
Seamless Hardware/Software Performance Co-Monitoring in a Codesign
Simulation Environment with RTOS Support

L. Moss1, M. de Nanclas1, L. Filion1, S. Fontaine1, G. Bois1 and M. Aboulhamid2

1 Department of Computer Engineering, École Polytechnique de Montréal
2 Department of Computer Science and Operational Research, Université de Montréal
{moss, denancla, filion, fontaine, bois}@grm.polymtl.ca, aboulham@iro.umontreal.ca

Abstract

Simulation monitoring tools are needed in
hardware/software codesign for performance debugging,
model validation and hardware/software partitioning
purposes. Existing tools are either hardware- or software-
centric and lack integrated and seamless co-monitoring.
This paper presents a system-level co-monitoring tool that
can monitor the computation and communication
activities of SystemC user modules, as well as bus,
memory and processor usage, on a variety of
hardware/software embedded configurations that may
include an RTOS. We also describe how performance
metrics are generated during or after simulation and
made accessible to users or external applications.
Finally, experimental results show that such co-
monitoring does not disturb the simulation’s internal
timing and only moderately increases the simulation’s
wall clock run time (by 11-22% for hardware/software
partitioned architectures).

1. Introduction

Hardware/software codesign is an increasingly popular
methodology used to design embedded systems at the
system level by simultaneously developing the system’s
hardware and software user modules. This methodology
needs to be supported by monitoring tools that are able to
gather data and metrics on the performance of embedded
systems simulated in a hardware/software codesign
environment. Such monitoring tools can be used for
performance debugging purposes and for design space
exploration, either by human designers analyzing design
performances or by automated hardware/software
partitioning algorithms. These tools can also be used to
validate high-level performance estimation methods or to
feed data into a performance estimation model, as in [1].

Our SPACE platform, which has been thoroughly
explained in [2] as a SystemC [3] virtual platform for the
exploration of hardware/software embedded systems
including real-time operating systems (RTOS), was
instrumented in order to allow for performance co-
monitoring. This platform supports the functional
partitioning of a system specification into several
SystemC modules and their mapping to hardware and
software partitions. The instrumentation presented in this
paper allows for the collection of metrics on the execution
time of hardware user modules and on channel/bus,
memory and processor usage. Also, a non-intrusive
instrumentation of instruction set simulators (ISS)
monitors RTOS context switches and calls to
communication functions. This powers the collection of
metrics on the execution time of software user modules
and on communications between all user modules, no
matter whether the communications are between hardware
modules, between software modules or are crossing the
hardware/software partition. This ability to seamlessly
monitor SystemC user modules, both in software and
hardware, is what we call co-monitoring.

Since the publication of [2], our virtual platform has
seen several enhancements; one of these is the integration
of a bus cycle accurate (BCA) protocol in order to
suitably reflect the true behavior of a processor. Also, a
collection of support IP blocks, such as timers, UARTs
and memory controllers, is now provided. These
components simulate platform behaviors that are similar
to real implementations.

An important feature of our virtual platform, exploited
in this paper, is that all communications keep the same
application programming interface (API) at anytime and
any location in the virtual platform, while seamless
movement of user modules between hardware and
software is allowed. Communications are based on fixed
IDs attributed to every single user module, be it mapped
to hardware or software. Hence, the code written to
communicate to a module never changes, regardless of

978-3-9810801-2-4/DATE07 © 2007 EDAA

where the module is (hardware or software) or if it
changes partition from one simulation to another. By
keeping the same API, users can really explore their
design with minimum effort. From a monitoring point of
view, this ensures full transparency of communications
and a simplification of the monitoring engine.

This paper’s main contribution is a novel RTOS-aware
co-monitoring architecture that seamlessly and non-
intrusively monitors both hardware and software user
modules’ computations and communications. In other
words, our co-monitoring yields the same kind of
performance data for every user module independently of
the hardware/software partitioning of the system, without
disrupting the simulation’s internal timing and without
requiring any changes in user module source code when
modules are moved between hardware and software
partitions. Finally, an efficient and flexible mechanism to
compute, store and access a history of performance
metrics is described.

