
Compositional Specification of Behavioral Semantics

Kai Chen
Motorola Labs

Schaumburg, IL, 60646, USA
Kai.Chen@motorola.com

Janos Sztipanovits
ISIS, Vanderbilt University
Nashville, TN, 37203, USA
Sztipaj@isis.vanderbilt.edu

Sandeep Neema
ISIS, Vanderbilt University
Nashville, TN, 37203, USA
Sandeep@isis.vanderbilt.edu

Abstract

An emerging common trend in model-based design

of embedded software and systems is the adoption of
Domain-Specific Modeling Languages (DSMLs). While
abstract syntax metamodeling enables the rapid and
inexpensive development of DSMLs, the specification
of DSML semantics is still a hard problem. In previous
work, we have developed methods and tools for the
semantic anchoring of DSMLs. Semantic anchoring
introduces a set of reusable “semantic units” that
provide reference semantics for basic behavioral
categories using the Abstract State Machine (ASM)
framework. In this paper, we extend the semantic
anchoring framework to heterogeneous behaviors by
developing a method for the composition of semantic
units. Semantic unit composition reduces the required
effort from DSML designers and improves the quality
of the specification. The proposed method is
demonstrated through a case study.

1. Introduction

Model-based design of embedded software uses
formal, composable and manipulable models in the
design, implementation and system integration process.
An emerging common trend in model-based software
and systems design is that modeling languages are
domain-specific: they offer software/system developers
abstractions and notations that are tailored to
characteristics of their application domains.

Model analysis and model-based code generation
require the precise specification of DSMLs. This is
partly achieved by metamodeling languages and
metamodels describing the abstract syntax of DSMLs
[4]. While abstract syntax metamodeling has been an
important step in model-based design and been used in
various model-based design frameworks, explicit and
formal specification of behavioral semantics has not
received much attention. For instance, the UML SPT
[1] does not have precisely defined semantics [2],

which creates possibility for semantic mismatch
between design models and modeling languages of
analysis tools. This is particularly problematic in safety
critical real-time and embedded systems domain,
where semantic ambiguities may produce conflicting
results across different tools.

We started addressing these problems by extending
our Model Integrated Computing (MIC) tool suite [6]
with a semantic anchoring infrastructure for DSMLs.
The Semantic Anchoring infrastructure [7] [8] includes
a set of well-defined “semantic units” that capture the
behavioral semantics of basic dynamic behavior
categories. The semantics of a DSML is defined by
specifying the transformation rules between the
abstract syntax metamodel of the DSML and that of a
selected semantic unit. In this paper we build on the
previous results and address the impact of system
heterogeneity by developing a method to specify
DSML semantics as the composition of semantic units.

The organization of this paper is the following:
Section 2 provides a short overview of the concepts of
semantic anchoring and semantic units. The core idea
for semantic unit composition is explained in Section
3. In Section 4, we demonstrate our approach using a
simple case study. Section 5 is our conclusion.

2. Semantic Anchoring and Semantic Units

A DSML can be formally defined as a 5-tuple

L = <A, C, S, MS, MC> consisting of abstract syntax
(A), concrete syntax (C), syntactic mapping (MC),
semantic domain (S) and semantic mapping (MS) [7].
The abstract syntax A defines the language concepts,
their relationships, and well-formedness rules available
in the language. The concrete syntax C defines the
specific notations used to express models, which may
be graphical, textual, or mixed. The syntactic mapping,
MC: C→A, assigns syntactic constructs to elements in
the abstract syntax. The DSML semantics are defined
in two parts: a semantic domain S and a semantic
mapping MS: A→S. The semantic domain S is usually
defined in some formal, mathematical framework, in

978-3-9810801-2-4/DATE07 © 2007 EDAA

terms of which the meaning of the models is explained.
The semantic mapping relates syntactic concepts to
those of the semantic domain.

