
Transaction Level Modelling of SCA Compliant
Software Defined Radio Waveforms and Platforms PIM/PSM

Grégory Gailliard, Eric Nicollet, Michel Sarlotte
Thales Communications S.A.

Colombes, France
{firstname.lastname}@fr.thalesgroup.com

François Verdier
ETIS Lab – UMR CNRS 8051

Cergy-Pontoise, France
verdier@ensea.fr

Abstract

In the scope of the US Department of Defense (DoD)
Joint Tactical Radio System (JTRS) program, the
portability and reconfigurability needs of Software
Defined Radios (SDR) required by the Software
Communications Architecture (SCA) [1] can be resolved
thanks to Model Driven Architecture (MDA) and
component/container paradigm to address a hetero-
geneous hardware and software architecture.

In this paper, we propose SystemC Transaction Level
Modelling (TLM) to simulate Platform Independent
Model (PIM) and Platform Specific Model (PSM) of
SDRs, while keeping the component/container approach
for applications portability. We show that SystemC 2.1
enables natively to simulate the waveform PIM specified
in UML to obtain an executable specification, which can
be reused to validate the SystemC TLM model of PSM.
This latter allows radio platform virtualisation and true
reuse of IPs models to validate earlier SDR waveforms
and platforms.

1. Introduction to Software Defined Radio

1.1. General overview

A Software Defined Radio is a reconfigurable radio

whose functionalities are controlled in software, which is
able to run a set of waveform applications on the same
radio platform, depending on the operational need.
Thanks to its software definition, a SDR fosters reuse and
flexibility, because evolutions can be easily performed via
software updates instead of hardware replacement. The
two main SDR objectives are the portability of waveform
applications across different radio platforms and the
reconfigurability of the hardware platform to accept
several waveforms. A waveform application is a OSI
(Open Systems Interconnection) model like layered
software application implementing the waveform logical
components that process the received data from the

antenna to the end user and vice versa. A radio platform
is the set of software and hardware layers, which provides
the services needed by the waveform application layer
through an abstraction layer API.

1.2. Military overview

The Joint Tactical Radio System (JTRS) is a US
Department of Defense program aimed to create a global
communication network of scalable and interoperable
SDRs for US and allied terrestrial, maritime and airborne
joint forces. The JTRS is built upon the Software
Communications Architecture (SCA).

FPGA DSP GPP ADC
DAC

RF/IF

Operating
Environment

DSP

A
pp

lic
at

io
n

L
ay

er

Voice

Data

A
bs

tr
ac

tio
n

La
ye

r
H

ar
dw

ar
e

La
ye

r

Bus & Switches

Transceiver Mac IOModem

Physical link Logical link

Pl
at

fo
rm

L

a y
er

Waveform
Software

Components

Abstraction Layer API

Core Framework, Corba Middleware, RTOS, Drivers

Figure 1. Heterogeneous and distributed SDR
architecture.

SCA is a software architecture framework allowing
some separation between waveform application and radio
platform. The SCA specifies an Operating Environment
(OE) in which waveform applications are executed. The
OE enables to manage waveform applications and to
provide radio platform services. It is composed of a Core
Framework (CF), a minimum CORBA compliant
middleware and a POSIX compliant Operating System
(OS). The Core Framework is a set of interfaces and
related behaviours used mainly to load, deploy and run
waveform applications. A middleware is a software layer
between the application layer and the network layer
providing services and enabling transparent commu-

978-3-9810801-2-4/DATE07 © 2007 EDAA

nications between distributed applications. As depicted in
the Figure 1, the SCA targets heterogeneous hardware and
software architectures, which are complex to design and
validate.

The official SCA 2.x versions specify a high level
software architecture for GPPs (General Purpose
Processor), which is not adequate for high constrained
real-time resources like DSPs and FPGAs, while the
unofficial SCA 3.0 tries to resolve these issues. A
methodology has been proposed [2] to address the
limitations of SCA 2.x and has been supported by the
“Software Radio Architecture” PEA (Plan d’Etude
Amont) under contract of the French DGA (Délégation
Générale de l’Armement). In this project, waveforms
have been mainly implemented in software and the design
of radio platform consisted in assembling boards
composed of GPP and DSP cores.

