
Incremental ABV for Functional Validation of TL-to-RTL Design Refinement ∗

Nicola Bombieri Franco Fummi Graziano Pravadelli
Dipartimento di Informatica - Università di Verona

{bombieri, fummi, pravadelli}@sci.univr.it

Abstract
Transaction-level modeling (TLM) has been proposed as the lead-
ing strategy to address the always increasing complexity of dig-
ital systems. However, its introduction arouses a new challenge
for designers and verification engineers, since there are no mature
tools to automatically synthesize an RTL implementation from a
transaction-level (TL) design, thus manual refinements are manda-
tory. In this context, the paper presents an incremental assertion-
based verification (ABV) methodology to check the correctness of
the TL-to-RTL refinement. The methodology relies on reusing as-
sertions and already checked code, and it is guided by an assertion
coverage metrics.

1. Introduction
EDA researchers are proposing to modify the design and veri-

fication flow of embedded systems in the following directions, to
deal with always increasing complexity [1]:

• raising the abstraction level to simplify system-level design, ar-
chitecture exploration and functional verification;

• joining static and dynamic verification to provide an easier and
more powerful way to verify complex systems;

• exploiting a reuse-based methodology, where both verification
rules and IP-cores can be reused moving from an abstraction
level to another.

According to these considerations, the emerging transaction
level modeling [2] and assertion-based verification [3] are gaining
consensus more and more.

In a TL model, the system is designed and verified in terms
of functionalities characterized by high-level I/O events and data
transfers between computational blocks. The communication,
which is separated from the computation, is modeled by channels
that provide high-level communication primitives among the com-
putational components. On the contrary, implementation details re-
lated to timing, algorithm optimization, communication protocol,
etc., are hidden and may be added at lower levels of abstraction.
Transaction level modeling is motivated by a number of practical
advantages. These include:

• implementation details are abstracted while preserving the be-
havioral aspects of the system; this allows a faster simulation
(up to 1,000x) than at RTL;

• IP components and buses can be modified and replaced in an
easier way than at RTL, thus system level design exploration
and verification are simplified;

• an early platform for SW development can be quickly devel-
oped;

• deterministic test generation and assertion checking are more
effective and less tedious than at RTL, since tests and assertions
are written without taking care of the communication protocol
between components [2].

In this context, the OSCI TLM library [2] based on SystemC rep-
resents a valuable set of templates and implementation rules aiming
∗This work has been partially supported by the European project
VERTIGO FP6-2005-IST-5-033709.

at standardizing the different TLM methodologies that have been
recently proposed [4, 5, 6, 7].

Functional verification based on assertions represents the main
verification technique joining dynamic and static verification [3].
In ABV, assertions are the central focus of the verification process;
they detect bugs and guide testbenches in the stimuli production.
An assertion, sometimes called a checker or monitor, is a precise
description of what behavior is expected when a given input is pre-
sented to the design. It raises the level of verification from RTL to
TL where users can develop tests and debug their designs closer to
design specifications. Consequently, design functions are exercised
efficiently (with minimum required time) and monitored effectively
by detecting hard-to-find bugs [3]. ABV supports two methods:
dynamic verification using simulation, and formal or semi-formal
verification using model checking. In this context, a property is
defined as a boolean description built from Hardware Description
Language (HDL) expressions, temporal operators and sequences
while an assertion is defined as a directive to a tool to prove a
property [8]. However, due to the thin difference, the two terms
are often indistinctly used. Thus, in the following we generally
adopt the term assertion.

Previous considerations motivate the recent trend of proposing
design and verification methodologies based on TLM and ABV
(see Figure 1). However, such a trend raises new challenges for
both designers and verification engineers. In fact, it is evident the
lack of widely accepted methodologies and reliable tools to auto-
matically derive the RTL implementation, once the TL design has
been carried out. The refinement process from TL to RTL is much
more difficult than logic synthesis from RTL to gate level. A syn-
thesizable RTL design contains all information required by the syn-
thesis tool to generate the corresponding gate-level netlist. On the
contrary, a TL description is very far from including the implemen-
tation details which must be added at RTL. Then, a fully automa-
tized process to convert TL designs into RTL implementations is
still an utopia. For this reason, it is mandatory that new design
and verification methodologies are proposed in order to efficiently
check the correctness of the TL-to-RTL manual conversion.

