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Abstract 
 

In the scope of the US Department of Defense (DoD) 
Joint Tactical Radio System (JTRS) program, the 
portability and reconfigurability needs of Software 
Defined Radios (SDR) required by the Software 
Communications Architecture (SCA) [1] can be resolved 
thanks to Model Driven Architecture (MDA) and 
component/container paradigm to address a hetero-
geneous hardware and software architecture. 

In this paper, we propose SystemC Transaction Level 
Modelling (TLM) to simulate Platform Independent 
Model (PIM) and Platform Specific Model (PSM) of 
SDRs, while keeping the component/container approach 
for applications portability. We show that SystemC 2.1 
enables natively to simulate the waveform PIM specified 
in UML to obtain an executable specification, which can 
be reused to validate the SystemC TLM model of PSM. 
This latter allows radio platform virtualisation and true 
reuse of IPs models to validate earlier SDR waveforms 
and platforms. 
 
 
1. Introduction to Software Defined Radio 
 
1.1. General overview 

 
A Software Defined Radio is a reconfigurable radio 

whose functionalities are controlled in software, which is 
able to run a set of waveform applications on the same 
radio platform, depending on the operational need. 
Thanks to its software definition, a SDR fosters reuse and 
flexibility, because evolutions can be easily performed via 
software updates instead of hardware replacement. The 
two main SDR objectives are the portability of waveform 
applications across different radio platforms and the 
reconfigurability of the hardware platform to accept 
several waveforms. A waveform application is a OSI 
(Open Systems Interconnection) model like layered 
software application implementing the waveform logical 
components that process the received data from the 

antenna to the end user and vice versa. A radio platform 
is the set of software and hardware layers, which provides 
the services needed by the waveform application layer 
through an abstraction layer API. 
 
1.2. Military overview 
 

The Joint Tactical Radio System (JTRS) is a US 
Department of Defense program aimed to create a global 
communication network of scalable and interoperable 
SDRs for US and allied terrestrial, maritime and airborne 
joint forces. The JTRS is built upon the Software 
Communications Architecture (SCA). 
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Figure 1. Heterogeneous and distributed SDR 
architecture. 

SCA is a software architecture framework allowing 
some separation between waveform application and radio 
platform. The SCA specifies an Operating Environment 
(OE) in which waveform applications are executed. The 
OE enables to manage waveform applications and to 
provide radio platform services. It is composed of a Core 
Framework (CF), a minimum CORBA compliant 
middleware and a POSIX compliant Operating System 
(OS). The Core Framework is a set of interfaces and 
related behaviours used mainly to load, deploy and run 
waveform applications. A middleware is a software layer 
between the application layer and the network layer 
providing services and enabling transparent commu-
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nications between distributed applications. As depicted in 
the Figure 1, the SCA targets heterogeneous hardware and 
software architectures, which are complex to design and 
validate. 

The official SCA 2.x versions specify a high level 
software architecture for GPPs (General Purpose 
Processor), which is not adequate for high constrained 
real-time resources like DSPs and FPGAs, while the 
unofficial SCA 3.0 tries to resolve these issues. A 
methodology has been proposed [2] to address the 
limitations of SCA 2.x and has been supported by the 
“Software Radio Architecture” PEA (Plan d’Etude 
Amont) under contract of the French DGA (Délégation 
Générale de l’Armement). In this project, waveforms 
have been mainly implemented in software and the design 
of radio platform consisted in assembling boards 
composed of GPP and DSP cores. 

However, waveforms and platforms design becomes 
more and more complex (high data rate antenna 
processing, programmable RF…) and involves new 
methodological needs, that we try to address now. Indeed, 
executable specifications are needed to validate waveform 
consistency and compliance against specifications. 
Hardware/software partitioning and architecture 
exploration have to be studied to achieve the required 
performances, which have to be estimated and compared 
to Quality of Service (QoS) and real-time constraints. 
Another need is to foster reuse of waveform components 
to reduce time-to-market and risks. 
 