However, waveforms and platforms design becomes
more and more complex (high data rate antenna
processing, programmable RF…) and involves new
methodological needs, that we try to address now. Indeed,
executable specifications are needed to validate waveform
consistency and compliance against specifications.
Hardware/software partitioning and architecture
exploration have to be studied to achieve the required
performances, which have to be estimated and compared
to Quality of Service (QoS) and real-time constraints.
Another need is to foster reuse of waveform components
to reduce time-to-market and risks.

1.3. Proposition

This paper presents an improvement of the existing
SCA compliant SDR design flow and methodology,
which is based on Model Driven Architecture and
component/container paradigm, thanks to SystemC TLM.
SystemC TLM allows a tradeoff between modelling
accuracy and simulation speed in keeping only the
relevant details at a given abstraction level. It allows the
design and validation of waveform applications and radio
platforms, earlier in the development cycle, thanks to
hardware virtualisation and IP models reuse. The
proposed design flow consists in simulating waveform
applications using the abstraction layer API on a quick
and sufficiently accurate SystemC TLM model of the
hardware platform, whose IP models can be easily reused.
After early waveform and platform validation, hardware
and software developments can thus begin in parallel.

This paper is organised as follows: in Section 2 we
present the existing design flow and methodology for
SCA compliant SDR. Then we show in Section 3 the
interest of SystemC TLM in this methodology. Section 4
presents how SystemC TLM models of PIM and PSM can
be performed, while keeping the component/ container
paradigm. Finally, our future work is presented as a
conclusion to this paper.

2. Existing design flow and methodology for
SDR

The existing methodology is based on two concepts:
Model Driven Architecture (MDA) and component/
container paradigm.

MDA is a methodology standardised by the OMG
which advocates the separation between system
functionalities specification defined in a Platform
Independent Model (PIM) from their implementation
specification on a target platform captured by a Platform
Specific Model (PSM). The PIM can be expressed in
UML with domain specific profiles, while the associated
PSMs are described in a target programming language
(C/C++/Java/VHDL…). MDA enables to raise the level
of abstraction, to increase reusability and foster
portability. The PIM/PSM approach is useful in a SCA
context because of the amalgam between logical
(interfaces and behaviours) and implementation choices
(type of middleware, POSIX profile…).

The component/container paradigm enables a clear
separation of concerns between behavioural and technical
properties. The component is a reusable and composable
entity implementing the business logic, which provides
and requires services through defined interfaces. The
container makes the adaptation between component and
execution infrastructure interfaces. Whatever waveform
or platform changes, container guaranties the portability
and reconfigurability of SDR.

Logical
Resource

PIM to PSM
transition

Component

Technical
Services

Container

Implements

Hardware

C A

B

A B C

Waveform
provider

Platform
provider

Integrator

PIM

PSM

Figure 2. Methodology inspired from MDA and
component/container paradigm.

The methodology illustrated in the Figure 2 consists in
defining in the PIM the logical interfaces A, B and C
between abstract processing resources (waveform
management components, waveform resources, radio
services). Then the PIM-to-PSM transition is performed.
A component implements the useful treatments specified
at logical level and communicate with its environment
thanks to a container through the interfaces A, B and C.
The container implements the transition between logical
interfaces semantics and available technical services.
These latter provide the software and hardware services

used by the implementation of the logical semantics.
This approach is compliant with SCA for GPPs and

has been successfully applied on DSPs. It seems to be
promising for FPGAs.