In this context, some approaches based on Transactor-based Ver-
ification (TBV) have been recently proposed from both EDA com-
panies and academic researchers [4, 5, 9, 10]. Despite of tech-
nical details, all of them exploit the concept of transactor to al-
low a mixed TL-RTL co-verification (Triangle shape in Figure 1).
A transactor works as a translator from a TL function call to an
RTL sequence of statements, i.e., it provides the mapping between
transaction-level requests, made by TL components, and detailed
signal-level protocols on the interface of RTL IPs. Thus, test-
benches and assertions, defined to check the TL design by ABV,
can be directly reused, through the transactor, to apply ABV on the
RTL implementation. This avoid time-consuming and error-prone
manual conversion of testbenches and assertions moving from TL
to RTL.

The effectiveness of reusing testbenches and assertions by TBV,
with respect to their manual conversion, has been theoretically
proven in [11]. However, the same considerations previously re-
ported to motivate the lack of TL-to-RTL synthesis tools, make ev-
ident that assertion reuse is not enough to guarantee the correctness

978-3-9810801-2-4/DATE07 © 2007 EDAA

TL

RTL

M1

M3

M2

M1

M9

M7

Existent
RTL IPs

Assertion
optimization

IP
-c

o
re

s
re

u
se

TL
Testbenches
& Assertions

TL
Testbenches
& Assertions

RTL
Testbenches
& Assertions

RTL

M1

M3

M2

T

T

RefinementAbstraction/
Re-design

T Transactor

Testbench &
assertion

reuse

Figure 1: TLM/ABV design and verification flow.

of the refined RTL design. The implementation details added by the
refinement process require to be accurately checked by adding new
assertions. In this context, the paper presents an incremental ABV
methodology to accurately verify the correctness of the TL-to-RTL
refinement.

The paper is organized as follows. Section 2 presents an
overview of the proposed methodology. Section 3 summarizes the
concept of assertion coverage. Sections 4 and 5 describe how al-
ready defined assertions can be reused.Then, Section 6 addresses
the problem of completing the verification of the TL-to-RTL re-
finement by adding new assertions. Section 7 highlights the effec-
tiveness of the proposed verification methodology by comparing it
with the standard RTL verification which requires to completely
generate a new set of RTL assertions after the TL-to-RTL refine-
ment. Finally, experimental confirmation is reported in Section 8
and concluding remarks in Section 9.

2. Verification Methodology
The ABV methodology proposed in this paper incrementally

checks the correctness of the TL-to-RTL refinement as shown in
Figure 2.

The starting point is represented by the set of TL assertions de-
fined to functionally verify the TL implementation of the design
under verification (DUV), when ABV is adopted. The definition
of such assertions can be guided by using an assertion coverage
metrics [12, 13, 14, 15, 16] that allows one to identify DUV areas
not covered by the assertions. At transaction level, verification en-
gineers focus only on the DUV functionality to map the informal
specification into a set of formal properties. Temporal relationships
between primary inputs (PIs) and primary outputs (POs) and com-
munication protocols between different components are not con-
sidered. Thus, generally, TL assertions are expressed as a set of
simple Hoare implications [17]. Some of them refer to the rela-
tionship between PIs and POs, while others are merged into the TL
implementation to check the correctness of particular partial results
on internal variables which may hide corner cases.

Assertion definition becomes harder moving from the untimed
TL description to the clock-accurate RTL implementation1. In fact,
during the refinement, timing synchronization and communication
protocols between components are added for a more accurate simu-

1The TL-to-RTL refinement is composed of several steps. In fact,
the term transaction level refers to a group of three abstraction lev-
els: TL3 (the highest), TL2, and TL1 (the lowest), each varying in
the degree of expressible functional and temporal details [9]. How-
ever, without loss of generality, in this paper we consider TL as a
single level, but the proposed methodology can be also applied for
verifying the correctness of the refinement from TLi to TLi − 1.

