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Abstract 
 

Simulation monitoring tools are needed in 
hardware/software codesign for performance debugging, 
model validation and hardware/software partitioning 
purposes. Existing tools are either hardware- or software-
centric and lack integrated and seamless co-monitoring. 
This paper presents a system-level co-monitoring tool that 
can monitor the computation and communication 
activities of SystemC user modules, as well as bus, 
memory and processor usage, on a variety of 
hardware/software embedded configurations that may 
include an RTOS. We also describe how performance 
metrics are generated during or after simulation and 
made accessible to users or external applications. 
Finally, experimental results show that such co-
monitoring does not disturb the simulation’s internal 
timing and only moderately increases the simulation’s 
wall clock run time (by 11-22% for hardware/software 
partitioned architectures). 
 
 
1. Introduction 
 

Hardware/software codesign is an increasingly popular 
methodology used to design embedded systems at the 
system level by simultaneously developing the system’s 
hardware and software user modules. This methodology 
needs to be supported by monitoring tools that are able to 
gather data and metrics on the performance of embedded 
systems simulated in a hardware/software codesign 
environment. Such monitoring tools can be used for 
performance debugging purposes and for design space 
exploration, either by human designers analyzing design 
performances or by automated hardware/software 
partitioning algorithms. These tools can also be used to 
validate high-level performance estimation methods or to 
feed data into a performance estimation model, as in [1]. 

Our SPACE platform, which has been thoroughly 
explained in [2] as a SystemC [3] virtual platform for the 
exploration of hardware/software embedded systems 
including real-time operating systems (RTOS), was 
instrumented in order to allow for performance co-
monitoring. This platform supports the functional 
partitioning of a system specification into several 
SystemC modules and their mapping to hardware and 
software partitions. The instrumentation presented in this 
paper allows for the collection of metrics on the execution 
time of hardware user modules and on channel/bus, 
memory and processor usage. Also, a non-intrusive 
instrumentation of instruction set simulators (ISS) 
monitors RTOS context switches and calls to 
communication functions. This powers the collection of 
metrics on the execution time of software user modules 
and on communications between all user modules, no 
matter whether the communications are between hardware 
modules, between software modules or are crossing the 
hardware/software partition. This ability to seamlessly 
monitor SystemC user modules, both in software and 
hardware, is what we call co-monitoring. 

Since the publication of [2], our virtual platform has 
seen several enhancements; one of these is the integration 
of a bus cycle accurate (BCA) protocol in order to 
suitably reflect the true behavior of a processor. Also, a 
collection of support IP blocks, such as timers, UARTs 
and memory controllers, is now provided. These 
components simulate platform behaviors that are similar 
to real implementations.  

An important feature of our virtual platform, exploited 
in this paper, is that all communications keep the same 
application programming interface (API) at anytime and 
any location in the virtual platform, while seamless 
movement of user modules between hardware and 
software is allowed. Communications are based on fixed 
IDs attributed to every single user module, be it mapped 
to hardware or software. Hence, the code written to 
communicate to a module never changes, regardless of 
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where the module is (hardware or software) or if it 
changes partition from one simulation to another. By 
keeping the same API, users can really explore their 
design with minimum effort. From a monitoring point of 
view, this ensures full transparency of communications 
and a simplification of the monitoring engine. 

This paper’s main contribution is a novel RTOS-aware 
co-monitoring architecture that seamlessly and non-
intrusively monitors both hardware and software user 
modules’ computations and communications. In other 
words, our co-monitoring yields the same kind of 
performance data for every user module independently of 
the hardware/software partitioning of the system, without 
disrupting the simulation’s internal timing and without 
requiring any changes in user module source code when 
modules are moved between hardware and software 
partitions. Finally, an efficient and flexible mechanism to 
compute, store and access a history of performance 
metrics is described.  
 