1.3. Proposition 
 

This paper presents an improvement of the existing 
SCA compliant SDR design flow and methodology, 
which is based on Model Driven Architecture and 
component/container paradigm, thanks to SystemC TLM. 
SystemC TLM allows a tradeoff between modelling 
accuracy and simulation speed in keeping only the 
relevant details at a given abstraction level. It allows the 
design and validation of waveform applications and radio 
platforms, earlier in the development cycle, thanks to 
hardware virtualisation and IP models reuse. The 
proposed design flow consists in simulating waveform 
applications using the abstraction layer API on a quick 
and sufficiently accurate SystemC TLM model of the 
hardware platform, whose IP models can be easily reused. 
After early waveform and platform validation, hardware 
and software developments can thus begin in parallel. 

This paper is organised as follows: in Section 2 we 
present the existing design flow and methodology for 
SCA compliant SDR. Then we show in Section 3 the 
interest of SystemC TLM in this methodology. Section 4 
presents how SystemC TLM models of PIM and PSM can 
be performed, while keeping the component/ container 
paradigm. Finally, our future work is presented as a 
conclusion to this paper.  

 

2. Existing design flow and methodology for 
SDR  
 

The existing methodology is based on two concepts: 
Model Driven Architecture (MDA) and component/ 
container paradigm. 

MDA is a methodology standardised by the OMG 
which advocates the separation between system 
functionalities specification defined in a Platform 
Independent Model (PIM) from their implementation 
specification on a target platform captured by a Platform 
Specific Model (PSM). The PIM can be expressed in 
UML with domain specific profiles, while the associated 
PSMs are described in a target programming language 
(C/C++/Java/VHDL…). MDA enables to raise the level 
of abstraction, to increase reusability and foster 
portability. The PIM/PSM approach is useful in a SCA 
context because of the amalgam between logical 
(interfaces and behaviours) and implementation choices 
(type of middleware, POSIX profile…).  

The component/container paradigm enables a clear 
separation of concerns between behavioural and technical 
properties. The component is a reusable and composable 
entity implementing the business logic, which provides 
and requires services through defined interfaces. The 
container makes the adaptation between component and 
execution infrastructure interfaces. Whatever waveform 
or platform changes, container guaranties the portability 
and reconfigurability of SDR. 
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Figure 2. Methodology inspired from MDA and 
component/container paradigm. 

The methodology illustrated in the Figure 2 consists in 
defining in the PIM the logical interfaces A, B and C 
between abstract processing resources (waveform 
management components, waveform resources, radio 
services). Then the PIM-to-PSM transition is performed. 
A component implements the useful treatments specified 
at logical level and communicate with its environment 
thanks to a container through the interfaces A, B and C. 
The container implements the transition between logical 
interfaces semantics and available technical services. 
These latter provide the software and hardware services 



used by the implementation of the logical semantics. 
This approach is compliant with SCA for GPPs and 

has been successfully applied on DSPs. It seems to be 
promising for FPGAs. 

The design flow based on this methodology starts at 
PIM level with waveform specifications. The logical 
interfaces and real-time constraints between the logical 
waveform components themselves and with the radio sub-
system are modelled in UML thanks to use case, class, 
statechart and scenario graphical diagrams. The 
breakdown into waveform logical components and its 
granularity are performed according to system 
requirements (characteristics of usable GPPs, DSPs, 
FPGAs) and business experience. Then subsequent 
hardware and software design flow can begin. The 
waveform application can be lately validated on an SCA 
compliant workstation. The final validation can only be 
done once the hardware platform is available. 

Thanks to SystemC TLM, we propose now a PIM/ 
PSM design flow to design and validate earlier waveform 
applications on virtual SDR platforms.  
 
3. Proposed simulation methodology and 
design flow for SDR 
 

MDA and component/container paradigm approach 
can be simulated thanks to SystemC TLM as illustrated in 
the Figure 3. The logical resource business services are 
implemented in a C/C++ model. This independent and 
reusable model is encapsulated in a SystemC TLM 
container, which abstracts it from its virtual execution 
environment. For a software component, the container 
could use an API, while for a hardware component, it 
could contain a register bank (see Section 4). Developers 
can validate that the SystemC TLM virtual module 
provides the required behaviour and perform a 
partitioning based on performances estimation. The model 
can be either refined until RTL for a hardware component 
or extracted to be optimized and cross-compiled for a 
software component. If the partitioning was already 
performed, the C/C++ model can be used without a 
SystemC TLM encapsulation directly on an Instruction 
Set Simulator (ISS) if available, otherwise the SystemC 
kernel could be used. This SystemC TLM based 
methodology allows to simulate the heterogeneous 
architecture of SDR platforms. 

