Automatic Generation of Functional Coverage Models from
Behavioral Verilog Descriptions

Shireesh Verma
shireesh@ics.uci.edu

lan G. Harris
harris@ics.uci.edu

Kiran Ramineni
kiran@ics.uci.edu

Department of Computer Science
University of California Irvine
Irvine, CA 92697, USA

ABSTRACT

As an industrial practice, the functional coverage models are
developed based on a high-level specification of the Design
Under Verification (DUV). However, in the course of im-
plementation a designer makes specific choices which may
not be reflected well in a functional coverage model devel-
oped entirely from a high-level specification. We present
a method to automatically generate implementation-aware
coverage models based on the static analysis of a HDL de-
scription of the DUV. Experimental results show that the
functional coverage models generated using our technique
correlate well with the detection of randomly injected errors
into a design.

1. INTRODUCTION

Functional verification is known to be a difficult task ac-
counting for 70% of the development time [22, 3]. Simulation-
based verification and formal verification are two vehicles
used for this task. Simulation-based verification is the prin-
ciple means of verification well accepted in the industry [8, 9,
7, 23, 17] due to the tractability and usability of the simula-
tion process. Simulation-based verification involves several
steps, such as test generation and response evaluation, but
coverage models [10] are central to all steps in the simula-
tion process. A coverage model defines a set of criteria that
are used to determine which design errors are detected by a
test sequence. A coverage model provides an empirical mea-
sure of the completeness of a test sequence [11] and the error
detection criteria can be used to direct the test generation
process[5].

Most behavioral coverage metrics focus on the syntactic
properties of a design [4], placing little emphasis on cover-
age from a functional standpoint. For example, statement
coverage seeks maximum number of statements be executed,
the number depending on the adequacy criteria being con-
sidered. Similarly, branch and path coverage criterion seek
adequate coverage on branches and paths [14]. These met-
rics do not ensure completeness with respect to the imple-
mentation. In order to instill a measure of coverage confi-
dence with respect to the functionality, a functional cover-
age model is required. The construction of such a coverage

!This research was supported by the National Science Foun-
dation under grant CCF 0437116

978-3-9810801-2-4/DATEQ07 © 2007 EDAA

model is an entirely manual process [12, 21] even with the
state of art in industry today. The development of a func-
tional coverage model is done based on a thorough study
of the high-level design specification documents written in
English. A list of design features is extracted thereafter.
Each of these features is interpreted in terms of a relation
between signals in the executable design description. These
relationships are expressed in terms of coverage monitors
written in a Hardware Verification Languages (HVLs) such
as e, SystemC, and Vera. These coverage monitors keep
track of coverage of design functionality and provide a nu-
merical measure for it.

A major downside to using such a model emanates from
the inherent gap between specification and implementation.
A hardware designer interprets an abstract specification and
makes choices which culminate in an implementation [24].
In the course of this process the designer may introduce
some restrictions on the behavior otherwise allowable from
interpretation of only the specification. A functional cover-
age model derived only from specification is bound to miss
such fine granular intricacies introduced in the behavior.

To the best of our knowledge there is no general ap-
proach to generate functional coverage models automatically
based on the implementation. In this work we propose a
method which allows generation of a functional coverage
model based on a static analysis of the HDL description
of the DUV, which allows us to obtain for every signal, a
dependency chain of signals and the restrictions imposed
on their values domains. The output of our technique is
a set of coverage groups in Vera [13] which collectively de-
scribe the functional coverage model. Each coverage group
specifies a function of a set of signals in the design. The
function is evaluated at each clock cycle during simulation.
Functional coverage is the fraction of coverage groups whose
functions evaluate to TRUE at some point during simula-
tion. The coverage groups are defined so that satisfying all
coverage functions during simulation indicates that the test
stimuli thoroughly explore the functionality as it related to
the given signals. Functional coverage using our technique
is well correlated to error detection.

The remainder of the paper is organized as follows. An ex-
ample illustrating the need of an precise method for develop-
ment of implementation-cognizant coverage models is shown
in Section 3. The Overview of our approach is summarized
in Section 4. The construction and algorithm for our static
analysis approach is explained in Section 5. The experimen-
tal infrastructure required is discussed in Section 6. The

01: always @(x)

02: begin

03: if(a)

04: if (wr_en)
05: b=1;
06: end

Figure 1: Functional Coverage Example

technique used to simulate real design errors is presented
in Section 7. The results are presented in Section 8 and
conclusions are described in Section 9.