The design flow based on this methodology starts at
PIM level with waveform specifications. The logical
interfaces and real-time constraints between the logical
waveform components themselves and with the radio sub-
system are modelled in UML thanks to use case, class,
statechart and scenario graphical diagrams. The
breakdown into waveform logical components and its
granularity are performed according to system
requirements (characteristics of usable GPPs, DSPs,
FPGAs) and business experience. Then subsequent
hardware and software design flow can begin. The
waveform application can be lately validated on an SCA
compliant workstation. The final validation can only be
done once the hardware platform is available.

Thanks to SystemC TLM, we propose now a PIM/
PSM design flow to design and validate earlier waveform
applications on virtual SDR platforms.

3. Proposed simulation methodology and
design flow for SDR

MDA and component/container paradigm approach
can be simulated thanks to SystemC TLM as illustrated in
the Figure 3. The logical resource business services are
implemented in a C/C++ model. This independent and
reusable model is encapsulated in a SystemC TLM
container, which abstracts it from its virtual execution
environment. For a software component, the container
could use an API, while for a hardware component, it
could contain a register bank (see Section 4). Developers
can validate that the SystemC TLM virtual module
provides the required behaviour and perform a
partitioning based on performances estimation. The model
can be either refined until RTL for a hardware component
or extracted to be optimized and cross-compiled for a
software component. If the partitioning was already
performed, the C/C++ model can be used without a
SystemC TLM encapsulation directly on an Instruction
Set Simulator (ISS) if available, otherwise the SystemC
kernel could be used. This SystemC TLM based
methodology allows to simulate the heterogeneous
architecture of SDR platforms.

Thus, we introduce SystemC TLM for the simulation
and validation of PIM and PSM. In the SDR context, an
important need is to be able to simulate the real-time
constraints of a radio system, from its specifications to its
final validation. SystemC appears, as far we know, as the
only language addressing this kind of needs.

3.1 Proposed simulation methodology

Logical
Resource

C/C++ Model

Virtual OE

SystemC
Container

Implements

Virtual HW

C A

B

A B C

Technical
services like

bus, OS,
drivers…

components to
platform

adaptation

HW/SW
waveform

components

PIM to PSM
transition

PIM

PIM/PSM
Executable Model

{UML}

{SystemC TLM}

Figure 3. SystemC TLM model of PIMs/PSMs.

At PIM side, SystemC at functional level can be used
to model the logical interfaces and simulate the real-time
constraints between the waveform logical components
themselves and with the radio sub-system. The resulting
SystemC TLM modules could include a behavioural
model or acts as dummy black box. This model can be
used as a useful and undeniedable executable
specification between hardware and software teams that
anticipates the PSM and accelerates the development
cycle.

The concepts of required and provided interfaces
specified in the PIM can be natively found in SystemC
2.1 and used to simulate a PIM. Indeed, a sc_port
specifies that an sc_interface is required by a sc_module.
A sc_export indicates that an sc_interface is provided by
another one, which implements it. The sc_port can be
bound directly to a sc_export. The first sc_module calls
the second one sc_interface method through the sc_port.
Event and time driven systems can be modelled with
sc_event and wait statements, while UML synchronous
and asynchronous calls can be respectively modelled with
SystemC TLM blocking and non-blocking calls [3].

At PSM side, SystemC at cycle level enables
performance estimation (profiling) of waveform software
components executed on a virtual radio platform
composed of ISS for GPP and DSP and Bus Functional
Models (BFM) if available. Thus, real-time constraints
simulated in the PIM model can be reused to validate the
PSM model. SystemC TLM allows to simulate and to
validate only critical parts instead of the entire radio
system model. A concrete example will be seen in the last
section to illustrate the modelling of PIM and PSM in
SystemC TLM.

3.2. Proposed design flow

Based on these considerations, we propose a SystemC
TLM based design flow, whose approach is depicted in
the Figure 4, in order to address the SDR needs. It starts
with the capture of waveform and platform requirements

in UML PIMs. Both PIMs are associated thanks to an
abstract interface (see Section 4.1), which defines the
Abstraction Layer (AL) API. The PIMs are then
translated in SystemC TLM containers, where a
functional model is encapsulated to validate algorithms
choice, by simulating the behaviour of the system and
measuring its performances (e.g. in terms of Bit Error
Rate for a modem application). This executable
specification can be reused for example to validate
waveform compliance to specifications, particularly real-
time constraints.