2. Related work 
 

There are commercial tools, such as Mentor Graphics 
Seamless [4], Coware Platform Architect [5] and Xilinx 
Monitor [6], that offer cycle-accurate monitoring 
information on hardware user modules, bus usage, 
memory accesses and processors. However, they lack 
sufficient visibility into the system-level operations of 
software user modules. The software binary is either 
treated as a black box in which the software user modules 
are melded together, for instance when collecting 
statistics on cache usage, or metrics are collected at a too 
low level, for example in tracking when the processor 
enters or exits each function. The interpretation of the 
semantics of these function calls is then entirely left to the 
user. In particular, these tools do not automatically 
monitor RTOS context switches and communications 
made by software user modules, and the kind of 
performance data produced depends on the module’s 
location in hardware or software. 

There exists in the literature some ISS-based works 
that allow flexible monitoring of software user code 
without disturbing its execution or distorting its simulated 
run time. These tools typically count the number of times 
a given software region has been executed and monitor 
the time periods spent in it. For instance, FLATSIM [7] is 
a profiling tool that automatically tracks the entry and exit 
points of both functions and loops whereas the Comet 
Profiler [8] tracks the execution of software code blocks 
specifically labeled in user source code. While these two 
tools give an estimation of what the performance of the 
monitored software regions would be if they were instead 
implemented in hardware, they do not offer a cycle-
accurate simulation of a partitioned hardware/software 
system and do not monitor memory accesses, bus 

transactions and end-to-end module communications 
inside and between partitions. 

The advantage of our co-monitoring is that it combines 
the advantages of both approaches, simultaneously 
monitoring hardware user modules, buses and memory 
devices as well as software user modules, without 
requiring modifications in user code both when enabling 
monitoring and when re-partitioning the system.   
 
3. Co-monitoring architecture 
 

Our co-monitoring is based on the general framework 
illustrated in Figure 1. First, the virtual platform is 
instrumented in order to send event notifications to a 
central SystemC monitoring component. This component 
processes the events to assemble co-monitoring records 
and forwards these records to a log file or to a metrics 
generator outside of the SystemC simulation. During or 
after the simulation, the metrics generator computes 
performance metrics and statistics over these records and 
sends the results to a graphical user interface (GUI), or to 
another program using the performance analysis API. 
 

 
Figure 1: General Co-monitoring Framework 

 
3.1. Co-monitoring records 
 

Our co-monitoring framework is based on the 
following basic record types: 
 
End-to-end transfer: This record type gives information 
about a completed end-to-end communication between a 
user module and another component, which may be a 
second user module. This information includes the 
identification of source and destination components, the 
start and stop time of the read operation at one end and of 
the counterpart write operation at the other end, and the 
data length of the transfer. 
 
Bus transfer: This record type contains information 
about the transfer of a data packet on a bus, such as the 
identity of the bus, the time at which the packet arrives in 
the bus, the times at which it starts and ends to be 
transferred, the source and destination components as well 
as its data length. A single end-to-end transfer may 
generate more than one bus transfer, because the packet 
may need to travel on more than one bus to reach its 
destination (for instance, in multi-processor systems) and 



because the communication protocol may require an 
acknowledgment to be sent. 
 
Memory access: This collects information related to a 
read or a write access to a memory, particularly the 
identity of the accessing and accessed components as well 
as the access time, address and length. 
 
User module computation: This represents a user 
module’s computation phase and gives the computation’s 
begin and end time. For software modules, such a record 
also contains the number of instructions, broken down by 
type, executed during this computation. Note that this is 
the only case where record contents differ according to 
the hardware or software location of user modules. The 
information on instruction frequencies by type can be 
used to estimate the degree of parallelism as well as the 
data- or control-orientation of user modules [9]. 
 
3.2. Platform instrumentation 
 

Different approaches must be taken for the 
instrumentation of hardware and software components. 
The difference is due to the fact that hardware 
components can do arbitrarily complex operations without 
affecting the SystemC simulation clock time (though they 
do take non-zero wall clock time) whereas software 
instructions are executed in a cycle-accurate manner on an 
ISS. To preserve the simulation cycle-accurate timing, we 
must ensure that the simulation clock time is not distorted 
by the monitoring of software user modules. Figure 2 
gives a general picture of the platform instrumentation. 