2. PREVIOUS WORK

Previous research has explored the development and use
of functional coverage models. Research presented in [6] pro-
poses manual extraction of an FSM based coverage model
from design specification. Work described in [12, 25] intro-
duces a manually developed coverage model based on cross-
product combinations of signal values. In [24] constraints
specified as boolean expressions are used for generating cov-
erage model for interface protocols. Research presented in
[19] builds a hierarchical temporal event relation graph for
constraints described in FLTL [22] and an event coverage
model is generated by an eliminative traversal of the graph.
In [16] authors propose a way to measure completeness of
a set of properties expressed in CTL [20]. For each signal
involved in the set of properties, they find the set of de-
sign states, where changing the value of that signal could
invalidate a property from the given set of properties un-
der verification. A union of all such design state sets is
taken over all such signals. The number of states in the
union expressed as a percentage of the total number of de-
sign states is considered an indicator of property coverage.
However, the complexity of this process is same as that of
model checking. The work described in [18] outlines a for-
mal method to compare a specification to its corresponding
implementation. They lay down four criteria for detecting
a slack between specification and implementation. If any of
these criteria is found to be a non-empty set then either the
specification is under-specified or implementation is not in
compliance with the intent of specification. But, the com-
plexity of this process is worse than that of model checking.

3. FUNCTIONAL COVERAGE PROBLEM

A complete functional coverage model must consider de-
tails of the implementation because the implementation can
include relationships between signals which are not described
in the specification. Consider a small Verilog design exam-
ple shown in Figure 1 consisting of three boolean signals a, b
and wr_en. Assume that the specification requires the CTL
property in Equation 1 must always hold in order for the
design to be functionally correct.

AG(a — b) (1)

The property in Equation 1 requires that if the value of
a is 1 then the value of b must be 1. Any deviation from
this will be considered an erroneous behavior. This property
involves only the signals a and b. Each of the two signals
has a domain of {0,1}. Hence, a total of following four

valuations exist.

(a,b) = {(0,0),(0,1),(1,0),(1,1)}

Of the four possible valuations, three of them are legal
{(0,0),(0,1),(1,1)}, and one is illegal {(1,0)}. However, the
analysis of implementation in Figure 1 reveals an additional
dependency on the signal wr_en. In this case, a total of
following eight valuations exist.

(a7 b7 wr_en) = {(07 07 0)7 (07 07 1)7 (07 17 0)7 (07 17 1)7

(17070)7 (17 07 1)7 (17 170)7 (17 17 1)}

Of the eight possible valuations, seven of them are legal
{(0,0,0), (0,0,1), (0, 1,0), (0,1,1), (1,0,0), (1,1,0), (1, 1, 1)},
and one is illegal {(1,0,1)}. It can be noticed that the now
legal valuation, (a,b, wr-en) = (1,0,0) violates the property
depicted in Equation 1 since (a,b) = (1,0). In this case if
the design is not analyzed and coverage model is developed
only from the high level property, the simulation results will
indicate a false design error.

Here, each valuation of the signals will become a coverage
monitor. The set of coverage monitors will be divided into
two groups.

o Good Points - These are valuations which legal and
are allowed to occur during simulation. A coverage
monitor will be created for each good point to detect
whether or not it occurs during simulation. The frac-
tion of good points which occur during simulation is
the reported functional coverage value.

e Bad Points - These are valuations which are illegal
and must never occur. A coverage monitor will also
be created for each bad point, but if a bad point is
found to occur then simulation is halted because an
error has been detected. Bad points are equivalent to
assertions.

Once the good points and bad points have been identified,
the VERA language is used to implement coverage monitors
using its coverage group [13] construct. The coverage groups
are added to the testbench and their conditions are checked
during simulation. The functional coverage value is the frac-
tion of good points whose coverage groups have detected at
least one occurrence during simulation.