WFs PIM/PSM
Models Library

WF1 WF2 WFN…

Hardware
Platform 1

Abstraction Layer API

Hardware
Platform 2

HAL 1 HAL 2
Hardware
Platform

HAL

AL API
WF PIM

PF PIM
AL API
WF PSM

PF PSM

PIM to PSM Transition via SystemC
TLM PIM/PSM Models Refinement

PFs PIM/PSM
Models Library

Virtual
SDR

Platform
(PF)

Reuse

Reuse

{UML, …} {C, VHDL, …}

{S
ys

te
m

C
 T

LM
}

Virtual
SDR

Waveform
(WF)

(H)AL : (Hardware)
Abstraction Layer

Set of
interfaces

Portability
Efficacity Need

Reconfigurability
Operational Need

Figure 4. Proposed approach.

During hardware/software partitioning, several
architectures and partitioning choices can be evaluated for
the system regarding for example the interconnect
strategy and the memory dimensioning. Associated tools
perform for instance profiling or bottlenecks check. This
partitioning enables to ease the definition of waveform
breakdown/granularity, and thus reusable/reconfigurable
components.

In architecture exploration, a key point is the feasibility
study. If the requirements cannot be met, a feedback is
given to the system engineers in order to review their
partitioning or eventually their algorithms. After several
iterations, this step results in a system architecture
definition, which provides a breakdown of the application
with associated hardware targets and the interfaces of
each component.

Then hardware modelling and software developments
can start in parallel. The system can be refined
progressively to platform specific models in SystemC
TLM, for both hardware and software modules, keeping
the same testbench to functionally verify the successive
translations. This refinement can be realized through
timing annotations or use of another bus/topology and
results in a better design. Moreover, these models can be
reused earlier in steps of future developments. In
software, application code is developed, eventually for
managing the partial reconfigurability (bitstream

download, application deployment, configuration...).
However, in the scope of this paper, we only focus on
static reconfiguration, as required by SCA.

Co-simulations can be performed to verify the
behaviour of the application in a specific mode. Then the
hardware workflow can start (synthesis, place and route)
and finally the platform integration on the real target is
performed. A validation shall then be led to check that all
system requirements are met.

4. Experimental results

To validate this new system engineering flow, we

present two test cases corresponding to the simulation of a
PIM and a PSM in SystemC TLM. The following section
shows how SystemC TLM can be easily used to model a
UML PIM in SystemC TLM.

4.1. PIM model in SystemC TLM

Figure 5. Waveform PIM class diagram.

Figure 6. Waveform PIM scenario diagram.

An example of a partial waveform PIM in UML is
depicted in Figure 5 and Figure 6. In the PIM class
diagram given by the Figure 5, a circle represents an
abstract interface, which is required (use dashed arrow)
by a component and provided (realize association) by
another one. The real-time constraints are captured in a
UML sequence diagram given by the Figure 6. According
to this PIM, the Transceiver Resource shall asynchro-
nously call (truncated arrow) the Modem Resource
method with a maximum latency of 250µs in order to
push the received baseband samples. This call shall return
with a Maximum Return Time (MRT) of 100µs.
Moreover, the Minimum Inter-Arrival Time (MIAT) is
150µs between two Transceiver calls, and the Minimum

Inter-Return Time (MIRT) is 100µs between two Modem
returns.