2. Related work

There are commercial tools, such as Mentor Graphics
Seamless [4], Coware Platform Architect [5] and Xilinx
Monitor [6], that offer cycle-accurate monitoring
information on hardware user modules, bus usage,
memory accesses and processors. However, they lack
sufficient visibility into the system-level operations of
software user modules. The software binary is either
treated as a black box in which the software user modules
are melded together, for instance when collecting
statistics on cache usage, or metrics are collected at a too
low level, for example in tracking when the processor
enters or exits each function. The interpretation of the
semantics of these function calls is then entirely left to the
user. In particular, these tools do not automatically
monitor RTOS context switches and communications
made by software user modules, and the kind of
performance data produced depends on the module’s
location in hardware or software.

There exists in the literature some ISS-based works
that allow flexible monitoring of software user code
without disturbing its execution or distorting its simulated
run time. These tools typically count the number of times
a given software region has been executed and monitor
the time periods spent in it. For instance, FLATSIM [7] is
a profiling tool that automatically tracks the entry and exit
points of both functions and loops whereas the Comet
Profiler [8] tracks the execution of software code blocks
specifically labeled in user source code. While these two
tools give an estimation of what the performance of the
monitored software regions would be if they were instead
implemented in hardware, they do not offer a cycle-
accurate simulation of a partitioned hardware/software
system and do not monitor memory accesses, bus

transactions and end-to-end module communications
inside and between partitions.

The advantage of our co-monitoring is that it combines
the advantages of both approaches, simultaneously
monitoring hardware user modules, buses and memory
devices as well as software user modules, without
requiring modifications in user code both when enabling
monitoring and when re-partitioning the system.

3. Co-monitoring architecture

Our co-monitoring is based on the general framework
illustrated in Figure 1. First, the virtual platform is
instrumented in order to send event notifications to a
central SystemC monitoring component. This component
processes the events to assemble co-monitoring records
and forwards these records to a log file or to a metrics
generator outside of the SystemC simulation. During or
after the simulation, the metrics generator computes
performance metrics and statistics over these records and
sends the results to a graphical user interface (GUI), or to
another program using the performance analysis API.

Figure 1: General Co-monitoring Framework

3.1. Co-monitoring records

Our co-monitoring framework is based on the
following basic record types:

End-to-end transfer: This record type gives information
about a completed end-to-end communication between a
user module and another component, which may be a
second user module. This information includes the
identification of source and destination components, the
start and stop time of the read operation at one end and of
the counterpart write operation at the other end, and the
data length of the transfer.

Bus transfer: This record type contains information
about the transfer of a data packet on a bus, such as the
identity of the bus, the time at which the packet arrives in
the bus, the times at which it starts and ends to be
transferred, the source and destination components as well
as its data length. A single end-to-end transfer may
generate more than one bus transfer, because the packet
may need to travel on more than one bus to reach its
destination (for instance, in multi-processor systems) and

because the communication protocol may require an
acknowledgment to be sent.

Memory access: This collects information related to a
read or a write access to a memory, particularly the
identity of the accessing and accessed components as well
as the access time, address and length.

User module computation: This represents a user
module’s computation phase and gives the computation’s
begin and end time. For software modules, such a record
also contains the number of instructions, broken down by
type, executed during this computation. Note that this is
the only case where record contents differ according to
the hardware or software location of user modules. The
information on instruction frequencies by type can be
used to estimate the degree of parallelism as well as the
data- or control-orientation of user modules [9].

3.2. Platform instrumentation

Different approaches must be taken for the
instrumentation of hardware and software components.
The difference is due to the fact that hardware
components can do arbitrarily complex operations without
affecting the SystemC simulation clock time (though they
do take non-zero wall clock time) whereas software
instructions are executed in a cycle-accurate manner on an
ISS. To preserve the simulation cycle-accurate timing, we
must ensure that the simulation clock time is not distorted
by the monitoring of software user modules. Figure 2
gives a general picture of the platform instrumentation.

In order to minimize the amount of code inserted into
platform models, generic instrumentation macros were
implemented. This also allows co-monitoring to be easily
enabled or disabled at compile time. These macros are
responsible for collecting data on significant events and
passing that information to the central monitoring
component, which generates and timestamps the
monitoring records presented in the previous section.

The instrumentation of hardware components is
straightforward, since the relevant macros can be directly
inserted into their respective platform models. Thus, bus
models and memory models are instrumented by their
designer whereas this is done automatically for hardware
user modules through the instrumentation of our virtual
platform’s API functions. This instrumentation also takes
advantage of timing annotations that are present in user
modules, whether they were inserted manually, through a
behavioral synthesis tool or via estimation techniques.