4. SYSTEM OVERVIEW

The input to our coverage model generation engine is a
description of the DUV in Verilog HDL. The output is a
functional coverage model expressed as a set of VERA cov-
erage groups [13].

The coverage points allow us to measure the degree of ex-
ploration of design behavior pertaining to associated signals
and in the functional vicinity of aggregate of those signals.
In order to keep this discussion independent of any partic-
ular verification language, we will refer to a VERA cover-
age group as a coverage monitor for the rest of this paper.
A functional coverage model is a set of coverage monitors
which correspond to the HDL code in question.

Figure 2 illustrates the structure of our functional cover-
age model generation engine.

Signal

List
Control-Data Coverage
; Dependency Good/Bad
Verilo
P g m Flow Graph Analysis Cvg.Points Code
arser Generation Generation

Figure 2: The Engine Organization

Verilog Parser Synopsys VCS simulator’s parser was used
to parse the input Verilog description. The VCS simu-
lator allows access to its parsed intermediate represen-
tation through an interface to its internal data struc-
tures.

Control-Data Flow Graph Generator This component
takes as input the intermediate representation from
the Verilog parser. This was implemented in as a VPI
application in C language with the aid of standard
functions available from VPI (PLI 2.0).

Dependency Analyzer The input to this unit is a set of
CDFGs and a list of signals in the Verilog descrip-
tion. For every signal, the assignments made to it
along every control flow path closest to the leaf node
are analyzed for its dependencies on the other signals.
The other signals are then analyzed in their own turn.
This dependency analysis spans across the set of CD-
FGs and continues until a terminal dependency is hit.

Coverage Code Generator The coverage code generator
takes as input the above partition of coverage points.
It generates VERA code to implement coverage mon-
itors based on this partition.

S. FUNCTIONAL COVERAGE MODEL GEN-

ERATION

Each of the important components highlighted in Figure 2
will be described in the following sections.

5.1 Control-Data Flow Graph Generation

A Verilog design D can be specified as a tuple (V| B),
where:

e V is the set of signals in the design, where v € V has
an associated finite domain of values.

e B s a set of processes each of which contain procedural
statements blocks.

Let us assume G is the set of Control-Data Flow Graphs
(CDFGs) g corresponding to each of the processes b, b € B.
Let us also assume that C(b) is the set of all conditional
constructs in the process b. A CDFG g, for a process b can
be defined as a tuple (N¢, Np, E), where:

e N¢ is a set of nodes that represent control flow in the
graph such that for every n,n € N¢ there is exactly
one ¢, c € C(b).

e Np is a set of nodes that represent only the data flow
in the graph.

01: always @(x)

02: begin

03: b=1;

04: if(a)

05: if (wr_en)
06: b=2;
07: b=3;

08: end

Figure 3: A Verilog Process Block

e Eisthe set of edges where E C (NcUNp)x(NcUNp).
For an edge (u,v) € E, u is a direct predecessor of v
and v is the direct successor of u.

Let N be a set of all the nodes such that N = N¢ U Np.
Let us assume P is the set of all control flow paths in the
graph. A control flow path p € P is a sequence of nodes
n,n € N connected by edges e,e € E.

Let A be the set of all assignments in the process corre-
sponding to the graph. Let A(n) be the set of assignment
operations performed in a node n,n € Np.

A= |J AMm)

VneENp

We assume that assignments to a signal are performed only
in a single process. Let Graph(v) be the graph for the pro-
cess in which the assignments to signal v,v € V are made
such that |Graph(v)| < 1. Let A, be set of all the assign-
ments made to signal v. Hence, A(m) N A, is the set of
assignments made to a signal v in a node m,m € Np. We
assume that |A(m)N A,| < 1 such that there is at most one
assignment made to signal v in node m.

Let A,(v) be an assignment to a signal v,v € V such that
it is made in a node Np(v), Np(v) € Np which is closest to
the terminal node on a control flow path p,p € P.

Let us define a set Dom(n, p) which contains all the nodes

preceding the node n on a path p in the graph, where Dom(n,p) C

N. Let COND(n) be the conditional construct ¢ corre-
sponding to the node n, such that ¢ € C'(b) and COND(n) =
p,Vn € Np.

