a new event at event input pin, or 
as the completion of the previous PPG instruction. Delay 
is expressed in number of clock periods. Vector consists 
of the number of bytes and the pointer to start position, 
where data is stored in vector memory. Action is 
parameters associated to data processing outside the 
processor (e.g. phase modulation).  

At_Event_do (event_1, delay_1, vector_1, action_1) 

Begin 

Chain_Event_do (previous_2, …) 

At_Event_do (event_3, …) 

Variable assignments and arithmetic operations 

while (logical-expression) do 

Chain_Event_do ( previouse_4, … ) 

Variable assignments and arithmetic operations 

end_while 

end 
Loop event 
 
Simplified High Language Level (HLL) code example 

above shows how event and arithmetical instructions can 
be mixed freely. Two HLL instructions, At_Event_do 
(external event) and Chain_Event_do (internal event) are 
introduced. The code execution is initially halted. When 
event_1 occurs the first command At_Event_do (event_1) 
executes instantly followed by execution of the command 
Chain_Event_do (previous_2), then execution halts. Later 
when event_3 occur the command At_Event_do 
(event_3) executes followed by variable assignments and 
arithmetic operations. Instantly followed by execution of 
the command Chain_Event_do (previous_4) and 
following variable assignments and arithmetic operations. 
The commands in the while-do statement are repeated in 
sequence. Finally the logical-expression fails and 
execution is halted, whereupon the whole sequence is 
repeated from the beginning. This is different compared 
to traditional software interrupt that suspend current 
executing code and jumps to another code portion to 
complete the specified request. 

 
3. SoC implementation 

 
Fig. 4 shows the event processor architecture part of 

the prototype SoC. The processor is placed in between 
two busses. Bus #1 for connection to the host processor 
and Bus #2 for passing parameters to the ECU’s, to the 
underlying datapaths and to the external components.  
The modulator included in the output datapath is an 
example of an external component. 

opcode

ALU

Controller

REG

Instruction memory

Vector
memory

Data/Control Bus #2

req / ack

Modulator

Data/Control  Bus #1

page A
job 0

job 1

page B
job 0

job 1

External
Control

Data

ECU 1

ECU 0
Event

row pointers

 

Fig 4. Block diagram of the event processor. 

 
The controller with attached ALU and registers, 

manages execution of the operation codes needed for the 
four ECU’s, one for the receiver function and one for the 
transmitter function and two additional ECU’s for 
extended functions not shown in Fig.4. Operation codes 
for the two functions are stored in separate areas in a 
SRAM instruction memory, job 0 and job 1. Instruction 
memory has two pages, page A and page B, one page is 
being executed while another one is updated from Bus #1. 

The vector memory is a true four-port SRAM, two 
ports are used for connection to the datapaths with 
simultaneous read and write, and the other two ports is 
used for signal analysis. The ECU includes a package 
controller (PAC), a combined controller and time counter, 
signals to interface to Vector memory, signals to control 
external devices (the modulator), and buffers to hold 
operands for next PPG instruction to facilitate momentary 
switch. PAC will request new operands from the 
overlaying controller using handshake signals. Execution 
of machine instructions in controller is halted or resumed 
depending on the handshake signals. 

High programmable time delay resolution is obtained 
by splitting the implementation into two parts, shown in 
Fig. 5. One timer function in each ECU’s package 
controller uses the most significant part of the local PPG 
instruction delay value. A second timer function in the 
output buffer connected to the vector memory is using the 
five least significant bits, passed from ECU to the high-
speed controller (HSC). The HSC operates at the clock 
frequency and the timer function in ECU operates at the 
lower frequency, here clk/32. When the ECU executes an 
event operation, then after a time delay, corresponding to 
the most significant parts in the delay register elapsed, 
ECU initiates a vector read operation by activating the 
signal ECU_rd and pass the row pointer to Vector  



Data/Control Bus #2

Data

Event

row pointer

Package
Controller

Delay

ECU x

(15:5)
(4:0)

High Speed
Controller

ECU_rd

r/w control

lo
ad

_o
ut

_b
uf

fe
r

clk

Vector
memory

Buffers
(datapath)

Signal
analysis

 

Fig 5. Programmable high-resolution time delay. 

 
memory and the least significant part of delay register to 
HSC. HSC immediately creates r/w control signals and 
carry out the RAM access. Output data however is stored 
in a 32-byte buffer until the signal load_out_buffer 
becomes active, which is delayed a time corresponding to 
the five least significant bits. Write is handled in a similar 
way. 

Fig. 6 shows a photograph of the prototype SoC. 
Central in the chip is input and output buffers and the four 
1024x64 bit SRAM blocks for Vector memory placed. At 
right hand side; Instruction memory SRAM holding 
512x32 bit instruction code, Modulator, Event Processor 
(EP) except ECU’s, Measurement controller (MEC) used 
for RF signal analysis, Clock distribution block (CDB), 
Low speed controller (LSC) holding all four ECU’s and 
HSC.  

The event driven processor chip is designed for 320 
MHz clock frequency using standard 3.3 volt 0.35 µm 
double poly CMOS process. Interface with two parallel 8-
bit wide differential high-speed links for radar signals, 
based on low voltage pseudo ECL with internal 100-ohm 
termination, two control busses, and other signals gives 
all together 300 pads. The chip size is 88.3 mm2, and it 
contains 2.5 million transistors. Finally the chip is 
mounted in a 256-pin BGA package. 