As explained above, software user modules cannot
directly call monitoring macros, since doing so would
mean executing additional software instructions and
disrupting the simulation’s timing. Each ISS is instead
given an ISS monitoring component which calls the

macros on behalf of the software user modules. Because
the ISS monitor is itself a SystemC component, it can
fulfill its role without distorting the simulation clock time.

In our virtual platform, all user modules in all
applications call up to four API functions for their
communication operations, which are to read from or
write to a device or another user module. These API calls
are independent of both the target processor and the
embedded RTOS used. Software modules start and stop
their computations when their context is switched in and
out by the RTOS scheduler. The functions used for
context switching depend only on the RTOS, not on the
processor on which it runs or on the user model. This
limits the effort required for implementing the software
monitoring environment, since there is little variation in
the functions to look for.

The ISS monitor tracks the ISS program counter to
detect when the execution flow reaches an entry or exit
point in one of these functions. The ISS monitor then
takes action depending on the event that occurred. For
instance, if a communication function has just been
entered, the ISS monitor retrieves from the stack and
registers the parameters passed to the function and then
transfers the information about the started communication
to the central monitor. If a context switch has been
requested, the ISS monitor will similarly retrieve the IDs
of the user modules being switched in and out, and will
thus keep track of the user module currently being
executed by the ISS. If the end of a communication
function has been reached, the ISS monitor uses our
virtual platform’s communication model to determine
which communication has just been terminated. In every
case, the central monitor uses the information extracted
by the ISS monitor to produce appropriate co-monitoring
records.

The co-monitoring instrumentation is always
automatically adjusted for the simulation of any new
system partitioning, each time a user module is moved
from hardware to software (or vice-versa), meaning that a
hardware user module becomes a software user module
(or vice-versa) after re-partitioning.

Figure 2: Platform instrumentation. Dashed lines
represent monitoring components’ lines of sight

3.3. Metrics generation

The co-monitoring records produced by the
instrumented SystemC simulation are passed on to a
metrics generator either synchronously through socket
communication or asynchronously through the file
system. In addition to being platform-independent and
language-independent, this interprocess communication
method enables both local and remote analysis.

The metrics generator processes the records to generate
metrics about bus, memory and processor usage, channel
transfer rates, read and write communications between
user modules (minimum, maximum, average and standard
deviation of end-to-end communication time as well as
the amount of data transferred), and execution times for
each user module. The generation of each of these metrics
can be turned on and off and a performance analysis API
makes them available to external programs, for example a
hardware/software partitioning tool.

These metrics can be computed over the full length of
the simulation or subdivided into a series of time-based
analysis intervals whose length is adjustable at runtime.
When using analysis intervals, each metric is computed
for each interval using all records comprised within the
interval. Figure 3 gives an example of a metric, end-to-
end communication times between two given modules,
computed with analysis intervals of 50 microseconds.

To avoid large memory space to be taken by the
records, especially for long simulations, records are pre-
processed into atomic intervals so that each record needs
not be kept in memory, except when detailed Gantt charts
are required. Metrics and statistics (maximums,
minimums, averages, sums and standard deviations) are
computed for each atomic interval, whose time span is
fixed before the simulation starts. This method allows the
re-generation of metrics and statistics for different
interval lengths at runtime, by combining an integral
number of atomic intervals into a larger analysis interval.
This can be used for starting with a coarse-grained plot
and progressively decreasing the analysis interval length
in order to zero in on interesting points.

3.4. Metrics presentation

Graphical user interfaces for performance metrics are
described here in order to illustrate the possibilities
offered by co-monitoring and how it can be integrated
into a larger hardware/software codesign framework.

A GUI, fed by the metrics generator, provides several
ways to visualize collected data, primarily geared toward
performance analysis. Time-based plots show statistics on
data transiting on buses, on end-to-end transfers between
components, on memory accesses and on processor usage.
Heatmap views also illustrate how much communication
occurs between every pair of components and how much

different memory regions are accessed per analysis
interval. Gantt charts can also be used to have a more
detailed view of the activities of buses, memory devices
and hardware and software user modules. These graphs
make it possible to pinpoint bottlenecks and heavily used
segments of memory, to find deadlocks, to look for long
blocking requests, and more. Figures 3 and 4 are
screenshots from this GUI and respectively depict a time-
based plot and a heatmap view.