Let Cdom(n,p) be a set of nodes, such that

U

leDom(n,p)U{n}

Cdom(n,p) = COND(I)

Let Cdomygr(n,p) be set of variables representing the value

of conditional predicates such that there is exactly one cyar, Cyar €

Cdomyar(n,p) for every c,c € Cdom(n,p).

Let Cdomyai(n, p) be set of values of the variables of con-
ditional predicates such that there is exactly one cyq1, Cvar €
Cdomyqi(n, p) for every c,c € Cdomyar(n,p).

Figure 4: The Control-Data Flow Graph for a Ver-
ilog Process

5.2 Dependency Analysis

We need to determine data and control dependencies be-
tween signals across all Verilog processes. This dependency
information is required to build a coverage model based on
cross product of signals. Let us define a function Rhs(a)
which returns the expression on the RHS of an assignment
a. In case, the expression is a constant, the constant value
is returned. Let Exzpr(c) be a function which returns the
expression corresponding to the predicate of the conditional
construct c. Let Var(FE) be the set of signals involved in an
expression FE.

Let gy, be a variable such that for every (A,(v)) Jquv,p €
{0,1} such that

1
Qv,p:{ 0

Let L;q and L}, be a set of signals/variables and Ly, and
L!,,; be the set of values for these signals/variables such that
there is a one-to-one correspondence between these two sets.
This set pair represents a coverage point.

Let M be a set consisting of pairs (X,Y) such that X is
set of signals v,v € V (or variables) and Y is a set contain-
ing their corresponding valuations. Hence, every m, m € M
corresponds to a coverage point. Let M correspond to the
set of good coverage points and assume a set M’ which rep-
resents bad coverage points.

Figure 5 shows the algorithm for our coverage model gen-
eration approach. We use a Verilog process shown in the
Figure 3 and its corresponding CDFG in the Figure 4 in or-
der to illustrate our algorithm. The rectangular nodes are
data nodes whereas oval nodes represent control nodes. We
initialize the sets Liq, Lyar, L}y, Liyar, M, M'. Lets say we
pick the signal b, and find Graph(v), which gives the graph
corresponding to the process in which b is being assigned,
as shown in line 01 of routine ProcessSig.

There are 3 control flow paths in the Graph(v), let us
call them pl,p2,p3. We start with path pl. Api(v) cor-
responds to the assignment b = 3. So Rhs(Ap1(b)) = 3.
Here, Np1(v) is the terminal node of the graph. We have
Cdomyar(Np1(v),pl) = {a,wr_en} and the corresponding

v = Rhs(Ap(v))
v # Rhs(Ap(v))

ProcessSig(Signal v, Set G)
01: foreach (Graph(v) € G)
02: foreach (p € P)

03: if (Rhs(Ap(v)) == constant)

04: Lig = Lig U Cdomyar(Np(v),p) U {qv};

05: L, = L, U Cdomyar(Np(v),p) U{qu};

06: Lyai = Lyar U Cdomyq(Np(v),p) U {1};

g;: ng)al = qual U Cdomyai(Np(v),p) U {0};
: else

09: Lig=L;qU Cdomvm(Np(v),p);

10: Lyar = Ly Y Cdomval(Np(v)a)5

11: M:MU{(LidaLval)};

122 M =M UL, L)}k

13: foreach (c € Cdom(Np(v),p)

14: foreach (¢ € Var(Ezpr(c)))

15: ProcessSig(q,G);

16: foreach (r € Var(Rhs(Ap(v))))

17: ProcessSig(r,G);

18: return 0;

BuildModel()

01: M <+ ¢; M’ + o

02: foreach v € V'

03: Lig < @5 Lyat < @5 Ly < 95 L 1 = ;3
04: ProcessSig(v,G);

05: return (M, M');

Figure 5: Coverage Model Generation Algorithm

Cdomuyai(Np1(v),pl) = {1,1}. Since Rhs(Ap1(D)) is a con-
stant, we will need to add ¢, to our coverage points.
So, Lia = {a,wren,qpp1}, Lya = {1,1,1} and Lj; =
{a,wren,qp1}, L., = {1,1,0}. We add these pairs to
the lists M and M’ of good and bad coverage points re-
spectively. This is computed in lines 02 through 12 of rou-
tine ProcessSig. Although, there are no expressions in the
conditional predicates and in the assignments in the given
example, the above steps will have to be repeated for each
of the signals involved in any such expressions in case they
are encountered, as shown in lines 13 through 17 of routine
ProcessSig.