In order to minimize the amount of code inserted into 
platform models, generic instrumentation macros were 
implemented. This also allows co-monitoring to be easily 
enabled or disabled at compile time. These macros are 
responsible for collecting data on significant events and 
passing that information to the central monitoring 
component, which generates and timestamps the 
monitoring records presented in the previous section. 

The instrumentation of hardware components is 
straightforward, since the relevant macros can be directly 
inserted into their respective platform models. Thus, bus 
models and memory models are instrumented by their 
designer whereas this is done automatically for hardware 
user modules through the instrumentation of our virtual 
platform’s API functions. This instrumentation also takes 
advantage of timing annotations that are present in user 
modules, whether they were inserted manually, through a 
behavioral synthesis tool or via estimation techniques. 

As explained above, software user modules cannot 
directly call monitoring macros, since doing so would 
mean executing additional software instructions and 
disrupting the simulation’s timing. Each ISS is instead 
given an ISS monitoring component which calls the 

macros on behalf of the software user modules. Because 
the ISS monitor is itself a SystemC component, it can 
fulfill its role without distorting the simulation clock time. 

In our virtual platform, all user modules in all 
applications call up to four API functions for their 
communication operations, which are to read from or 
write to a device or another user module. These API calls 
are independent of both the target processor and the 
embedded RTOS used. Software modules start and stop 
their computations when their context is switched in and 
out by the RTOS scheduler. The functions used for 
context switching depend only on the RTOS, not on the 
processor on which it runs or on the user model. This 
limits the effort required for implementing the software 
monitoring environment, since there is little variation in 
the functions to look for.  

The ISS monitor tracks the ISS program counter to 
detect when the execution flow reaches an entry or exit 
point in one of these functions. The ISS monitor then 
takes action depending on the event that occurred. For 
instance, if a communication function has just been 
entered, the ISS monitor retrieves from the stack and 
registers the parameters passed to the function and then 
transfers the information about the started communication 
to the central monitor. If a context switch has been 
requested, the ISS monitor will similarly retrieve the IDs 
of the user modules being switched in and out, and will 
thus keep track of the user module currently being 
executed by the ISS. If the end of a communication 
function has been reached, the ISS monitor uses our 
virtual platform’s communication model to determine 
which communication has just been terminated. In every 
case, the central monitor uses the information extracted 
by the ISS monitor to produce appropriate co-monitoring 
records. 

The co-monitoring instrumentation is always 
automatically adjusted for the simulation of any new 
system partitioning, each time a user module is moved 
from hardware to software (or vice-versa), meaning that a 
hardware user module becomes a software user module 
(or vice-versa) after re-partitioning. 

 

 
Figure 2: Platform instrumentation. Dashed lines 
represent monitoring components’ lines of sight 



3.3. Metrics generation 
 

The co-monitoring records produced by the 
instrumented SystemC simulation are passed on to a 
metrics generator either synchronously through socket 
communication or asynchronously through the file 
system. In addition to being platform-independent and 
language-independent, this interprocess communication 
method enables both local and remote analysis.  

The metrics generator processes the records to generate 
metrics about bus, memory and processor usage, channel 
transfer rates, read and write communications between 
user modules (minimum, maximum, average and standard 
deviation of end-to-end communication time as well as 
the amount of data transferred), and execution times for 
each user module. The generation of each of these metrics 
can be turned on and off and a performance analysis API 
makes them available to external programs, for example a 
hardware/software partitioning tool. 

These metrics can be computed over the full length of 
the simulation or subdivided into a series of time-based 
analysis intervals whose length is adjustable at runtime. 
When using analysis intervals, each metric is computed 
for each interval using all records comprised within the 
interval.  Figure 3 gives an example of a metric, end-to-
end communication times between two given modules, 
computed with analysis intervals of 50 microseconds.  