Figure 3: Statistical graph of end-to-end

communication times between two user modules

Figure 4: Heatmap of the number of transactions
between each pair of components in a simulation

4. Experimental results

The SPACE virtual platform [2] features three levels
of abstraction, two of which are untimed and are used for
validating system specifications and untimed functional
partitionings. The third one offers timed functional (TF)
and cycle-accurate simulations of partitioned systems.
Performance co-monitoring was implemented in the latter
level of abstraction for three different kinds of
architectures. The first one is an all-HW TF architecture
in which user modules are all put into the HW partition
and communicate through a virtual TF FIFO channel. The
second one is an all-HW architecture in which

communications travel on a BCA model of the IBM
CoreConnect™ OPB bus [10]. The last one, which
exploits the full power of hardware/software co-
monitoring, uses a BCA OPB bus, a Xilinx MicroBlaze
[11] ISS and a µC/OS-II RTOS kernel [12] to provide a
cycle-accurate simulation of bus communications and of
software execution. Results are presented here on the co-
monitoring of a digital RF filter and of a JPEG picture
processor. All our simulations were run on a Windows
XP workstation with a 2.8 GHz Pentium IV processor, a
7200 RPM hard drive and 1 GB of RAM.

4.1. Digital RF filter

 The digital RF filter example has been thoroughly

presented in [2] and is shown in Figure 5. In short, the
Producer generates a periodic flow of data that is filtered
and then stored in memory by the Mux. The Controller
periodically adjusts the memory address used by the Mux,
requests analysis of the data and changes the Filter’s
coefficients according to the results of the analysis.

Figure 5: RF filter. Dashed lines represent

control signals, solid lines are data transfers

Architecture Comm.
channel

HW
partition

SW
partition

HW-TF TF All None
HW-BCA OPB All None
PART1 OPB Producer, Filter,

Mux, Analyzer
Controller

PART2 OPB Producer, Filter,
Mux, Controller

Analyzer

PART3 OPB Producer, Filter,
Mux

Controller,
Analyzer

Table 1: Five architectures of the RF filter

We simulated five different architectures for the RF
filter, three of which were partitioned between hardware
and software, as shown in Table 1. Each architecture was
simulated with and without co-monitoring in order to
measure how much overhead is added when
instrumenting the SystemC simulation and outputting the
monitoring records to a log file. Table 2 compares the
SystemC and wall clock times taken by each simulation.

Our tests confirm that the simulation’s SystemC clock
time stays exactly the same whether monitoring is enabled
or not. This means that our co-monitoring does not disturb
the timing of system-level simulations. On the other hand,
co-monitoring does increase the wall clock run time of the
simulation, which means that the user has to wait longer
before the simulation ends.

 Wall clock run
time (seconds)

SystemC clock
time (seconds)

Architecture Plain Monitored Plain = Monitored
HW-TF 16 23 0.18976762
HW-BCA 24 32 0.36211836
PART1 98 115 1.02003820
PART2 198 220 2.13268552
PART3 284 316 3.01680632
Table 2: Results for five architectures of the RF
filter example with and without co-monitoring

Communication path (as shown in
Figure 5)

Communication
volume (kB)

(1) Producer Filter 256.000
(2) Filter Mux 256.000
(3) Mux Memory 256.000
(4) Controller↔Mux 0.570
(5) Controller Analyzer 0.285
(6) Memory Analyzer 580.277
(7) Analyzer Controller 0.277
(8) Controller Filter 1.688
Instruction and data memory ISS 96579.404

Table 3: Communication volumes in the RF filter,
with the Analyzer and Controller in SW (PART3)

For all-HW architectures, the absolute size of this

increase is small (7-8 seconds) whereas its relative size is
significant (33-44% of the non-monitored wall clock run
time), which reflects the fact that all-HW SystemC
simulations are very fast. For partitioned architectures, the
absolute overhead is larger (17-32 seconds) whereas the
relative overhead is modest (11-17%). The larger absolute
overhead in partitioned architectures is due to the
operations of the ISS monitor and to the monitoring of
every data and instruction memory access made by the
ISS (see last line of Table 3), whereas the smaller relative
overhead reflects the fact that an ISS simulation is
inherently much more time-consuming than an all-HW
SystemC simulation.

Also, Table 3 shows that co-monitoring is able to
measure the communication volume between a pair of
components, whether they are both in hardware (paths 1,
2 and 3 in Figure 5), both in software (paths 5 and 7) or
are split between HW and SW (paths 4, 6 and 8).