5.3 Coverage Code Generation

The process discussed in Section 5.2is repeated for the
paths p2 and p3 and we obtain the following set of cov-
erage points. M = {(a = Lywren = 1,¢pp1 = 1),(a =
l,wreen = 0,qpp2 = 1),(a = 0,wren = 0,qp2 = 1)}
and M' = {(a = L,wreen = 1,qpp1 = 0),(a = L,wr_en =
0,qp2 = 0),(a = 0,wren = 0,2 = 0)}. The coverage
monitor tracks the occurrences of these points. Occurrence
of a point from the set M signifies coverage of that point
from functional standpoint while occurrence of a point from
the set M’ indicates a functional error. Figure 6 shows the
VERA coverage group for the above obtained functional cov-
erage model.

6. EXPERIMENTAL SETUP

In order to illustrate our approach we built the following
experimental infrastructure.

Benchmark Design The most challenging issue for any
functional verification technique is its scalability. With
this caveat in consideration we decided to use design
of an industrial scale microprocessor for the purpose
of demonstrating our approach. We chose a Verilog
design description of a DLX processor available from

01: coverage_group example {

02: sample_event = @ (posedge CLOCK);

03: sample a,wr_en,qy 1, qp, p2;

04: cross func_cov (a,wr_en, gy p1,qp,p2){

05: state cvg_l ((a == 1)&&(wr-en == 1)&&(qp,p1 == 1));
06: state cvg 2 ((a == 1)&&(wr_en == 0)&&(qp p2 == 1));
07: state cvg 3 ((a == 0)&&(wr_en == 0)&&(qp p2 == 1));

then injected at random for each program. An injected error
was considered detected if it caused a bad coverage point to
be exhibited and hence verification error being flagged. The
number of errors detected was recorded. This number com-
puted as percentage of injected errors provided percentage
error detection. After each detected error a fresh simulation

08: bad_state fault_1 ((a == 1)&&(wr-en == 1)&&(gp,p1 == 0));swith the same DLX program was started. This processes

09: bad_state fault_2 ((a == 1)&&(wr_en == 0)&&(qp p> ==
10: bad_state fault_3 ((a == 0)&&(wr_en == 0)&&(qp p2 ==
11: }

12: }

Figure 6: Coverage Code

ASPIDA (Asynchronous Open-Source IP of the DLX
Architecture) project [1]. The DLX is a 32-bit 5-stage
pipelined RISC CPU architecture [15].

Simulator We used the commercial VCS Verilog simulator
available from Synopsys. It also supports the Verilog
Procedural Interface (VPI) library of Verilog Program-
ming Language Interface (PLI 2.0).

Test Bench The test bench was written in VERA [2]. The
ASPIDA DLX implementation does not include Ver-
ilog implementations for peripherals like instruction
memory, data memory, bus etc. These were mod-
eled as high-level transaction based [13] components in
VERA. The test bench takes the DLX program pro-
vided and stores it in the modeled instruction memory.

Stimuli Generation Stimulus to the DUV are valid DLX
programs with their semantics and instruction defined
in [15]. A basic DLX program consisting of about 23
instructions was constructed from code fragments from
[15]. This program showed a fairly good functional
coverage with respect to the set of properties used. A
DLX test program generator was implemented using
VERA Stream Generator (VSG) [13]. It generates le-
gal DLX programs using VERA’s randomization and
constraint solving capabilities. This test program gen-
erator was used to generate different DLX programs
by randomly appending valid DLX instructions to the
core DLX program. 20 DLX programs were generated
using the program generator.

Coverage Monitoring The coverage monitors were im-
plemented as VERA coverage groups and generated
as described in Section 4. If a good coverage point is
encountered during simulation, it contributes towards
the coverage number while if a bad coverage point is
encountered, a verification error is flagged and the sim-
ulation exits.

Error Simulation In order to compute the number of er-
rors detected we needed an error simulator which could
excite equivalents of realistic design errors. The error
injection mechanism is discussed in more detail in Sec-
tion 7.

