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Abstract

Embedded systems are often assembled from black box
components. System-level analyses, including verification
and timing analysis, typically assume the system descrip-
tion, such as RTL or source code, as an input. There is
therefore a need to automatically generate formal models
of black box components to facilitate analysis.

We propose a new method to generate models of real-
time embedded systems based on machine learning from ex-
ecution traces, under a given hypothesis about the system’s
model of computation. Our technique is based on a novel
formulation of the model generation problem as learning a
dependency graph that indicates partial ordering between
tasks. Tests based on an industry case study demonstrate
that the learning algorithm can scale up and that the de-
duced system model accurately reflects dependencies be-
tween tasks in the original design. These dependencies help
us formally prove properties of the system and also extract
data dependencies that are not explicitly stated in the spec-
ifications of black box components.

1. Introduction

The design and verification of safety-critical real-time
embedded systems involve the analysis of end-to-end laten-
cies and task dependencies. This analysis requires having
a precise and formal system model. However, in practice,
many systems are assembled from black box components
with imperfect accompanying specifications. In such situa-
tions, it is difficult to perform system integration and analy-
sis without taking an extremely pessimistic view of the sys-
tem. Automatic model generation mitigates this problem by
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companies: Agilent, DGIST, General Motors, Hewlett Packard, Infineon,
Microsoft, and Toyota.

providing a robust method of generating implicit dependen-
cies and model features. The generated models facilitate
verification of safety of real-time embedded systems. Na-
tale et al. [10] provides a method of using this control flow.

As an instance, original equipment manufacturers
(OEMs) in the automotive domain such as General Mo-
tors (GM) face many challenges related to the integration of
electrical content [6], including the key issue of integrating
multiple black box components into a single system. The
OEMs tend to have a high level specification of the control
flow model of a particular black box component, but when
the components are integrated, the system level control flow
model is difficult to infer especially in the presence of non-
determinism from the operating system [1] and the CAN
communication bus [3]. Hence, performing an end-to-end
timing analysis is difficult without assuming that all mes-
sages and tasks are potentially independent at the system
level [13]. This approach is extremely pessimistic.

To improve end-to-end analysis, we present a novel ma-
chine learning-based approach to automatically generate a
system-level control flow model from execution traces of
real-time embedded systems. Past work includes model
generation based on iterative processes on recording real-
time execution traces [5]. This method is high in complex-
ity. There also exist techniques for generating a model for
finite-state systems by observing execution traces based on
a machine learning algorithm first proposed by Angluin [2]
and improved upon by Rivest and Schapire [12]. However,
techniques are not well-defined for real-time systems, not
even for learning partial orders between tasks and events.
Our formulation of model generation as the learning prob-
lem is inspired by the work of Lau et al [7] on programming
by demonstration. To our knowledge, ours is the first work
on automatic generation of a real-time control flow model
from execution traces. Unlike methods that statically ana-
lyze the model’s design, our method analyzes the system’s
execution traces without requiring to know the design, thus
identifying not only dependencies intended in the design but
also unintended dependencies introduced by the execution
environment. This helps to detect more dependencies that
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Figure 1. A simple system design model
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Figure 2. An example trace with three periods

actually occur in the execution, and to further reduce the
search space for system-level verification, speeding up ver-
ification and potentially producing fewer false alarms.

We will provide a precise learning algorithm that exe-
cutes in exponential time due to the NP-hardness of the
problem, and also a polynomial but imprecise algorithm
with heuristics. We will demonstrate the practicality of the
latter algorithm with an industrial example from GM.

2. The Learning Problem

2.1. Model of Computation

A model of computation (MOC) is the abstraction of a
system into a model on which one could do mathematical
computations [8]. The MOC assumed here is a control flow
MOC [11]. The basic rule is that tasks are executed in a data
driven manner where the firing rule of the task is the arrival
of all its required inputs.

An automotive system is modeled with a set of prede-
fined tasks repeatedly being executed in periods. After a
task completes execution, it may send messages to other
tasks to be executed in the same period. We assume that no
message may cross the period boundary.

The system can be represented with a graph, which de-
fines all possible behavior within one single period. Dif-
ferent periods in an execution conform to the same graph,
although the behavior need not be identical due to the log-
ical decisions made. Nodes in the graph are individual
tasks. The edges represent messages between tasks. Figure
1 shows an example of this type of model, where t1 is de-
signed to send message(s) to t2 or t3 or both in each period,
and t2 and t3 independently send messages to t4 if executed.