Thus, we introduce SystemC TLM for the simulation 
and validation of PIM and PSM. In the SDR context, an 
important need is to be able to simulate the real-time 
constraints of a radio system, from its specifications to its 
final validation. SystemC appears, as far we know, as the 
only language addressing this kind of needs. 

 

3.1 Proposed simulation methodology 
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Figure 3. SystemC TLM model of PIMs/PSMs.  

At PIM side, SystemC at functional level can be used 
to model the logical interfaces and simulate the real-time 
constraints between the waveform logical components 
themselves and with the radio sub-system. The resulting 
SystemC TLM modules could include a behavioural 
model or acts as dummy black box. This model can be 
used as a useful and undeniedable executable 
specification between hardware and software teams that 
anticipates the PSM and accelerates the development 
cycle.  

The concepts of required and provided interfaces 
specified in the PIM can be natively found in SystemC 
2.1 and used to simulate a PIM. Indeed, a sc_port 
specifies that an sc_interface is required by a sc_module. 
A sc_export indicates that an sc_interface is provided by 
another one, which implements it. The sc_port can be 
bound directly to a sc_export. The first sc_module calls 
the second one sc_interface method through the sc_port. 
Event and time driven systems can be modelled with 
sc_event and wait statements, while UML synchronous 
and asynchronous calls can be respectively modelled with 
SystemC TLM blocking and non-blocking calls [3]. 

At PSM side, SystemC at cycle level enables 
performance estimation (profiling) of waveform software 
components executed on a virtual radio platform 
composed of ISS for GPP and DSP and Bus Functional 
Models (BFM) if available. Thus, real-time constraints 
simulated in the PIM model can be reused to validate the 
PSM model. SystemC TLM allows to simulate and to 
validate only critical parts instead of the entire radio 
system model. A concrete example will be seen in the last 
section to illustrate the modelling of PIM and PSM in 
SystemC TLM. 
 
3.2. Proposed design flow 
 

Based on these considerations, we propose a SystemC 
TLM based design flow, whose approach is depicted in 
the Figure 4, in order to address the SDR needs. It starts 
with the capture of waveform and platform requirements 



in UML PIMs. Both PIMs are associated thanks to an 
abstract interface (see Section 4.1), which defines the 
Abstraction Layer (AL) API. The PIMs are then 
translated in SystemC TLM containers, where a 
functional model is encapsulated to validate algorithms 
choice, by simulating the behaviour of the system and 
measuring its performances (e.g. in terms of Bit Error 
Rate for a modem application). This executable 
specification can be reused for example to validate 
waveform compliance to specifications, particularly real-
time constraints. 
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Figure 4. Proposed approach. 

During hardware/software partitioning, several 
architectures and partitioning choices can be evaluated for 
the system regarding for example the interconnect 
strategy and the memory dimensioning. Associated tools 
perform for instance profiling or bottlenecks check. This 
partitioning enables to ease the definition of waveform 
breakdown/granularity, and thus reusable/reconfigurable 
components. 

In architecture exploration, a key point is the feasibility 
study. If the requirements cannot be met, a feedback is 
given to the system engineers in order to review their 
partitioning or eventually their algorithms. After several 
iterations, this step results in a system architecture 
definition, which provides a breakdown of the application 
with associated hardware targets and the interfaces of 
each component.  

Then hardware modelling and software developments 
can start in parallel. The system can be refined 
progressively to platform specific models in SystemC 
TLM, for both hardware and software modules, keeping 
the same testbench to functionally verify the successive 
translations. This refinement can be realized through 
timing annotations or use of another bus/topology and 
results in a better design. Moreover, these models can be 
reused earlier in steps of future developments. In 
software, application code is developed, eventually for 
managing the partial reconfigurability (bitstream 

download, application deployment, configuration...). 
However, in the scope of this paper, we only focus on 
static reconfiguration, as required by SCA. 