Each of the generated DLX programs was used to simulate
the design. The number of good coverage points exhibited
for each program was recorded. This number computed as
percentage of the total number of good points provided func-
tional coverage for the corresponding program. Errors were

was repeated until an adequate number of errors were sim-
ulated.

7. ERROR INJECTION

Error simulation is required to demonstrate the efficacy
of our approach for generating functional coverage model.
An efficient error injection mechanism is needed which is
capable of injecting errors which successfully mimics real
design errors. We chose to randomly change the values of
signals during the simulation. Even in case of non-boolean
signal values, our coverage function required either the signal
has a specified value or it has any other value. So the random
value injection is essentially boolean in nature.

We use the following mechanism for error injection. It
employs three levels of randomization. We exploit VERA’s
randomization and constraint solving capabilities for this
purpose.

Signals A list of signals satisfying the criteria mentioned
later in this section is prepared. A signal is chosen at
random for injecting error for each simulation run.

Values A value domain for each signal is specified. It is
effectively reduced to a boolean domain for all signals
as discussed in this section earlier. A value is chosen
at random for the signal chosen in the previous step
for each simulation run.

Time For every simulation run, the random signal and value
selected in the previous steps is injected during simu-
lation at a random simulation time.

During any single simulation run only one randomly error
generated is injected. Errors are only injected on signals
which are involved in the generated coverage model. Error
injection is restricted in this way in order to focus on errors
which impact the developed coverage model. The coverage
monitors generated by our technique are meant to depict
the developed coverage model. If an error does not impact
the coverage model then there is no guarantee that is will be
captured by our coverage monitors. For this reason we need
to inject errors which have a high likelihood of impacting
the coverage model.

8. EXPERIMENTAL RESULTS

We evaluate the effectiveness of our technique by comput-
ing functional coverage for the DLX benchmark and com-
paring functional coverage to error coverage, the fraction of
injected errors actually detected. The measure of the ef-
fectiveness of our functional coverage is to see how closely
functional coverage predicts the error detection rate. An
optimal functional coverage model would exactly match the
error coverage.

We generated our coverage model in 37 seconds on a 1503
MHz Sun UltraSPARC cpu with SunOS version 5.9. Our
coverage model consisted of a total of 7887 coverage points,

¢ Functional Coverage —%—Perfect Coverage =~ Statement Coverage |

100 -
A A A Fa
90 - & Bamb B aa
FaN yaN AS
A
s o0 A
=
3 A
Pl P Fiy
£ 70 s s
@
E FaN
L.
2 6 1 . A
*
s . YO
9 .
c 50 A
2 ¢ $e
* L 2 2
40 4
30 T :
30 40 50

Error Coverage

Figure 7: Coverage vs Error Detection

out of which 5349 were good points and 2538 were bad
points. These constitute a small percentage (<< 1%) of
the total number of points in the coverage space.

Figure 7 shows a graphical representation of the evalua-
tion results. It shows two sets of points, 1. Functional
Coverage based on our functional coverage values, and 2.
Statement Coverage. A total of 20 DLX programs gen-
erated as described in Section 6 were used. Each of the
20 DLX programs were executed before any error injection.
The coverage monitors generated as described in Section 4
provided the functional coverage and the percentage func-
tional coverage for each of these correct executions was com-
puted. A total of 100 errors were then injected as explicated
in Section 7 for each program. The number of injected errors
detected was recorded for each DLX program and error de-
tection percentage was computed. The line labeled Perfect
Coverage shows where all points would lie for a perfect
coverage metric which is always exactly equal to error cov-
erage.

It is clear at a glance that the points for our functional
coverage are closer to the perfect line than those for state-
ment coverage. This improvement can be seen formally by
evaluating the average coverage difference, the difference
between functional/statement coverage and error coverage.
A small difference indicates a more accurate metric. The
average coverage difference for our functional coverage is
7.9% as compared to 41.4% for statement coverage. We also
compute the standard deviation for coverage difference
for both functional and statement coverage. It is 5.5% for
our functional coverage as compared to 10.7% for statement
coverage.