However, we assume that we do not have access to the
system design. Instead, we are trying to reconstruct depen-
dency models, whose edges represent dependencies. This
type of model is different from the system design, because
a task may indirectly influence another with no explicit mes-
sages between them. In this paper, we refer to messages as

messages in system designs; we refer to dependencies as
dependencies in dependency models.

We distinguish two types of nodes. A disjunction node is
one that conditionally sends messages to other tasks, and in
this way chooses execution paths, such as t1 above. A con-
junction node is one that passively receives messages from
other tasks, depending on the decisions that others made,
e.g. t4. We further assume that in any period, there could be
at most one message sent between any sender-receiver pair.
For example, if t1 intends to send 2 pieces of data to t2 in a
period, it groups the data and sends them in one message.
This is realistic because we assume that messages can only
be sent when the sender task finishes. Thus, the overhead is
reduced by grouping the data at the sender side and sending
them all at once.

A trace is a timestamped sequence of events, where an
event is the start or end of a task, or the rising edge or the
falling edge of a message transmitted on the bus. From GM,
the trace is obtained with a logging device connected to the
communication bus shared by all tasks. The bus gives us
no information about the senders and the receivers of the
messages. Also, we do not know a priori the meaning of the
messages, or whether a node is disjunction, or conjunction,
or neither of the two.

Figure 2 is an imaginary execution trace of the above
example. In a period, a task may execute at most once.
A task can not execute if it does not receive its required
message(s).

2.2. Basic Definitions

The following basic definitions are due to Mitchell [9]:

Definition 1 (Instances). I is the set of instances for the
learning problem. In this work, we do not consider negative
examples.

Definition 2 (Hypothesis space). H is the hypothesis
space. A partial order (see below) is defined on this space.
Each h∈H is an approximation to the desired property with
respect to the partial order.

Definition 3 (Matching function). M : H× I→ boolean is
the matching function. M(h, i) for h ∈ H and i ∈ I is true if
and only if hypothesis h matches instance i. We may also
write M : H×P (I)→ boolean, so that ∀I0 ⊆ I.(M(h, I0)⇔
∀i ∈ I0.M(h, i)). 1

Definition 4 (More-specific-than relation). The partial or-
der �H on H is defined in terms of more-specific-than re-
lation: ∀h1,h2 ∈ H, h1 is more specific than h2 if and only
if ∀i ∈ I.M(h1, i)⇒M(h2, i). This is denoted by h1 �H h2.
(�H is defined similarly.)

I is an execution trace. Each instance i ∈ I is a period
in that trace (order irrelevant). H is the set of hypotheses
about task dependencies. M indicates whether a hypothesis

1P (I) represents the power set of I.
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Figure 3. Lattice of dependency values

matches an instance. By “matching” we mean that the in-
stance period conforms to the hypothesized dependency. As
an example, if the period contains a message assumed to be
sent from s to r (an example later shows how assumptions
are made), any hypothesis that matches this instance should
have a directed dependency between s and r.

2.3. Problem Formulation

Definition 5 (Dependency functions). A dependency func-
tion is d : T × T → V , where T is the set of predefined
tasks, and V = {‖,→,←,↔,→?,←?,↔?} is the set of de-
pendency values. For any t1, t2 ∈ T :

• d(t1, t2) =‖: t1 always executes in parallel with t2.

• d(t1, t2) =→: if t1 executes in a period, it always de-
termines the execution of t2.

• d(t1, t2) =←: if t1 executes in a period, it always de-
pends on the execution of t2.

• d(t1, t2) =↔: t1 and t2 depend on each other. (This re-
lation never happens. It is defined only for complete-
ness.)

• d(t1, t2) =→?: if t1 executes in a period, it may or may
not determine the execution of t2.

• d(t1, t2) =←?: if t1 executes in a period, it may or may
not depend on the execution of t2.

• d(t1, t2) =↔?: t1 and t2 may or may not depend
on/determine each other.

We define a partial order �V on V . This partial order is
illustrated in Figure 3 in the form of a lattice.