 
4. SoC development and test environment 

 
The need of specific development environment for the 

reconfigurable systems design was identified early. At 
application level a VHDL based system model is 
developed to capture and simulate the SoC functionality 
and performance in its natural environment. The model 
includes complete jammer functionality including A/D, 
D/A, host computer, and the environment. Each 

Input/Output  buffers

Vector memory
(data)

LSC

MEC

CDB

HSC

Vector memory
(data)

EP
Modulator

Instruction
memory
(code)

 

Fig 6. Photograph of prototype SoC. 

 
simulation starts with a complete initiating sequence 
including the reset at power up and the download of 
compiled application software. A special compiler is 
developed to support HLL software development and 
debugging. The HLL is based on a subset of the C++ 
language. 

Each block in the SoC represents a unique subsystem 
with well-defined functionality and its own optimal 
implementation method. The functional block partitioning 
and refinement methodology from [7] is used. Each block 
is translated from behavioral to RTL. Integrated and 
routed using the system model toplevel information for 
automated generation of the final netlist. Full custom 
dynamic TSPC logic [6] is used for high-speed I/O, input 
and output buffers, CDB and HSC. The modificator, EP, 
MEC and LSC including four ECU’s is synthesized using 
a standard cell library. The memories were purchased as 
two intellectual property blocks. 

Special considerations were taken with respect to 
verification. All the critical time constraint is verified by 
Spice simulation. Functional verification is performed at 
two levels. First each VHDL block is replaced by a netlist 
at transistor or cell level, and correct function is verified 
in the system model. Then the entire chip is replaced by a 
netlist and correct function is verified once again. 42 
fabricated circuits were evaluated using same application 
software and functional tests as during verification prior 
to fabrication. The jammer was implemented on one 
single VME board and used as circuit tester, see Fig. 7. 



 

Fig 7. Photograph of jammer VME board. 

 
A Power PC on the VME board replaces the host 
computer in the system model. Typical observed 
waveforms at VME board level are shown in Fig. 8. The 
programmable delay resolution down to one clock period 
is verified. The clock frequency for each circuit is 
increased until incorrect function is detected. 32 circuits 
passed the test, all with correct function above 400 MHz 
clock frequency at 3.3 Volt supply. Measured power 
consumption is 3.6 Watt at 320 MHz. 

 
5. Conclusion 

 
The success with correct function at first fabrication 

run is encouraging, not only for the new event driven 
architecture but also for the used integration and 
verification approach. 

The reconfigurable event driven architectural handles 
the time constraints in a simple and elegant way and its 
performance can be predicted deterministically without 
any uncertainty caused by cache misses or interfering 
operative system. The prototype SoC demonstrates how 
programmable hard real-time actions with one clock cycle 
resolution can be reached. The event driven architecture 
can be scaled up to large-scale systems containing 
multiple processors without any time performance 
degradation by using global synchronization [7]. 

 
Acknowledgment 

 
The author gratefully thanks Prof. Christer Svensson 

for his guidance. The design and test efforts of Anders 
Ödmark and Rolf Loh are greatly appreciated. 

(a)

(b)

(c)

(d)

 
Fig 8. Functional test pattern from top the event 
signal (a), vector memory read signal ECU_rd 
(b), received RF signal (c) and transmitted RF 
signal (d).  

References 
  

[1] W. Rhett Davis et al., “A design environment for high-
throughput low-power dedicated signal processing 
systems,” IEEE Journal of Solid-State Circuits, vol. 37, no. 
3, pp. 420-431, March 2002. 

[2] Chi-Hong Hwang and Allen C.-H. Wu, “A predictive 
system shutdown method for energy saving of event-driven 
computation,” in Proc. of 1997 IEEE/ACM International 
Conference on Computer-Aided Design, San Jose, 1997, 
pp. 28–32. 

[3] K.-E. Grosspietsch, “Unorthodox Computing 
Architectures,” in Proc. of 10th Euromicro Workshop on 
Parallel, Distributed and Network-based Processing, 
Spain, pp 209, Jan. 2002 

[4] Ingemar Söderquist, "Expandable High Throughput Vector 
Based Access Memory Architecture," in Proc. of the 28th 
European Solid-State Circuit Conference, Firenze, 2002, 
pp. 599-602. 

[5] S. J. Roome, "Digital radio frequency memory", Electronic 
& Communication Engineering Journal, vol. 2, no. 4, pp. 
147-53, Aug. 1990. 

[6] Y. Ji-Ren, I. Karlsson, and C. Svensson, ”A true single-
phase-clock dynamic CMOS circuit technique,” IEEE J. 
Solid-State Circuits, vol. 22, pp. 899-901, Oct. 1987. 

[7] Ingemar Söderquist, “Globally updated mesochronous 
design style”, IEEE J. Solid-State Circuits, vol. 38, pp. 
1242-1249, July 2003. 

[8] Ingemar Söderquist and Rolf Loh, “Digital signal 
processor”, patent no. US2004128491, July 2004. 

SoC 


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