9. CONCLUSIONS

We have successfully performed automatic generation of
coverage monitors representing a functional coverage model
for the design of industrial scale DLX processor from a static
analysis of the HDL description of its design. The design was
simulated with randomly generated valid DLX programs.
Functional coverage was computed from the data collected
by coverage monitors. Errors were then injected and per-
centage error detection was computed. The computed func-
tional coverage was found to closely track error detection
percentage than the statement coverage tracked it, which
is a testimony to the quality of the coverage model gener-
ated.

10 REFERENCES

ASPIDA. http://www.ics.forth.gr/carv/aspida.

[2] Open vera. http://www.open-vera.com.

[3] D. Abts and M. Roberts. Verifying large-scale multiprocessors
using an abstract verification environment. In Design
Automation Conference. ACM Press, 1999.

[4] B. Beizer. Software Testing Techniques, Second Edition. Van
Nostrand Reinhold, 1990.

[5] M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal, G. Mas, and
R. Smeets. A study in coverage-driven test generation. In
Design Automation Conference. ACM Press, 1999.

[6] D. G. et.al. Coverage-directed test generation using symbolic
techniques. In FMCAD. IBM Science and Technology, Haifa
Research Lab, Haifa Israel, 1996.

80 [7] F. C. et.al. Functional verification methodology of chameleon

processor. In Design Automation Conference. ACM Press,
1996.

[8] A. Evans, A. Silburt, G. Vrckovnik, and T. Brown. Functional
verification of large asics. In Deszgn Automation Conference.
ACM Press, 1998.

[9] L. Fournier, Y. Arbetman, and M. Levinger. Functional
verification methodology for microprocessors using the genesys
test program generator. In Design, Automation and Test in
Europe Conference and Ezhibition. IEEE, 1999.

[10] E. Gaudette, M. Moussa, and I. G. Harris. A method for the
evaluation of behavioral fault models. In High-Level Design
Validation and Test Workshop, 2003.

[11] A. Gluska. Coverage-oriented verification of banias. In Design
Automation Conference. ACM Press, 2003.

[12] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv. User
defined coverage - a tool supported methodology for design
verification. In Design Automation Conference. ACM Press,
1998.

[13] F. Haque, J. Michelson, and K. Khan. The Art of Verification
with Vera. Verification Central, 2001.

[14] 1. G. Harris. Hardware-software covalidation: Fault models and
test generation. IEEE Design and Test of Computers,
20(4):40-47, July-August 2003.

[15] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 2002.

[16] Y. Hoskote, T. Kam, P.-H. Ho, and X. Zhao. Coverage
estimation for symbolic model checking. In Design Automation
Conference. ACM Press, 1999.

[17] M. Kantrowitz and L. M. Noack. I'm done simulating; now
what? verification coverage analysis and correctness checking of
the decchip 21164 alpha microprocessor. In Design Automation
Conference. ACM Press, 1996.

[18] S. Katz, O. Grumberg, and D. Geist. "have i written enough
properties?” - a method of comparison between specification
and implementation. IBM Haifa Research Lab, Haifa Israel,
1997.

[19] Y.-S. Kwon, Y.-I. Kim, and C.-M. Kyung. Systematic
functional coverage metric synthesis from hierarchical temporal
event relation graph. In Design Automation Conference. ACM
Press, 2004.

[20] K. L. McMillan. Symbolic Model Checking. Springer, 1993.

[21] J. Monaco, D. Holloway, and R. Raina. Functional verification
methodology for the powerpc 604tm microprocessor. In Design
Automation Conference. ACM Press, 1996.

[22] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel.
Simulation-guided property checking based on multi-valued
ar-automata. In Design, Automation and Test in Europe
Conference and Ezhibition. IEEE, 2001.

[23] J. Shen, J. Abraham, D. Baker, T. Hurson, and M. Kinkade.
Functional verification of equator mapl1000 microprocessor. In
Design Automation Conference. ACM Press, 1999.

[24] K. Shimizu. Deriving a simulation input generator and a
coverage metric from a formal specification. In Design
Automation Conference. ACM Press, 2002.

[25] A. Ziv. Cross-product functional coverage measurement with
temporal properties-based assertions. In Design, Automation
and Test in Europe Conference and Ezhibition. IEEE, 2003.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