Co-simulations can be performed to verify the 
behaviour of the application in a specific mode. Then the 
hardware workflow can start (synthesis, place and route) 
and finally the platform integration on the real target is 
performed. A validation shall then be led to check that all 
system requirements are met.  
 
4. Experimental results 

 
To validate this new system engineering flow, we 

present two test cases corresponding to the simulation of a 
PIM and a PSM in SystemC TLM. The following section 
shows how SystemC TLM can be easily used to model a 
UML PIM in SystemC TLM. 

 
4.1. PIM model in SystemC TLM 
 

 

Figure 5. Waveform PIM class diagram. 

 

Figure 6. Waveform PIM scenario diagram. 

An example of a partial waveform PIM in UML is 
depicted in Figure 5 and Figure 6. In the PIM class 
diagram given by the Figure 5, a circle represents an 
abstract interface, which is required (use dashed arrow) 
by a component and provided (realize association) by 
another one. The real-time constraints are captured in a 
UML sequence diagram given by the Figure 6. According 
to this PIM, the Transceiver Resource shall asynchro-
nously call (truncated arrow) the Modem Resource 
method with a maximum latency of 250µs in order to 
push the received baseband samples. This call shall return 
with a Maximum Return Time (MRT) of 100µs. 
Moreover, the Minimum Inter-Arrival Time (MIAT) is 
150µs between two Transceiver calls, and the Minimum 



Inter-Return Time (MIRT) is 100µs between two Modem 
returns. 

In the PIM, the Transceiver component requires the 
Receive interface implemented by the Modem 
component. In the simplified SystemC TLM model of the 
PIM depicted in the Figure 7 this interface (line 0) is 
required by the Transceiver module port (1) and is 
implemented inside the Modem module (5), which is 
called by the Transceiver port through a channel (4). This 
channel models the media real-time constraints 
(throughput, latency (4)). Modules real-time constraints 
MIAT and MIRT can be contained in the SystemC TLM 
container itself (Explicit Timing Annotation) or in a 
transactor between the module and the channel, which can 
be better to separate timing from behaviour (Implicit 
Timing Annotation) [4]. A transactor is a hierarchical 
channel, which acts as a TLM protocol and interface 
converter (see Section 4.2). Traffic generators can be used 
to transfer samples according to various probability laws 
(uniform, Poisson…) to observe the behaviour of the 
communication chain following operational conditions 
(link overload, Signal-to-Noise Ratio decrease…). The 
PIM to SystemC TLM transition can be automated with 
tools like modtransf [5]. After validation of real-time 
constraints, the SystemC TLM models of container and 
component PIM can be refined to their PSM models. 
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Figure 7. Simplified SystemC TLM model of PIM. 

(0) struct Receive : virtual sc_interface{      
      virtual void pushBBSamplesRx() = 0 ; 
    }; 
(1) sc_port<Receive> pM;  
(2) sc_export<Receive> pT; 
(3) pM->pushBBSamplesRx(); 
(4) struct Channel : Receive, sc_module { 
      void transfer() {   
        wait(latency); 
        pM->pushBBSamplesRx(); 
      } 
    };  
(5) struct Modem : Receive, sc_module { 
      void pushBBSamplesRx() { 
        // C/C++ model functions calls 
      } 
    }; 
 
4.2. PSM model in SystemC TLM 
 

This section presents the IP and interconnect 
refinement of the SystemC TLM model of a PSM. This 
PSM model is inspired from a digital AM receiver 
MPSoC called DiMITRI [6]. 

We present the modelling of a previously validated 
RTL IP and its simulation on a virtual platform. The 
business code in C of a Viterbi decoder has been 
encapsulated in a SystemC TLM container with a 
register/bit accurate hardware interface. The resulting 
SystemC TLM IP has been reused without any 
modification during the refinement and exploration of the 
virtual platform depicted in the Figure 8. This first virtual 
platform is composed of an ARM968-ES, an OCP TL2 
[7] bus, two OCP memories (ROM and RAM) and an 
OCP TL2-to-PV transactor connected to the Viterbi 
model.  
 

 

Figure 8. First platform modelling. 

4.2.1. IP refinement. Starting from a functional model in 
C of the Viterbi decoder IP, we developed a SystemC 
TLM IP at Programmer View (PV) level. At this 
abstraction level, the model is untimed, memory map / 
register accurate and can support interrupt handling. 