In the PIM, the Transceiver component requires the
Receive interface implemented by the Modem
component. In the simplified SystemC TLM model of the
PIM depicted in the Figure 7 this interface (line 0) is
required by the Transceiver module port (1) and is
implemented inside the Modem module (5), which is
called by the Transceiver port through a channel (4). This
channel models the media real-time constraints
(throughput, latency (4)). Modules real-time constraints
MIAT and MIRT can be contained in the SystemC TLM
container itself (Explicit Timing Annotation) or in a
transactor between the module and the channel, which can
be better to separate timing from behaviour (Implicit
Timing Annotation) [4]. A transactor is a hierarchical
channel, which acts as a TLM protocol and interface
converter (see Section 4.2). Traffic generators can be used
to transfer samples according to various probability laws
(uniform, Poisson…) to observe the behaviour of the
communication chain following operational conditions
(link overload, Signal-to-Noise Ratio decrease…). The
PIM to SystemC TLM transition can be automated with
tools like modtransf [5]. After validation of real-time
constraints, the SystemC TLM models of container and
component PIM can be refined to their PSM models.

Transceiver

process

sc_module (3)

(1) Modem

sc_module

Hierarchical
Channel

(2)(4) (5)

process

Figure 7. Simplified SystemC TLM model of PIM.

(0) struct Receive : virtual sc_interface{
 virtual void pushBBSamplesRx() = 0 ;
 };
(1) sc_port<Receive> pM;
(2) sc_export<Receive> pT;
(3) pM->pushBBSamplesRx();
(4) struct Channel : Receive, sc_module {
 void transfer() {
 wait(latency);
 pM->pushBBSamplesRx();
 }
 };
(5) struct Modem : Receive, sc_module {
 void pushBBSamplesRx() {
 // C/C++ model functions calls
 }
 };

4.2. PSM model in SystemC TLM

This section presents the IP and interconnect
refinement of the SystemC TLM model of a PSM. This
PSM model is inspired from a digital AM receiver
MPSoC called DiMITRI [6].

We present the modelling of a previously validated
RTL IP and its simulation on a virtual platform. The
business code in C of a Viterbi decoder has been
encapsulated in a SystemC TLM container with a
register/bit accurate hardware interface. The resulting
SystemC TLM IP has been reused without any
modification during the refinement and exploration of the
virtual platform depicted in the Figure 8. This first virtual
platform is composed of an ARM968-ES, an OCP TL2
[7] bus, two OCP memories (ROM and RAM) and an
OCP TL2-to-PV transactor connected to the Viterbi
model.

Figure 8. First platform modelling.

4.2.1. IP refinement. Starting from a functional model in
C of the Viterbi decoder IP, we developed a SystemC
TLM IP at Programmer View (PV) level. At this
abstraction level, the model is untimed, memory map /
register accurate and can support interrupt handling.

We model the Viterbi registers with the same bit
accuracy as in the VHDL code and Viterbi specifica-
tions. A register bank and its registers are declared and
bound in the Viterbi module constructor. Bitfields allow
to select a precise set of bits inside a register. At each
register or bitfield, a read or write callback function is
associated, which is triggered when a read or write access
is performed. The register bank is bound to a PV target
port, which uses the OSCI (Open SystemC Initiative)
TLM API [3].

p_PV p_IRQ

Register Bank

Technical Logic Business Logic

decode()

read/writeOnReg()

C model

Register Callbacks

reg0

reg1

reg2

reg3

reg4

Component

Container

Figure 9. Modelling methodology.

As shown in the Figure 9, the C model implements the
business logic of the Viterbi decoder and its services are
called by the container through register and bitfield
callback functions. These callbacks functions implement
the technical logic (storage and synchronization). The C
code file is compiled with SystemC files keeping the
model intact that constitutes a reusable golden source.
Thus there is a clean separation of concerns between
business and technical logic. The resulting SystemC TLM

model is untimed and event-driven.
The Viterbi model was validated with the testbench

already used to verify the hardware IP. The ISS executes
the testbench code and accesses to the Viterbi registers
thanks to the original driver in C.

The modelling effort to follow the component/
container paradigm from a C model is not really
important, but it enables portability and reuse of business
logic.