TL
implementation

Definition of
new assertions

RTL
implementation

Assertion
reuse

Standard
function assertions

Bus assertionsTL assertions

0% RTL Assertion Coverage 100%

TL
properties

Assertions
for standard

function
refinement

TL
properties

TL
properties

Bus
assertions

for the com-
munication

protocol

TL
properties

TL
properties

TL
assertions

TL-to-RTL
refinement

Transactor

TL Assertions

0% TL Assertion Coverage 100%

RTL assertions for
communic. protocol
(AHB, OCP-IP, etc.)

Assertion
reuse

Figure 2: Proposed Incremental ABV methodology.

lation aiming at performance estimation. In this case, an incremen-
tal verification methodology, that reuses and refines the TL asser-
tions into an extended set of RTL temporal properties, is preferable
to completely defining ex-novo a set of assertions targeted for the
RTL description. Thus, we propose to verify the TL-to-RTL refine-
ment as follows:

1. assertions defined at TL are reused to check the functional cor-
rectness of the RTL implementation of the DUV by means of a
transactor (Section 4);

2. RTL assertions defined to check the correctness of the RTL bus
implementation, which will be connected to the RTL DUV, are
reused to check the correctness of the RTL DUV communica-
tion protocol (Section 5);

3. areas of the RTL implementation not covered by TL assertions
or RTL bus assertions are identified by using an assertion cov-
erage metrics (Section 3);

4. new RTL assertions are automatically defined to take care of
the implementation details added by the TL-to-RTL refinement
process, when TL standard function are replaced by RTL code
(Section 6). Such assertions are defined by reusing the already
verified TL code through satellites [18].

3. Assertion Coverage
The assertion coverage is used to evaluate if a sufficient set of

assertions has been defined to be ensured about the correctness of
the DUV. In fact, a design implementation that satisfies an incom-
plete set of assertions cannot be considered bug-free. Thus, in this
paper, we use assertion coverage to monitor the effectiveness of the
incremental ABV methodology previously summarized.

Different papers have been proposed to address the problem of
assertion coverage. The majority of them propose formal method-
based methodologies [12, 13, 14, 15] which statically analyze the
effectiveness of assertions in covering all states of the DUV. The
main limitation of such techniques is represented by the state ex-
plosion problem that may arise in case of medium-large DUVs.
Thus, we adopt a different approach based on dynamic verifica-
tion, where the assertion coverage is computed by analyzing the
assertion capability of detecting DUV perturbations [16] that affect
the behavior of the DUV. Nevertheless, the presented methodology
does not strictly depend on such a metrics and can be applied by
using any of the several existent coverage metrics.

The assertion coverage methodology is applied on a set of asser-
tions which hold on the DUV. The presence of unsatisfied asser-
tions requires a refinement process of the DUV and/or the asser-
tions themselves. Then, the computation of assertion coverage can
be summarized in the following steps:

1. a checker for each defined assertion is generated, by using for
example the IBM tool FoCs [19];

2. the DUV is perturbed by using an high-level fault model to ob-
tain a set of perturbed implementations whose behavior differs
from the unperturbed one (i.e., perturbation derived by redun-
dant faults are not considered [16]);

3. perturbed implementations are simulated and their behavior is
monitored by the checkers. Fault f is covered by assertion ϕ if
its checker fails during the simulation of the perturbed imple-
mentation corresponding to f.

If a checker fails in presence of a fault f, the corresponding asser-
tion ϕ is able to distinguish between the perturbed and the unper-
turbed DUV. This means that ϕ covers the logic cone of the DUV
that may be affected by f. Thus, according to the selected fault
model, the assertion coverage CΦ of a set of assertions Φ is defined
as:

CΦ =
of faults covered by at least one assertion ϕ ∈ Φ

of generated faults

All perturbed implementations, whose behavior differs from the
faulty-free one, must be covered by the assertion set, i.e. asser-
tion coverage must achieve 100%. A lower assertion coverage is
symptom that the assertion set is incomplete, and new assertions
must be added to addresses the uncovered perturbations. The same
assertion coverage is applied at both TL and RTL.

4. Reusing TL Assertions
Assertions defined to check the TL design should be manually

converted into RTL assertions to be used during the verification of
the RTL refined design. Such a tedious and error-prone conversion
can be avoided by exploiting transactors. In this way, TL assertions
can be directly reused at RTL. This represents the first step of the
proposed incremental verification methodology.