We model the Viterbi registers with the same bit 
accuracy as in the VHDL code and Viterbi specifica-
tions. A register bank and its registers are declared and 
bound in the Viterbi module constructor. Bitfields allow 
to select a precise set of bits inside a register. At each 
register or bitfield, a read or write callback function is 
associated, which is triggered when a read or write access 
is performed. The register bank is bound to a PV target 
port, which uses the OSCI (Open SystemC Initiative) 
TLM API [3]. 
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Figure 9. Modelling methodology. 

As shown in the Figure 9, the C model implements the 
business logic of the Viterbi decoder and its services are 
called by the container through register and bitfield 
callback functions. These callbacks functions implement 
the technical logic (storage and synchronization). The C 
code file is compiled with SystemC files keeping the 
model intact that constitutes a reusable golden source. 
Thus there is a clean separation of concerns between 
business and technical logic. The resulting SystemC TLM 



model is untimed and event-driven. 
The Viterbi model was validated with the testbench 

already used to verify the hardware IP. The ISS executes 
the testbench code and accesses to the Viterbi registers 
thanks to the original driver in C. 

The modelling effort to follow the component/ 
container paradigm from a C model is not really 
important, but it enables portability and reuse of business 
logic. 

 
4.2.2. Interconnect refinement. The refinement and 
exploration of the first virtual platform have been 
performed, while keeping the same SystemC TLM IP as 
can be seen in the Figure 10. The refinement consisted in 
replacing the OCP TL2 bus model by an AHB bus model 
and the exploration in replacing the ARM968-ES core by 
an ARM926-EJS core. Both steps enable us to be more 
specific to the existing platform. Thanks to the use of an 
AHB-to-PV transactor and cross-compilation, a true reuse 
of the Viterbi SystemC TLM IP has been performed 
because no modification has been necessary. Refinement 
from one platform to another is thus highly simplified. 
The same SystemC TLM IP has been used on another 
virtual platform at a different level of abstraction.  
 

 

Figure 10. Second platform modelling. 

Moreover, a real software application has been 
executed on this second virtual platform. We validate 
successfully an application of iterative decoding executed 
on the real SoC, which uses the Viterbi decoder many 
consecutive times.  

Unlike the OCP-based platform, which used polling, 
the second platform contains also an interrupt controller. 
The Viterbi decoder uses it to inform the ARM processor 
core that decoded samples are available and can be read 
from registers. It is another step in the accuracy of the 
virtual platform.  

Thus the contract at PV level - into which waveform 
software components developers could enter - has been 
fulfilled:  software validation, interrupt handling and 
modelling accuracy have been achieved. Now this 
SystemC TLM IP/component can be reused to model 
more quickly and easily other Viterbi-based virtual SDR 
platforms.  

At the moment, this test case is not sufficiently 
complex to achieve significant profiling results, but this 
issue will be addressed soon with an sizeable extended 
platform. 
 
5. Conclusion & future work 
 

 In this paper, we have proposed the use of SystemC 
TLM to simulate PIM and PSM for design and validation 
of both SCA compliant SDR applications and platforms. 
The PIM in UML can be translated into an executable 
specification enabling the validation of waveform real-
time constraints, while the SystemC TLM PSM model 
enables the exploration and refinement of virtual SDR 
platform, whose the IPs models can be easily reused.   

Although this approach targets military SDR, it can be 
apply on other domains of applications. Indeed SDR is 
representative of modern applications needs : reuse, real-
time, heterogeneousness… 

For the next steps, we will model an SCA compliant 
radio platform to target a multiprocessing architecture on 
FPGA. The OE would be executed on a virtual hardware 
platform composed of a PowerPC ISS, a CoreConnect 
BFM and waveform IP models. The Core Framework 
could simulate the deployment, installation and running of 
waveform applications using the virtual hardware through 
the OE. Switching to another waveform application could 
lead to the exploration of FPGA partial reconfiguration. 
After validation of waveform application on the virtual 
platform, we could evaluate if the software and hardware 
integration on the target has been seamless and complies 
with portability and reconfiguration requirements of SDR. 
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