Although DSMLs use many different modeling
concepts and notations for accommodating needs of
domains and user communities, the scope of well
understood behavioral abstractions are more limited.
Broad categories of component behaviors can be
represented by a finite set of basic behavioral
categories, such as Finite State Machine (FSM), Timed
Automaton (TA) and Hybrid Automaton (HA).
Similarly, analyzability requirements and the need for
correct-by-construction system composition have led to
the emergence of a set of basic component interaction
categories expressed as Model of Computations such
as Synchronous Data Flow (SDF), and Process
Networks (PN) [5]. This observation led us to propose
a semantic anchoring infrastructure for defining
behavioral semantics of DSMLs. The development and
use of the semantic anchoring infrastructure includes
the following tasks [7]:
1. Definition of a set of modeling languages {Li} for

capturing semantics of the basic behavioral
abstractions and development of the precise
specifications for all components of Li = <Ci, Ai,
Si, MSi, MCi>. We use the term semantic units to
describe these basic modeling languages.

2. Definition of the behavioral semantics of an
arbitrary DSML, L = <C, A, S, MS, MC>, is
accomplished by specifying the mapping,
MA: A→Ai, to a predefined semantic unit Li. The
semantic mapping, MS: A→S, of L is then defined
by the composition MS = MSi ○ MA, which
indicates that the semantics of L is anchored to the
Si semantic domain of the Li modeling language.

Figure 1. Semantic anchoring tool suite.

Figure 1 shows our semantic anchoring tool suite. It

comprises (1) the ASM-based AsmL tool suite [3] [9]
for specifying semantic units and (2) the MIC
modeling (GME) and model transformation (GReAT)
tool suites [6] that support the specification of
transformation rules between the DSML metamodels
and the Abstract Data Models defined in the semantic
units. The behavioral semantics of semantic units are
specified as a Control State ASMs [3] using AsmL.
Microsoft Research has developed a set of tools to

support the simulation, test case generation and model
checking for AsmL specifications.

3. Semantic Unit Composition

In the semantic anchoring infrastructure, we define

a finite set of semantic units, which capture the
semantics of basic behavioral and interaction
categories. If the semantics of a DSML can be directly
anchored to one of these basic categories, its semantics
can be defined by simply specifying the model
transformation rules between the metamodel of the
DSML and the Abstract Data Model of the semantic
unit [7]. However, in heterogeneous systems, the
semantics is not always fully captured by a predefined
semantic unit. If the semantics is specified from scratch
(which is the typical solution if it is done at all) it is not
only expensive but we loose the advantages of
anchoring the semantics to (a set of) common and well-
established semantic units. This is not only loosing
reusability of previous efforts, but has negative
consequences on our ability to relate semantics of
DSMLs to each other and to guide language designers
to use well understood and safe behavioral and
interaction semantic “building blocks” as well.

Our proposed solution is to define semantics for
heterogeneous DSMLs as the composition of semantic
units. If the composed semantics specifies a behavior
which is frequently used in system design (for
example, the composition of SDF interaction semantics
with FSM behavioral semantics defines semantics for
modeling signal processing systems [5]), the resulting
semantics can be considered a derived semantic unit,
which is built on primary semantic units, and could be
offered up as one of the set of semantic units for future
anchoring efforts. Note that primary semantic units
refer to the semantic units that capture the semantics of
the basic behavioral categories, such as FSM, TA and
HA. The composition approach we describe in the rest
of the paper is strongly influenced by Gossler and
Sifakis framework for composition [11] by clearly
separating behavior and interaction. In the following
we provide a brief overview of the composition
approach that will be followed by a case study.

Mathematically, a semantic unit specification can be
represented as a 2-tuple <A, R>, where A is an
Abstract Data Model specifying the abstract syntax of
the semantic unit and R represents a set of Operations
and Transition Rules (updates, in the ASM
terminology). We use M = Ι (A) to denote the set of all
instances of A. Then, each m ∈ M is a well formed
Data Model defined by the Abstract Data Model A and
R specifies the behavior of each m ∈ M. The behavior
in ASM is modeled by a sequence of steps, where a

Step in a given state includes the execution
simultaneously of all Rules whose guard conditions are
true (and the updates are consistent) [3]. Since ASM
states are mathematical structures (sets with basic
operations and predicates), it is easy to integrate
Abstract Data Models and Rules. The integrated tool
suite ensures that the behavior of domain models
defined in a DSML is simulated according to their
“reference semantics” by automatically transforming
them into AsmL Data Models using the transformation
rules.