Following the guideline proposed in [4, 5], a transactor is imple-
mented as a translator from a TL function call to an RTL sequence
of statements. It provides the mapping between transaction-level
requests, made by TL components, and detailed signal-level pro-
tocols on the interface of RTL IPs. Thus, transactors are mainly

write(addr,data)

…

read(addr, &res)

…

Testbench (TL)

Transactor

RTL design

(write_status)

(read_status)

Checkers of
TL assertions

RTL
signals

Control inputs

Data inputs

Control outputs

Data outputs

clk

clk

RTL
signals

POsPIs Check
lines

Figure 3: The role of the transactor in assertion reuse.

adopted as interfaces to allow co-simulation of TL-RTL mixed de-
signs. However, a transactor can be exploited to reuse TL assertions
on an RTL design as reported in Figure 3.

The testbench carries out one transaction at time, composed by
two TL function calls (write() and read()). It is worth to
note that, at TL, testbenches are composed of test vectors, while,
at RTL, we need test sequences generally composed of more than
one test vector. This is due to the fact that TL is untimed, thus
the result of a transaction is instantaneously available once a sin-
gle test vector is applied. On the contrary, at RTL the design is
generally modeled as a finite state machine with datapath (FSMD)
where the result is available after a number of clock cycles and
it may depends on values provided to the primary inputs at dif-
ferent times. When a TLM testbench is applied to an RTL de-
sign, the transactor converts test vectors in the corresponding test
sequences modeling the communication protocol needed by the
RTL design. Thus, data are first provided to the RTL design by
means of write(addr, data). The transactor converts the
write() call to the RTL protocol-dependent sequence of signals
required to drive control and data inputs of the DUV. Moreover, the
write status is reported to the testbench to notify about successes
or errors. Then, the testbench asks for the DUV result by calling
read(addr, &res). The transactor waits until the DUV result
is ready by monitoring the output control ports, and, finally, it gets
the output data. At this time, assertion checking is invoked. The pa-
rameter of the function calls (addr, data, write status,
&res, read status), which represent inputs and outputs of
the RTL computation, are provided to the checkers. Finally, the
testbench drives the next transaction.

During simulation, the coverage achieved by reusing TL asser-
tions can be computed as described in Section 3. Perturbations
not covered by reusing TL properties are investigated to guide the
addition of properties related to the communication protocol and
implementation details introduced by the TL-to-RTL refinement.

5. Reusing Bus Assertions
It is extremely unlikely that the reuse of TL assertions allows

to achieve 100% assertion coverage on the RTL implementation.
In fact, further assertions are required to check the communication
protocol, since moving from TL to RTL a refinement is performed
on the data exchange mechanism between the DUV and the envi-
ronment where it will be embedded. At TL, communication is gen-
erally implemented by message passing through function calls. For
example, let us consider a write operation between two components
A and B. At TL, a function call of the kind write(B, data) rep-
resents the preferable solution. Moreover, it is very likely that the
best implementation for the write’s body consists of the assign-

write(addr,data)

…

read(addr, &res)

…

Testbench (TL)

T
ra

ns
ac

to
r

RTL design

Control inputs

Data inputs

Control outputs

Data outputs

clk

Checkers of
RTL bus

assertions

PIsCheck
lines

clk

POs

R
T

L
B

us

RTL bus
assertions

(AHB, STBus, etc.)

clkclk

Figure 4: Reuse of RTL bus assertion for checking the DUV
communication protocol.

ment B->buff=data only, without worrying about if B is ready or
not to accept data from A. If it needs, a classical paradigm based on
semaphores can be adopted, when synchronization is explicitly re-
quired. Finally, the write operation is instantaneously executed and
B can use data just after write returns. On the contrary, at RTL,
different components are generally connected through a bus which
manages the communication. Thus, a more complex protocol must
be implemented to be ensured that write and read operations on the
bus are correctly accomplished.