Partial order �D is defined on D, the set of all possible
dependency functions. ∀d1,d2 ∈ D.(d1 �D d2 ⇔ ∀t1, t2 ∈
T.d1(t1, t2)�V d2(t1, t2)). �D is also a lattice.

We further define the most specific hypothesis d⊥ ∈D so
that ∀t1, t2 ∈ T.d⊥(t1, t2) =‖, and the least specific hypoth-
esis d� ∈ D so that ∀t1, t2 ∈ T.d�(t1, t2) =↔?. Obviously,
∀d ∈ D.d⊥ �D d �D d�.

Putting Mitchell’s definitions in our context, hypotheses
are dependency functions, and we define hypothesis space〈
H,�H

〉
with H ::= D and �H ::=�D.

Definition 6 (Abstracted learning problem). Given I,
with T ,

〈
D,�D

〉
, and M predefined, find D∗ ⊆D such that

1. ∀d∗ ∈ D∗.M(d∗, I). This is the correctness require-
ment.

2. ∀d ∈ D.M(d, I)⇒ (∃d∗ ∈ D∗.d∗ �D d). This is the
completeness and optimality requirement. 2

The above abstract learning problem is independent of
how the lattice of hypotheses is formed. In this paper, we
assume

〈
D,�D

〉
to be given in Definition 5, which fits the

envisioned applications. For other applications, different
lattices of hypotheses may be defined. The algorithm be-
low is still applicable. However, the result varies depending
on the lattice used. This is consistent with the fact that in
practice, the same trace may be generated by different con-
crete models (each of which is the most specific result in its
lattice).

3. The Generalization Algorithm

The input to the algorithm is an exhaustive trace of time-
stamped events. Our algorithm analyzes the trace starting
with the set containing only the most specific hypothesis.
Every time a new instance is given, the algorithm tries to
match it with the hypotheses in that set. Hypotheses that do
not match will be generalized.

3.1. Message-Guided Generalization

Starting from D0 = {d⊥} with d⊥ being the globally
most specific hypothesis, the algorithm handles one period
in the trace at a time. This learning process is incremen-
tal. The current set of hypotheses keeps growing in terms of
generality but not necessarily cardinality.

We denote the k occurrences of messages in the trace
with m1,m2, · · · ,mk. Since each period corresponds to an
instance, we denote periods with i1, i2, · · · , in. If mp belongs
to iq (1≤ p≤ k, 1≤ q≤ n), we write mp ∝ iq.

Initially, when the algorithm is provided with i1, it first
analyzes the first message in it, i.e., m1 ∝ i1. Its possi-
ble sender-receiver pairs are computed: Am1

= {(s,r)|s ∈
T can be m1’s sender ∧ r ∈ T can be m1’s receiver}. Then
for any sender-receiver combination (s1i,r1i)∈ Am1

, we cre-
ate a hypothesis d1i by generalizing from d⊥ with this as-
sumption, such that ∀t1, t2 ∈ T :

d1i(t1, t2) =

⎧⎨
⎩
→ t1 = s1i ∧ t2 = r1i
← t1 = r1i ∧ t2 = s1i
‖ otherwise

Note that each time we only generalize as much as neces-
sary. For example, we could let d1i(t1, t2) be→? instead of
→ as above, and it still satisfies the correctness requirement,
but it does not satisfy the optimality requirement.

With n1 different assumptions of m1 (n1 = |Am1
|), a set

of new hypotheses is obtained: D1 = {d11,d12, · · · ,d1n1
}.

If m2 is also in i1 (m2 ∝ i1), the algorithm also an-
alyzes m2 after analyzing m1. It also computes the

2The reason for finding the most specific hypotheses is that any more
general hypothesis will automatically match all the instances when no neg-
ative instance exists.
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set of possible sender-receiver pairs: Am2
= {(s,r)|s ∈

T can be m2’s sender ∧ r ∈ T can be m2’s receiver}. Then
it tries to generalize the hypotheses in D1 for any assumed
sender-receiver pair (if necessary). For any d1 j ∈ D1, we
need to find the set D1 j = {d1 j1,d1 j2, · · · ,d1 jm} such that
for any d1 jk ∈ D1 j, the following conditions hold:

1. d1 j �D d1 jk
2. M(d1 jk, i2) = true
3. The sender-receiver pair (s,r) that d1 jk assumes is not

in the assumptions of d1 j. As mentioned above, we as-
sume that between any two data dependent tasks, there
can be only one message between them in a period.