We model semantic unit composition as structural
and behavioral compositions (see Figure 2). An ASM
instance includes an m data model, the R rule set and
the S dynamic state variables updated during runs. The
structural composition defines relationships among
selected elements of Abstract Data Models using
partial maps. In Figure 2, we demonstrate semantic
composition with two semantic units, SU1 and SU2.
The composed semantics is also represented as a 2-
tuple <A, R>. The structural composition yields the
composed Abstract Data Model A = <AC, ASU1, ASU2,
g1, g2 >, where g1, g2 are the partial maps between
concepts in AC, ASU1, and ASU2.

RC

SC

m ∈ MC = I(AC)

RSU1

SSU1

mSU1 ∈ MSU1 =
= I(ASU1)

RSU2

SSU1

mSU2 ∈ MSU2 =
= I(ASU2)

g1 : AC → ASU1 g2 : AC → ASU2

Get_()

Run_()

Get_()

Run_()

SU1 SU2

CS = <A, R>
A = <AC ,ASU1, ASU2, g1, g2>
R = <RC,RSU1,RSU2>

Figure 2. A graphical representation for

the semantic unit composition.

Behavioral composition is completed by the RC set

of rules that together with RSU1 and RSU2 form the R
rule set for the composed semantics. The role of the RC
set of rules is to receive the possible sets of actions that
can be offered by the embedded semantic units using
the Get(…) rules, to restrict these sets according to the
interactions created by the structural composition and
to send back selected subset of actions through the
Run(…) rules to complete their next step. The
executable actions are represented as partial orders
above the set of actions. (This will be shown in detail
in the next Section.)

In fact, the behavioral composition specifies a
controller, which restricts the executions of actions.
Since the behavior of the embedded semantic units can
be described as partial orders on the sets of actions
they can perform, the behavioral composition can be
modeled mathematically as a composition of the partial
orders.

4. Case Study: Semantic Specification for
EFSM

EFSM was developed by General Motors Research

to specify vehicle motion control software [12]. As a
case study, we defined the behavioral semantics of
EFSM as the composition of two primary semantic
units, Finite State Machine (FSM-SU) and
Synchronous Dataflow (SDF-SU). The full semantic
specification includes two composition steps: (1) the
semantics of EFSM Components are defined as the
composition of FSM-SU and SDF-SU; (2) the
semantics of SEFSM Systems are then defined as the
composition of the semantics of EFSM Components,
which can also be considered as a derived semantic
unit, called Action Automaton Semantic Unit, and
SDF-SU. Due to space limitations, we can only briefly
describe the first composition step. The full semantic
specifications can be downloaded from [10].

Figure 3. A simple EFSM component model.

4.1. EFSM Components

An EFSM model is a synchronous reactive system
including a set of components communicating through
event channels and data channels. An EFSM
component is an FSM-based model. We use a simple
component model shown in Figure 3 as an example to
explain the structure and the behavior of EFSM
components. The component communicates with other
components through ports, including a single input
event port (IEP), an output event port (OEP), two input
data ports (IDP1 and IDP2) and two output data ports

(ODP1 and ODP2). A component also includes an
FSM, where transitions are labeled with a trigger
event, a guard, an output event and set of actions.
Guards and actions are computational functions within
the component and receive their input data through
input data ports. The execution of an action (a
function) may produce new data, while the execution
of a guard only returns a Boolean value for the true or
false evaluation.