In this context, standard and reliable bus protocols, such as ARM
AHB, STBus, OCP-IP, etc., are generally adopted to guarantee a
compatibility of the DUV with already existent RTL IP-cores. In
such cases, the selected RTL bus implementation is very likely pro-
vided with a library of RTL assertions that has been used to check
the correctness of the bus [20]. However, such assertions can be
used also to verify the correctness of the communication interface
of designs connected to the bus. Thus, after TL-to-RTL refinement,
we connect the RTL DUV implementation to the desired RTL bus.
Then, we check the bus assertions on the whole system composed
of the DUV and the bus as shown in Figure 4. The transactor is
still adopted to reuse the TL testbench. However, if an RTL test-
bench is available the transactor can be removed. If some asser-
tion fails, it means that the communication protocol implemented
in the RTL DUV is wrong, since, without loss of generality, the
bus implementation is supposed to be correct. In this way, already
existent RTL assertions can be reused, according to the proposed
methodology, to check the correctness of the communication pro-
tocol defined during the TL-to-RTL refinement. Finally, as done
for TL assertions, the effectiveness of reusing RTL bus assertions
is measured by using the assertion coverage metrics presented in
Section 3.

6. New Assertions for Standard Functions
In some cases, the reuse of TL assertions and RTL bus assertions

is unable to guarantee 100% assertion coverage. This depends on
the fact that further details are introduced during the TL-to-RTL
refinement besides the communication protocol. At TL, design-
ers can fully exploit the potentiality of the programming language
adopted to implement the DUV. In the case of SystemC, for exam-
ple, all the existing C++ libraries can be used to model the DUV
(e.g., the huge amount of functions defined in the mathematical li-
brary or in the standard template library). These functions allow to
implement complex functionalities in very few code lines. More-
over, the correctness of such functions is almost definitely guar-
anteed by the correctness of the adopted language libraries2. For
2Checking the correctness of the language libraries is out of the

example, a call to sqrt(n) is enough to compute the root of num-
ber n, and no assertion must be defined to check the correctness of
the result. If it needs, TL assertions are defined to check if the pa-
rameter n assumes the correct value before calling sqrt(). On the
contrary, during the TL-to-RTL refinement, C++ standard functions
included in the TL description are substituted by synthesizable im-
plementations whose correctness must be checked by defining new
assertions. In this context, we propose a standard template that can
be used to automatically define such assertions.

The main idea consists in providing a mechanism to reuse al-
ready checked TL code into RTL assertions. Thus, for example,
checking if the RTL implementation of the sqrt() TL function is
correct can be performed by writing an assertion which executes
the TL function, and then compares its result with the one pro-
vided at RTL. In this way, assertion definition is straightforward
and it can be automatized. On the contrary, it is very hard and
time-consuming writing an RTL assertion which uses only opera-
tors provided by a temporal logic (e.g., CTL, LTL, etc.) to check
the correctness of the RTL sqrt() implementation.

The Property Specification Language [18] (PSL) allows to de-
fine assertions including pieces of code note as satellites. Such
assertions can be verified by using commercial tools (e.g., Magel-
lan [21]) that provide a simulation-based assertion checking engine.
However, only a subset of SystemVerilog constructs can be used to
create satellite-based assertions, while SystemC needs a lot of work
to be partially supported3. On the contrary, in this paper we propose
a technique to fully exploits SystemC TL code.

To better clarify the proposed approach, we refer to the simple
example of Figure 5 which shows how an assertion can be defined
to verify the RTL implementation of sqrt() by reusing the TL
code. The assertion definition consists of the following steps.

1. A set of checkpoints is identified into the RTL implemen-
tation to mark the RTL functionality which is the target of
the verification. In particular, the designer has to define a
checkpoint for each register which represents an input value
of the RTL functionality to be verified, and a checkpoint for
the register which represents the result. Each checkpoint is
implemented by inserting a call to the SystemC notify()
function. In our example, two checkpoints are inserted into
the RTL design: notify(event n) in state Cn, where the
value of n (representing the input of sqrt()) is available, and
notify(event sqrt) in state Csqrt where the sqrt() result
is ready to be checked.

2. A checker is defined to compare the RTL functionality to
be verified with the corresponding, already checked, TL
code. The checker implements three methods: set value()
to store the value of registers involved in the verification,
check assertion to start the assertion verification, and
satellite sqrt() which includes the reference TL code.
When check assertion() is called by the testbench, the
checker exploits the satellite to calculate the reference value to
be compared with the RTL result. In our example, the satel-
lite includes a call to the C++ sqrt() function However, more
complex TLM code can be inserted into the satellite according
to the RTL functionality to be verified.