4. For the optimality requirement, ¬∃d′ ∈ D s.t. d1 j �D
d′ �D d1 jk and d′ still satisfies the above conditions.
This means we generalize only as much as necessary.

When it is obtained from d1 j, d1 jk will have all the assump-
tions that d1 j has, plus one new assumption of the sender-
receiver pair for m2. As a result, after analyzing m2, we
obtain D2 =

S
D1 j.

The assumptions help to efficiently reduce the number of
hypotheses. Our system assumes that in any period, for any
sender-receiver pair (s,r), there can be at most one message
from s to r. If a hypothesis was obtained earlier by assuming
s to send a message to r, then later in the same period, we
will not consider the same sender-receiver pair.

The algorithm repeats until all the messages in i1 are ana-
lyzed. At the end of the period, a post-processing operation
is performed. The post-processing operation first removes
the assumptions associated with the hypotheses. Two or
more hypotheses in the current set Dcur may become equal
and thus be unified. The post-processing operation also re-
moves redundant hypotheses. d ∈ Dcur is redundant if and
only if ∃d′ ∈ Dcur.d′ �D d. This is because 1) all the hy-
potheses in Dcur match the instances seen so far, and 2) we
are trying to find the most specific hypotheses (with respect
to �D).

The learning then continues with i2, until the entire trace
is analyzed. If Dcur becomes ∅ at some point, it means
1) either the instances contain errors (and thereby violate
our assumption), or 2) the generalization language is not
expressive enough to describe the desired property. If only
one hypothesis is left at the end, we say that the algorithm
converges to a unique most specific solution. If two or more
hypotheses are left, more periods in the trace are needed to
reveal other aspects of the model, and make the algorithm
converge. 3

3.2. Heuristics

The algorithm discussed above is exponential in the
number of messages. Hardness of this problem will be

3It may not be possible to perceive every aspect of the model’s behavior
because of the scheduler’s property. For example, the scheduler for the
execution may produce deterministic schedules though the model allows
non-determinism. Therefore, the execution may always exhibit a fixed part
of the model’s allowed behavior, and the dependency functions learned will
be more specific than the dependencies intended in the model’s design.

proved by Theorem 1 in Section 4. We develop a heuris-
tic which does not compromise the algorithm’s soundness.
However, it is conservative because the result is no longer
guaranteed to be the most specific. We will justify this con-
servativeness with the convergence theorem.

We keep an ordered list of current hypotheses, instead of
the unordered set Dcur in the previous algorithm. A weight
function is used as the ordering criterion. This particular
weight function is used to make all dependencies in D inter-
comparable. As in Figure 3 a parallel execution is more spe-
cific than a directed execution, and that is more specific than
a probable dependency. The higher a dependency-relation
is in the lattice, the more weight we give to that hypothesis.

Definition 7 (Distance). distance : V → N computes the
square distance (a natural number) from any dependency
value to the lattice bottom ‖:

distance(v) =

⎧⎪⎪⎨
⎪⎪⎩

0, v ∈ {‖}
1, v ∈ {→,←}
4, v ∈ {→?,↔,←?}
9, v ∈ {↔?}

Definition 8 (Weight). weight : D→ N is defined as

weight(d) = ∑
t1,t2∈T

distance(d(t1, t2))

Hypotheses are ordered by the weight function in the list.
According to the heuristics, every time a new hypothesis
is added, if the total number of hypotheses becomes 1-
greater than a given bound, the two hypotheses with the
least weights are replaced with their least upper bound.

3.3. A Simple Example

We will demonstrate the generalization algorithm with
the example introduced in Section 2. After analyzing m1,
there are two most specific hypotheses:

d11 t1 t2 t3 t4
t1 ‖ → ‖ ‖
t2 ← ‖ ‖ ‖
t3 ‖ ‖ ‖ ‖
t4 ‖ ‖ ‖ ‖

m1 : t1 �→ t2

d12 t1 t2 t3 t4
t1 ‖ ‖ ‖ →
t2 ‖ ‖ ‖ ‖
t3 ‖ ‖ ‖ ‖
t4 ← ‖ ‖ ‖

m1 : t1 �→ t4
The assumptions of the hypotheses are shown below the

tables. d11 is obtained by assuming m1 to be sent from t1
to t2, while d12 assumes m1 to be from t1 to t4. After this
step, the current set of hypotheses Dcur = {d11,d12}. Both
d11 and d12 are the most specific hypotheses, and they are
correct with respect to the first message.