4.2. Primary Semantic Units Used

4.2.1. FSM-SU Specification. The specification
contains two parts: an Abstract Data Model AFSM-SU and
Operations and Transformation Rules RFSM-SU on the
data structures defined in A. The AsmL abstract class
FSM prescribes the top-level structure of a FSM. All
the abstract members of FSM are further specified by a
concrete FSM, which is an instance of the Abstract
State Model. (see detailed examples in [7])

structure Event
 eventType as String
class State
 initial as Boolean
 var active as Boolean = false
class Transition
abstract class FSM
 abstract property states as Set of State
 get
 abstract property transitions as Set of Transition
 get
 abstract property outTransitions as Map of
 <State, Set of Transition>
 get
 abstract property dstState as Map of <Transition, State>
 get
 abstract property triggerEventType as Map of
 <Transition, String>
 get
 abstract property outputEventType as Map of
 <Transition, String>
 get

The behavioral semantics of FSM-SU is specified
as a set of AsmL rules. The rule Run specifies the top-
level system reaction of a FSM when it receives an
event. Note that the ‘?’ modifier after Event means the
return from the Run rule may be either an event or an
AsmL null value.

abstract class FSM
 Run (e as Event) as Event?
 step
 let CS as State = GetCurrentState ()
 step
 let enabledTs as Set of Transition = {t | t in
 outTransitions (CS) where e.eventType =
 triggerEventType(t)}
 step
 if Size (enabledTs) >= 1 then
 choose t in enabledTs
 step
 CS.active := false
 step
 dstState(t).active := true
 step
 if t in me.outputEventType then
 return Event(outputEventType(t))
 else
 return null
 else
 return null

4.2.2. SDF-SU Specification. The AsmL specification
of the Abstract Data Model ASDF-SU is shown below.
Token is defined as an AsmL structure to package data
using the AsmL construct case. Port and Channel are
defined as first-class types. The Boolean attribute exist
of a port indicates whether the port has a valid data
token. When all the input ports of a node have valid
data tokens, the node is enabled to fire. In the
specification, Fire is an abstract function. A concrete
node will override the abstract function Fire with a
computational function. The AsmL abstract class SDF
captures the top-level structure of a model. The
abstract property inputPorts contains a sequence of the
SDF model’s input ports that do not belong to any
internal nodes. The abstract property outputPorts
expresses the similar meaning.

structure Value
 case IntValue
 v as Integer
 case DoubleValue
 v as Double
 case BoolValue
 v as Boolean
structure Token
 value as Value?
class Port
 var token as Token = Token (null)
 var exist as Boolean = false
class Channel
 srcPort as Port
 dstPort as Port
abstract class Node
 abstract property inputPorts as Seq of Port
 get
 abstract property outputPorts as Seq of Port
 get
 abstract Fire ()
abstract class SDF
 abstract property nodes as Set of Node
 get
 abstract property channels as Set of Channel
 get
 abstract property inputPorts as Seq of Port
 get
 abstract property outputPorts as Seq of Port
 get

The operational rule Run specifies the steps it takes
to execute a set of nodes. This rule can be considered
as a composition interface for SDF-SU. In the
beginning, some of the nodes in the set may not be
enabled, but they are supposed to be enabled by the
execution of already enabled ones. The rule non-
deterministically chooses an enabled node from the set
of enabled nodes (returned by the operational rule
GetEnabledNodes) and fires it. The execution of a
node consumes the data tokens in all input ports of the
node and produce tokens to all output ports as well. An
error is reported if there are no enabled nodes in the set
while the set is not empty.

abstract class SDF
 Run (ns as Set of Node)
 step while Size(ns) <> 0
 choose n in ns where n in GetEnabledNodes ()
 remove n from ns
 Fire (n)
 ifnone
 error ("Some Nodes are not enabled to fire.")

4.3. Compositional Semantic Specification for
EFSM Components

The behaviors of individual EFSM components can
be divided into two different behavioral aspects: the
FSM-based behaviors expressing reactions to events
and the SDF-based behaviors controlling the execution
of computational functions (actions and guards). In this
section, we formally specify the behavioral semantics
of EFSM components as the composition of two
primary semantic units: FSM-SU and SDF-SU. The
compositional semantics specification consists of two
parts: (1) an Abstract Data Model defining the
structural composition <AC, AFSM-SU, ASDF-SU, g1, g2>,
where g1: AC→AFSM-SU and g2: AC→ASDF-SU are
structural relation maps; and (2) Operations and
Transformation Rules specifying the behavioral
composition <RC , RFSM-SU , RSDF-SU >.