3. Two checkpoint processes (start sqrt and end sqrt) are in-
stantiated into the testbench. These processes are sensitive to
a checkpoint event (respectively event n and event sqrt).

scope of this paper.
3Even if the last Language Reference Manual of PSL (IEEE-
1850) reports the SystemC flavor, its Working Group is still ac-
tive to solve several syntactical inconsistencies between PSL and
C++/SystemC.

write(addr, data);

...

read(addr, &res);

...

cn

Testbench

T
ra

ns
ac

to
r

RTL
designRTL

signals

clk

RTL
signals

...
RTL_n_reg = ..;
//* checkpoint_n
notify(event_n);
//*

csqrt

Checkerset_value(..){..};

check_assertion(){
if (abs(RTL_sqrt_reg-satellite_sqrt(v_i))<δ)

a_sqrt_out = true;
else

a_sqrt_out = false;
};
satellite_sqrt(x){
return sqrt(x);

}

...
RTL_sqrt_reg = ..;
//* checkpoint_sqrt
notify(event_sqrt);
//*SC_METHOD(start_sqrt);

sensitive<<event_n;
SC_METHOD(end_sqrt);
sensitive<<event_sqrt;

start_sqrt(){
set_value(“v_i”,

i_RTL_duv->RTL_n_reg) };

end_sqrt(){
set_value(“RTL_sqrt_reg”,
i_RTL_duv->RTL_sqrt_reg);

check_assertion();
};

Checkpoint process

Satellite

Figure 5: Example of a satellite-based assertion.

Thus, they wake up whenever their event happens. The
transactor opportunely drives the RTL PIs to start the RTL
simulation, after the testbench calls the write() function4.
When the first checkpoint related to n is reached (state Cn),
notify(event n) alerts that the value of n has been computed
and it is ready to be stored by the checkpoint process (by call-
ing set value()). In the same way, when the checkpoint in
state Csqrt is reached, the checkpoint process wakes up and it
stores the result of the RTL computation. Finally, the checker’s
method check assertion() is invoked to verify if the RTL
implementation provides the same result computed by the cor-
responding TL code.

7. Comparison to a standard RTL verification
Designers that adopt a standard RTL verification flow must de-

fine an ex-novo set of assertions to verify the RTL DUV after
the TL-to-RTL refinement. On the contrary, the incremental ABV
methodology proposed in the previous sections allows verification
engineers to avoid the time-consuming and error prone activity of
defining ex-novo RTL properties. Thus, we claim that the proposed
methodology reduces the total effort spent to verify the RTL DUV.
In fact, it exploits the reuse concept without any additional effort
due to the following main reasons:

• TL assertions related to the DUV functionality are reused by
means of transactors. No additional cost is required for the
transactor implementation, since it must be defined in any case.
In fact, the transactor is an essential component during the TL-
to-RTL refinement. Besides, its generation is going to be an
automatic process [22].

• RTL assertions provided with the bus adopted to implement the
communication protocol can be directly reused without any par-
ticular effort. Thus, verification engineer must written RTL as-
sertions related to the communication protocol only when they
are not already available. On the contrary, their definition is
always mandatory when the standard RTL verification flow is
adopted.

4Note that the use of the transactor is not essential for the definition
of satellite-based assertions. In the case an ad-hoc RTL testbench is
available, the transactor can be removed without any modification
to the proposed approach.

• Pieces of TL code are reused, within satellites, to define RTL
assertions that check parts of the RTL implementation corre-
sponding to TL standard functions (that do not required to be
checked at TL). The satellite template presented in Section 6
allows us to automatically define such new properties. The cost
of inserting the checkpoints required by the satellite is negligi-
ble, and it can be done during the TL-to-RTL refinement. On
the contrary, specifying the characteristics of a standard func-
tion (e.g., sqrt()) by means of RTL temporal operators may
be very difficult.