The algorithm further handles m2 by generalizing any
hypothesis in Dcur (if necessary). New hypotheses with du-
plicated assumptions will not be considered. For example,
d12 assumes m1 to be sent from t1 to t4. This assumption will
not allow us to create a new hypothesis with an assumption
about m2 being sent from t1 to t4. The following tables show
the three new hypotheses that we obtain:

4
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Figure 4. Dependency graph of the simple
model

d21 t1 t2 t3 t4
t1 ‖ → ‖ →
t2 ← ‖ ‖ ‖
t3 ‖ ‖ ‖ ‖
t4 ← ‖ ‖ ‖

m1 : t1 �→ t2; m2 : t1 �→ t4

d22 t1 t2 t3 t4
t1 ‖ → ‖ ‖
t2 ← ‖ ‖ →
t3 ‖ ‖ ‖ ‖
t4 ‖ ← ‖ ‖

m1 : t1 �→ t2; m2 : t2 �→ t4
d23 t1 t2 t3 t4
t1 ‖ ‖ ‖ →
t2 ‖ ‖ ‖ →
t3 ‖ ‖ ‖ ‖
t4 ← ← ‖ ‖

m1 : t1 �→ t4; m2 : t2 �→ t4
After period 1, we update Dcur with {d21,d22,d23}. Post-

processing operations are performed at the end of each pe-
riod to remove all the assumptions, to test conditional de-
pendencies, and to delete redundant hypotheses.

The algorithm then proceeds to period 2 and then period
3. After period 3, these 5 hypotheses remain in Dcur:

d81 t1 t2 t3 t4
t1 ‖ →? →? →
t2 ← ‖ ‖ ‖
t3 ← ‖ ‖ →
t4 ← ‖ ←? ‖

d82 t1 t2 t3 t4
t1 ‖ ‖ →? →
t2 ‖ ‖ ‖ →
t3 ← ‖ ‖ →
t4 ← ←? ←? ‖

d83 t1 t2 t3 t4
t1 ‖ →? ‖ →
t2 ← ‖ ‖ →
t3 ‖ ‖ ‖ →
t4 ← ←? ←? ‖

d84 t1 t2 t3 t4
t1 ‖ →? →? →
t2 ← ‖ ‖ →
t3 ← ‖ ‖ ‖
t4 ← ←? ‖ ‖

d85 t1 t2 t3 t4
t1 ‖ →? →? ‖
t2 ← ‖ ‖ →
t3 ← ‖ ‖ →
t4 ‖ ←? ←? ‖
These hypotheses are the most specific ones that satisfy

all the instances. However, because of the limited number
of instances, the algorithm does not converge. We may con-
sider their least upper bound dLUB (which no longer guar-
antees optimality) as the final result:

dLUB t1 t2 t3 t4
t1 ‖ →? →? →
t2 ← ‖ ‖ →
t3 ← ‖ ‖ →
t4 ← ←? ←? ‖
dLUB satisfies ∀s ∈ T, t ∈ T.dLUB(s, t) = d81(s, t) �

d82(s, t)� ·· · � d85(s, t), where � is least upper bound op-
erator on V , defined by the lattice in Figure 3.
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Figure 5. Dependency graph of a GM model

The result is illustrated in Figure 4. One interesting re-
sult is: t1 always determines t4 (→). This result cannot be
acquired by merely looking at the original model (even if
we have it). With the original model, we could only tell that
t1 may or may not send messages to t2 and t3, but we did not
have this unconditional dependency by transitive closure.

3.4. Case Study

The algorithm was applied to a distributed system com-
prised of 18 tasks and 330 messages transmitted on one
CAN bus. The execution trace contained 27 periods and
700 event-pair executions of tasks and messages.