4.2. JPEG picture processor

The JPEG picture processor example has been detailed

in [2] as an edge detection application for JPEG images.
Figure 6 illustrates the components and communication
paths for this example.

Like in the preceding example, the picture processor
was simulated with and without co-monitoring for five
architectures, as shown in Table 4. Each simulation was
run for 9 JPEG images with a dimension of 128x128.
Table 5 summarizes our findings. Again, the wall clock
overhead is smaller in absolute terms (8-11s) and larger in
relative terms (33-42%) for all-HW architectures, and the
reverse is true for partitioned architectures (96-200
seconds or 14-22% of the wall clock run time).

Figure 6: JPEG picture processor example

Architecture Comm.

channel
HW

partition
SW

partition
HW-TF TF All None
HW-BCA OPB All None
PART1 OPB HUFF, IDCT,

YUV2RGB,
Edge, Iquant

Extractor

PART2 OPB HUFF, IDCT,
Extractor,
Edge, Iquant

YUV2RGB

PART3 OPB HUFF, IDCT,
Edge, Iquant

Extractor,
YUV2RGB

Table 4: Five picture processor architectures

 Wall clock run
time (seconds)

SystemC clock
time (seconds)

Architecture Plain Monitored Plain = Monitored
HW-TF 19 27 0.15102666
HW-BCA 33 44 0.36296708
PART1 494 604 4.69517290
PART2 683 779 7.27851472
PART3 1169 1369 11.84522752

Table 5: Results for five picture processor
architectures with and without co-monitoring

5. Conclusions

This paper explained how to get, with relatively little
overhead, a rich set of performance data from an
embedded system simulated in a hardware/software
codesign environment. In particular, it demonstrated how
the activities of hardware and software user modules can
be seamlessly and non-intrusively monitored inside and
across partition boundaries and how performance metrics
and statistics could be efficiently extracted from
monitoring records obtained from the instrumented
model.

Future work remains ahead in the refinement of this
co-monitoring tool. Monitoring for software user modules
at a higher level of abstraction, in which the software is
not run on an ISS but rather inside a host process for
faster simulation, is still under development. Also in the
works is a hardware/software partitioning application that
would make use of co-monitoring to drive the partitioning
algorithm. Finally, the technique used for co-monitoring
is currently employed to implement a non-intrusive ISS-
based RTOS monitoring tool.

References

[1] K. Ueda, K. Sakanushi, Y. Takeuchi, and M. Imai,

"Architecture-level performance estimation method based
on system-level profiling," IEE Proceedings-Computers
and Digital Techniques, vol. 152, no. 1, 2005, pp. 12-19.

[2] J. Chevalier, M. de Nanclas, L. Filion, O. Benny,
M. Rondonneau, G. Bois, and M. Aboulhamid, "A
SystemC Refinement Methodology for Embedded
Software," IEEE Design & Test of Computers, vol. 23,
no. 2, 2006, pp. 148-158.

[3] "SystemC," Open SystemC Initiative, www.systemc.org
[4] "Seamless," Mentor Graphics Corp, www.mentor.com
[5] "CoWare Platform Architect," CoWare Inc.,

www.coware.com
[6] A. Donlin and T. Lenart, "Performance Analysis and

Visualization of SystemC Models," presented at 5th North
American SystemC User Group Meeting, San Jose, 2006.

[7] D. C. Suresh, W. A. Najjar, F. Vahid, J. R. Villarreal, and
G. Stitt, "Profiling tools for hardware/software partitioning
of embedded applications," Proceedings of the ACM
SIGPLAN Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES'03), 2003, pp. 189-198.

[8] M. Finc and A. Zemva, "Profiling soft-core processor
applications for hardware/software partitioning," Journal of
Systems Architecture, vol. 51, no. 5, 2005, pp. 315-29.

[9] M. Holzer and M. Rupp, "Static Code Analysis of
Functional Descriptions in SystemC," Third IEEE
International Workshop on Electronic Design, Test and
Applications (DELTA'06), 2006, pp. 243-248.

[10] "On-Chip Peripheral Bus," IBM, www.ibm.com
[11] "MicroBlaze Soft Processor Core," Xilinx Inc.,

www.xilinx.com
[12] "µC/OS-II," Micrium Inc., www.micrium.com

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