8. Case Study
The effectiveness of the proposed verification methodology has

been evaluated by using the STMicroelectronics Face Recognition
System [23]. In particular, three modules (ROOT, DIV and DIS-
TANCE) have been considered, since they were selected to become
HW components. Thus, their TL descriptions have been refined
into RTL models and connected to an AMBA AHB bus. The com-
munication between the DUVs and the bus has been implemented
by defining a transducer, i.e., a component that allows modules with
different interface protocols to communicate [24]. The character-
istics of RTL implementations are reported in Table 2. The Ta-
ble shows, respectively, the number of gates and flip-flops, and the
number of TL and RTL faulty implementations generated to com-
pute the assertion coverage as reported in Section 3.

Columns Cov. of Table 1 show the assertion coverage percentage
achieved for each module, respectively, at TL (TL), at RTL after the
TL-to-RTL refinement by applying the incremental ABV method-
ology proposed in this paper (RTL(incremental)), and at RTL by
defining new RTL assertions according to the standard RTL verifi-
cation flow (RTL(standard)). The TL description of the considered
modules has been verified by defining a total number of 19 asser-
tions which achieve 99% assertion coverage. After TL-to-RTL re-
finement, the RTL implementation has been verified by using a total
number of 34 assertions according to the proposed incremental ver-
ification methodology. Reused TL assertions (TL Asser. Reuse) are
19, RTL bus assertions reused to target the communication proto-
col implemented by the transducer (Bus Assertions) are 7 (the same
assertions for all modules, since these have been connected to the
same AMBA AHB bus), and satellite-based assertions (Satellites)
are 8. In particular, satellites have been used to check the RTL cor-

ROOT DIV DISTANCE TOTAL
Asser.# Cov. Asser.# Cov. Asser.# Cov. Asser.# Cov.

TL TL Assertions 11 99% 5 99% 3 99% 19 99%

TL Asser. Reuse 11 79% 5 79% 3 78% 19 79%
RTL(incremental) TL Asser. Reuse + Bus Assertions 11+7 95% 5+7 87% 3+7 88% 19+7 90%

TL Asser. Reuse + Bus Assertions + Satellites 11+7+1 99% 5+7+3 96% 3+7+4 96% 19+7+8 97%

RTL(standard) RTL Assertions 11 99% 10 96% 12 96% 33 97%

Table 1: Assertion coverage results.

Module Gates FFs TL faults RTL faults

ROOT 7802 155 196 1955
DIV 11637 269 1017 2661
DISTANCE 40663 100 2327 3389

Table 2: Characteristic of the case study.

rectness of the following functionalities: for ROOT, the square root
algorithm; for DIV, the computation of a normalization factor used
to remove the blue component of a pixel and accordingly recom-
pute the red and green ones; and for DISTANCE, the algorithm used
to compute the distance of the red, blue and green components of a
target pixel with respect to images stored in the face database. Fi-
nally, we have tried to define RTL properties ex-novo. The achieved
coverage (RTL(standard)) is comparable with the one achieved by
the incremental methodology, however, the ex-novo definition of
RTL properties required one week of work, while the set up of the
proposed incremental methodology required few hours.

9. Concluding Remarks
The paper addressed the problem of verifying the correctness of

the TL-to-RTL refinement process. An incremental ABV method-
ology has been proposed which relies on four basic concepts: trans-
actor, bus assertions, satellite and assertion coverage. Transactor
has been introduced to reuse TL assertions avoiding tedious and
error-prone manual conversions. Assertions defined to check stan-
dard RTL bus implementations can be reused to verify the correct-
ness of the communication protocol introduced during the TL-to-
RTL refinement. Satellites have been used to automatically define
new assertions that exploit already checked TL code to verify im-
plementation details typical of the RTL implementation. Finally,
a fault model-based assertion coverage has been adopted to incre-
mentally measure the capability of assertions in covering all the
DUV functionalities. The proposed methodology allows to avoid
the ex-novo manual definition of RTL assertions which represents
a time-consuming and error-prone activity.

References
[1] The Medea+ Design Automation Roadmap, 2002.
[2] A. Rose, S. Swan, J. Pierce, and J.-M. Fernandez. Trans-

action Level Modeling in SystemC, 2004. White paper.
www.systemc.org.

[3] Synopsys Inc. Assertion-Based Verification, 2003. White pa-
per. www.synopsys.com.