The original model was a General Motors (GM) con-
troller in a black box. For proprietary reasons, we cannot
disclose actual names of tasks. We abstract these tasks using
letters A to P and S. Heuristics were used to reduce runtime.
Results in the textual format were translated into a depen-
dency graph (Figure 5). We used this dependency graph to
prove properties (e.g., dependencies and operation mode of
tasks) of the system, assuming that the trace is exhaustive
so that it exhibits all allowable behavior of the model in the
specific execution environment. The output of the algorithm
confirmed some properties that were known in advance; e.g.
Tasks A and B are disjunction nodes. Other properties are
learned, e.g, Tasks H, P and Q are conjunction nodes, no
matter which mode task A chooses, task L must execute
(d(A,L) =→), and no matter which mode task B chooses,
task M must execute (d(B,M) =→).

High-level properties such as “if the brake is pressed,
then brake actuator must react within 300 msec,” are known
from the specification. However, some properties are not
known at design time; for example the data dependency
between Q and O (Figure 5) comes from the interactions
between the functional tasks and the infrastructure tasks,
namely the CAN bus scheduler and the OSEK scheduler.

The additional dependencies discovered from the execu-
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tion trace help to reduce the state space that needs to be
analyzed with other methods. One such method could be
model checking by means of reachability analysis. Reduced
state space results in more efficient model checking, and
less false alarms produced.

The dependency relations that we obtained also signifi-
cantly improve the pessimistic analysis of end-to-end laten-
cies of the original system model. For example, one path
that was examined in this case study was the critical path
including task Q. Our learning algorithm introduces an im-
plicit dependency between task Q and O, which is less pes-
simistic when calculating the end-to-end path latency in the
way of excluding the possible preemption from higher pri-
ority task O during the execution of task Q.

Our implementation was tested with different bounds on
a Windows XP machine with a Pentium M 1.7 GHz proces-
sor and 1 GB memory, as shown in the following table.

Bound Run time (sec) Bound Run time (sec)

1 0.220 64 5.899
4 0.471 100 12.608
16 1.202 120 16.294
32 2.573 150 19.048

We also experimented with the precise but exponential al-
gorithm. It took 630.997 seconds and returned a single de-
pendency function, which equaled the least upper bound of
the dependency functions we obtained with heuristics (us-
ing any arbitrary bound). Theorem 4 in the next section will
show that this equality is not a coincidence.

4. Properties of the Algorithm

Theorem 1 (NP-hardness). The problem of finding the set
of most specific hypotheses for a given trace is NP-hard.

Theorem 2 (Correctness). The algorithm (with or without
heuristics) guarantees correctness. If the algorithm returns
D∗ as the set of hypotheses, ∀d∗ ∈ D∗.M(d∗, I).
Theorem 3 (Optimality and completeness). The algo-
rithm without heuristics guarantees optimality and com-
pleteness. If the algorithm returns D∗ as the set of hypothe-
ses, then ∀d ∈ D.M(d, I)⇒ (∃d∗ ∈ D∗.d∗ �D d).
Lemma. If the algorithm returns D∗ when the bound is set
to b, and if d∗ is the hypothesis obtained with the bound
set to 1, then d∗ =

F
D∗ (the least upper bound of all the

elements in D∗).
Theorem 4 (Convergence). If the algorithm converges to
one hypothesis d∗1 , regardless of whether the bound is set or
what the bound is, and if the algorithm returns d∗2 with the
bound set to 1, then d∗1 = d∗2 .

Theorem 1 is proved by transforming the Boolean Sat-
isfiability Problem (SAT). Theorem 2 and Theorem 3 are
proved by induction on periods. Theorem 4 is a direct con-
sequence of the lemma, which is due to the fact that there is
a unique least upper bound for any two elements in a lattice.
The proofs can be found in a technical report [4].

The runtime of heuristics-based algorithm is O(mb2 +
mbt2), where m is the number of messages in the trace, t is
the number of tasks, and b is the user-specified bound.

5. Conclusion

We designed and implemented an algorithm that con-
structs a dependency graph from execution traces using ma-
chine learning techniques based on generalization of hy-
potheses. The algorithm is proved correct and optimal (in
terms of the lattice that we define). The algorithm termi-
nates in polynomial time (in the number of tasks, the num-
ber of messages and the bound) using heuristic search.

Though the work’s motivation originated from an au-
tomotive application, the algorithm could be applied else-
where. It could also be extended by version space tech-
niques provided negative examples in the execution traces.
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