4.2.2. Interconnect refinement. The refinement and
exploration of the first virtual platform have been
performed, while keeping the same SystemC TLM IP as
can be seen in the Figure 10. The refinement consisted in
replacing the OCP TL2 bus model by an AHB bus model
and the exploration in replacing the ARM968-ES core by
an ARM926-EJS core. Both steps enable us to be more
specific to the existing platform. Thanks to the use of an
AHB-to-PV transactor and cross-compilation, a true reuse
of the Viterbi SystemC TLM IP has been performed
because no modification has been necessary. Refinement
from one platform to another is thus highly simplified.
The same SystemC TLM IP has been used on another
virtual platform at a different level of abstraction.

Figure 10. Second platform modelling.

Moreover, a real software application has been
executed on this second virtual platform. We validate
successfully an application of iterative decoding executed
on the real SoC, which uses the Viterbi decoder many
consecutive times.

Unlike the OCP-based platform, which used polling,
the second platform contains also an interrupt controller.
The Viterbi decoder uses it to inform the ARM processor
core that decoded samples are available and can be read
from registers. It is another step in the accuracy of the
virtual platform.

Thus the contract at PV level - into which waveform
software components developers could enter - has been
fulfilled: software validation, interrupt handling and
modelling accuracy have been achieved. Now this
SystemC TLM IP/component can be reused to model
more quickly and easily other Viterbi-based virtual SDR
platforms.

At the moment, this test case is not sufficiently
complex to achieve significant profiling results, but this
issue will be addressed soon with an sizeable extended
platform.

5. Conclusion & future work

 In this paper, we have proposed the use of SystemC
TLM to simulate PIM and PSM for design and validation
of both SCA compliant SDR applications and platforms.
The PIM in UML can be translated into an executable
specification enabling the validation of waveform real-
time constraints, while the SystemC TLM PSM model
enables the exploration and refinement of virtual SDR
platform, whose the IPs models can be easily reused.

Although this approach targets military SDR, it can be
apply on other domains of applications. Indeed SDR is
representative of modern applications needs : reuse, real-
time, heterogeneousness…

For the next steps, we will model an SCA compliant
radio platform to target a multiprocessing architecture on
FPGA. The OE would be executed on a virtual hardware
platform composed of a PowerPC ISS, a CoreConnect
BFM and waveform IP models. The Core Framework
could simulate the deployment, installation and running of
waveform applications using the virtual hardware through
the OE. Switching to another waveform application could
lead to the exploration of FPGA partial reconfiguration.
After validation of waveform application on the virtual
platform, we could evaluate if the software and hardware
integration on the target has been seamless and complies
with portability and reconfiguration requirements of SDR.

6. References

 [1] Joint Program Executive Office (JPEO) JTRS, Software

Communications Architecture Specification v2.2.2,
http://jtrs.spawar.navy.mil/sca/.

[2] C. Serra, B. Sourdillat, E. Nicollet, "Waveform Porta-
bility - Return of Experience on Implementing the SCA",
SDR'05 Technical Conference, 2005.

 [3] A. Rose, S. Swan, J. Pierce, J.-M. Fernandez, Transac-
tion Level Modelling in SystemC, OSCI white-paper, 2004.

 [4] T. Kogel, A. Haverinen, J. Altis, OCP TLM for Archi-
tectural Modelling, OCP-IP white-paper, 2005.

 [5] J.-L. Dekeyser, P. Marquet, S. Meftali, C. Dumoulin, P.
Boulet, et S. Niar, "Why to do without Model Driven
Architecture in embedded system codesign?", 1st IEEE
BENELUX/DSP Valley Signal Processing Symposium,
2005.

 [6] J. Quévremont, M. Sarlotte, B. Candaele, “Development
process of a DRM digital broadcast SoC receiver
platform”, Annals of Telecommunications, 2004.

 [7] Open Core Protocol (OCP)-International Partnership (IP),
A SystemC™ OCP Transaction Level Communication
Channel, v2.1.2, OCP-IP white-paper, 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