Figure 4. A compositional structure of the

EFSM component originally shown in Figure 3.

4.3.1. Structural Composition. The structural
composition defines mapping from elements in the
Abstract Data Model of the composed semantic unit to
elements in FSM-SU and those in SDF-SU. Figure 4
shows the role of FSM-SU and SDF-SU in the EFSM
component model by restructuring the example in
Figure 3. In the modified structure, the FSM model
controls the event-related behaviors, while the SDF
model takes charge of the data-related computations.
Comparing Figure 3 and 4, we can find that the overall
structure of the FSM model closely matches that of the
original EFSM component, except for events, guards
and actions. The trigger events and the output events in
the FSM model are renamed. The guards and actions
are represented as nodes in the SDF model. The
relationships between the FSM model and the SDF
model are specified by two maps: GuardMap and
ActionMap. In this section, we only briefly explain

how these two maps help to relate the FSM model with
the SDF model. More details will be introduced in the
following behavioral composition section.

The new compositional structure is built in a way
that each transition in the original component is
decomposed into three parts: a transition in the FSM
model, a node representing the guard and a node
representing the action in the SDF model. In the
original component, a transition can be unambiguously
located by the combination of the source state, the
trigger event, and the guard. In the compositional
structure, the information can be expressed by a 3-tuple
(s, e, n), where s refers a state in the FSM model; e is a
local trigger event in the FSM model; and n represents
a node in the SDF model. When a component receives
an event, this event is a global event and will not be
directly forwarded to the FSM model. The GuardMap
maps this global event to a set of 3-tuples, each tuple
referring to a transition in the original component
whose trigger event matches this global event. Using
the example in Figure 3 again, the event α is the trigger
event only for the transition T1. In the compositional
structure as shown in Figure 4, the T1 transition is
decomposed into the t1 transition in the FSM model,
whose source state is s and trigger event is e1in, and
the guard1 and action1 node in the SDF model. As a
result, GuardMap assigns the event α to the set
{(s, e1in, guard1)}.

class EventPort
 var evnt as Event = Event ("")
 var exist as Boolean = false
abstract class Component
 abstract property inPort as EventPort
 get
 abstract property outPort as EventPort
 get
 abstract property GuardMap as Map of <String,
 Set of(String, String, Node?)>
 get
 abstract property ActionMap as Map of <String,
 (Set of Node, String?)>
 get
 abstract property fsm as FSM
 get
 abstract property sdf as SDF
 get

4.3.2. Behavioral Composition. In essence, the
behavioral composition specifies the rules RC, which is
akin to a component-level controller (or scheduler) that
orchestrates the executions and interactions of the FSM
model and the SDF model.

The execution of a transition in the original EFSM
component can be decomposed into a three-step
process: (1) the evaluation of the guard functions for
all outgoing transitions from the current state as nodes
in the SDF model; (2) the selection of an enabled
transition in the FSM model; and (3) the execution of
actions of the transition as nodes in the SDF model.
The three steps are related to each other by the maps

GuardMap and ActionMap. The output event produced
by the execution of a transition in the FSM model is a
local event. ActionMap maps it to a 2-tuple ({n}, e),
where {n} refers to a set of nodes (actions) in the SDF
model and e refers to a global output event that will be
propagated out of the component. For instance, the
execution of the t2 transition of the FSM model in
Figure 4 generates a local event e2out. Since the t2
transition corresponds to the T2 transition in the
original component (Figure 3), which is attached with
actions, action2, action3 and action4, and an output
event v, the ActionMap maps the local event e1out to a
2-tuple ({action2, action3, action4}, v) accordingly.