[4] D. Brahme, S. Cox, J. Gallo, M. Glasser, W. Grundmann,
C. N. Ip, W. Paulsen, J. Pierce, J. Rose, D. Shea, and K. Whit-
ing. The Transaction-Based Verification Methodology. Tech.
Rep. CDNL-TR-2000-0825, Cadence Berkeley Labs, 2000.

[5] C. Norris Ip and S. Swan. A Tutorial Introduction on the
New SystemC Verification Standard, 2003. White paper.
www.systemc.org.

[6] A. Dahan, D. Geist, L. Gluhovsky, D. Pidan, G. Shapir,
Y. Wolfsthal, L. Benalycherif, R. Kamdem, and Y. Lahbib.
Combining System Level Modeling with Assertion Based Ver-
ification. In IEEE ISQED, pp. 310–315. 2005.

[7] A. Habibi and S. Tahar. Design for Verification of SystemC

Transaction Level Models. In IEEE DATE, pp. 560–565.
2005.

[8] Doulos and Mentor Graphics. Verification Methodology in a
Mixed Language Environment. In Solutions Workshop 3 at
IEEE DATE. 2006.

[9] N. Bombieri, A. Fedeli, and F. Fummi. On PSL Properties
Re-use in SoC Design Flow based on Transaction Level Mod-
eling. In IEEE MTV . 2005.

[10] R. Jindal and K. Jain. Verification of Transaction-Level Sys-
temC Models Using RTL Testbenches. In ACM/IEEE MEM-
OCODE, pp. 199–203. 2003.

[11] N. Bombieri, F. Fummi, and G. Pravadelli. On the Evaluation
of Transactor-based Verification for Reusing TLM Assertions
and Testbenches at RTL. In IEEE DATE, vol. 1, pp. 1–6. 2006.

[12] Y. Hoskote, T. Kam, P. H. Ho, and X. Zao. Coverage Esti-
mation for Symbolic Model Checking. In Proc. of ACM/IEEE
DAC, pp. 300–305. 1999.

[13] S. Katz, O. Grumberg, and D. Geist. Have I Written Enough
Properties? - A Method of Comparison between Specification
and Implementation. In Proc. of IFIP CHARME, pp. 280–
297. 1999.

[14] H. Chockler, O. Kupferman, R. P. Kurshan, and M. Y. Vardi. A
Practical Approach to Coverage in Model Checking. In Proc.
of CAV , pp. 66–78. 2001.

[15] N. Jayakumar, M. Purandare, and F. Somenzi. Dos and Don’ts
of CTL State Coverage Estimation. In Proc. of ACM/IEEE
DAC, pp. 292–295. 2003.

[16] F. Fummi, G. Pravadelli, and F. Toto. Coverage of Formal
Properties based on a High-Level Fault Model and Func-
tional ATPG. In IEEE ETS, pp. 162–167. 2005.

[17] C. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, vol. 12(10):pp. 576–585, 1969.

[18] Accellera. Property Specification Language Reference Man-
ual, 2004.

[19] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolf-
sthal. FoCs - Automatic Generation of Simulation Checkers
from Formal Specifications. In CAV), vol. 1855 of LNCS, pp.
538–542. Springer-Verlag, 2000.

[20] P. Wodey, G. Camarroque, F. Baray, R. Hersemeule, and J.-P.
Cousin. LOTOS code generation for model checking of STBus
based SoC: the STBus interconnection. In ACM/IEEE MEM-
OCODE, pp. 204–213. 2003.

[21] Synopsys. Magellan - Hybrid RTL Formal Verification,
http://www.synopsys.com/products/magellan/, 2004.

[22] F. Balarin and R. Passerone. Functional Verification Method-
ology Based on Formal Interface Specificaton and Transactor
Generation. In IEEE DATE. 2006.

[23] M. Borgatti, A. Capello, U. Rossi, G.L.Lambert, I. Moussa,
F. Fummi, and G. Pravadelli. An Integrated Design and Veri-
fication Methodology for Reconfigurable Multimedia System.
In IEEE DATE, pp. 266–271. 2005.

[24] H. Cho, S. Abdi, and D. Gajski. Design and Implementa-
tion of Transducer for ARM-TMS Communication. In Proc.
of IEEE ASP-DAC, pp. 126–127. 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