The rules verbalized above are specified in AsmL as
Operations and Transition Rules. The operational rule
Run of Component specifies the top-level component
operations as a sequence of updates. The AsmL
construct require asserts that the component’s input
event port must have a valid event. The rule first
consumes the event in the port and checks whether this
event triggers further updates in the component. If the
event does, the rule MapToLocalInputEvent returns the
corresponding local event used to trigger the FSM
model; if not, a null value is returned and the reaction
is completed. If a valid local event is returned, it
activates the FSM model. The reaction of the FSM
model returns a local output event. If the EFSM
component produces an output event in this reaction,
the rule MapToGlobalOutputEvent maps the local
event to the global output even, which is then stored in
the output port of the component.

abstract class Component
 Run ()
 require inPort.exist
 step
 inPort.exist := false
 let localEvent as Event? =
 MapToLocalInputEvent (inPort.evnt)
 step
 if localEvent <> null then
 step let e as Event? = fsm.React (localEvent)
 step
 let globalEvent as Event?=MapToGlobalOutputEvent(e)
 step
 if globalEvent <> null then
 outPort.evnt := globalEvent
 outPort.exist := true

Furthermore, we observe that this behavioral
semantics specification is not limited to the EFSM
components. It actually specifies the semantics of a
common behavioral category that captures the reactive
computation behaviors. Therefore, we can consider the
semantic specification for EFSM components as a new
derived semantic unit, called Action Automaton
Semantic Unit (AA-SU). We can leverage this AA-SU
to compositionally specify the semantics of EFSM
systems. (Please refer to [10] for the full specification.)

5. Conclusion

Compositional semantic specification is a necessary

step for making DSMLs semantically precise and
practical. The proposed approach builds on a large
body of work on ASM [3], semantics of composition
[5], and on our earlier work on semantic anchoring [7]
[8]. As a future step we will continue the construction
of a library of primary semantic units and will move
toward increased automation in semantic unit
composition.

6. References

[1] Object Management Group. UMLTM Profile for

Modeling and Analysis of Real-Time and Embedded
systems. realtime/05-02-06.

[2] Susan Graph, Ileana Ober. How Useful is the UML
profile SPT Without Semantics? In Workshop on the
usage of the UML profile for Scheduling, Performance
and Time (SIVOES '04), Toronto Canada, 2004.

[3] E. Boerger and R. Staerk. Abstract State Machines: A
Method for HighLevel System Design and Analysis.
Springer, 2003.

[4] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Modelintegrated development of embedded software.
Proceedings of the IEEE, volume 91, 2003.

[5] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu,
Xiaojun Liu, Jozsef Ludvig, Stephen Neuendorffer,
Sonia Sachs, Yuhong Xiong. Taming Heterogeneity The
Ptolemy Approach. Proceedings of the IEEE, volume
91, pages 127–144, 2003.

[6] The MIC Tool Suite.
 http://www.escherinstitute.org/Plone/tools/suites/mic.
[7] Chen K., Sztipanovits J., Neema S., Emerson M.,

Abdelwahed S. Toward a Semantic Anchoring
Infrastructure for Domain-Specific Modeling
Languages, In Proceedings of the Fifth ACM
International Conference on Embedded Software
(EMSOFT’05), pages 35-44, September 2005.

[8] Chen K., Sztipanovits J., Abdelwahed S., Jackson E.
Semantic Anchoring with Model Transformations. In
Proceedings of European Conference on Model Driven
Architecture -Foundations and Applications (ECMDA-
FA), November 2005. LNCS, vol. 3748. pages 115-129,
Springer-Verlag, 2005.

[9] The Abstract State Machine Language.
 www.research.microsoft.com/fse/asml.
[10] The Semantic Anchoring Tool Suite.
 www.isis.vanderbilt.edu/SAT.
[11] Gossler, G., Sifakis, J. Composition for Component-

Based Modeling. Science of Computer Programming,
vol. 55, 2005.

[12] S. Birla, S. Wang, S. Neema, and T. Saxena. Addressing
cross-tool semantic ambiguities in behavior modeling
for vehicle motion control. In Automotive Software
Workshop 2006, April 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