To avoid large memory space to be taken by the 
records, especially for long simulations, records are pre-
processed into atomic intervals so that each record needs 
not be kept in memory, except when detailed Gantt charts 
are required. Metrics and statistics (maximums, 
minimums, averages, sums and standard deviations) are 
computed for each atomic interval, whose time span is 
fixed before the simulation starts. This method allows the 
re-generation of metrics and statistics for different 
interval lengths at runtime, by combining an integral 
number of atomic intervals into a larger analysis interval. 
This can be used for starting with a coarse-grained plot 
and progressively decreasing the analysis interval length 
in order to zero in on interesting points. 
 
3.4. Metrics presentation 
 

Graphical user interfaces for performance metrics are 
described here in order to illustrate the possibilities 
offered by co-monitoring and how it can be integrated 
into a larger hardware/software codesign framework. 

A GUI, fed by the metrics generator, provides several 
ways to visualize collected data, primarily geared toward 
performance analysis. Time-based plots show statistics on 
data transiting on buses, on end-to-end transfers between 
components, on memory accesses and on processor usage. 
Heatmap views also illustrate how much communication 
occurs between every pair of components and how much 

different memory regions are accessed per analysis 
interval. Gantt charts can also be used to have a more 
detailed view of the activities of buses, memory devices 
and hardware and software user modules. These graphs 
make it possible to pinpoint bottlenecks and heavily used 
segments of memory, to find deadlocks, to look for long 
blocking requests, and more. Figures 3 and 4 are 
screenshots from this GUI and respectively depict a time-
based plot and a heatmap view. 

 

 
Figure 3: Statistical graph of end-to-end 

communication times between two user modules 
 

 
Figure 4: Heatmap of the number of transactions 
between each pair of components in a simulation 
 
4. Experimental results 
 

The SPACE virtual platform [2] features three levels 
of abstraction, two of which are untimed and are used for 
validating system specifications and untimed functional 
partitionings. The third one offers timed functional (TF) 
and cycle-accurate simulations of partitioned systems. 
Performance co-monitoring was implemented in the latter 
level of abstraction for three different kinds of 
architectures. The first one is an all-HW TF architecture 
in which user modules are all put into the HW partition 
and communicate through a virtual TF FIFO channel. The 
second one is an all-HW architecture in which 



communications travel on a BCA model of the IBM 
CoreConnect™ OPB bus [10]. The last one, which 
exploits the full power of hardware/software co-
monitoring, uses a BCA OPB bus, a Xilinx MicroBlaze 
[11] ISS and a µC/OS-II RTOS kernel [12] to provide a 
cycle-accurate simulation of bus communications and of 
software execution. Results are presented here on the co-
monitoring of a digital RF filter and of a JPEG picture 
processor.  All our simulations were run on a Windows 
XP workstation with a 2.8 GHz Pentium IV processor, a 
7200 RPM hard drive and 1 GB of RAM. 

 
4.1. Digital RF filter 

 
 The digital RF filter example has been thoroughly 

presented in [2] and is shown in Figure 5. In short, the 
Producer generates a periodic flow of data that is filtered 
and then stored in memory by the Mux. The Controller 
periodically adjusts the memory address used by the Mux, 
requests analysis of the data and changes the Filter’s 
coefficients according to the results of the analysis. 
 

 
Figure 5: RF filter. Dashed lines represent 

control signals, solid lines are data transfers 
 

Architecture Comm. 
channel 

HW 
partition 

SW 
partition 

HW-TF TF All None 
HW-BCA OPB All None 
PART1 OPB Producer, Filter, 

Mux, Analyzer 
Controller 

PART2 OPB Producer, Filter, 
Mux, Controller 

Analyzer 

PART3 OPB Producer, Filter, 
Mux 

Controller, 
Analyzer 

Table 1: Five architectures of the RF filter 
 

We simulated five different architectures for the RF 
filter, three of which were partitioned between hardware 
and software, as shown in Table 1. Each architecture was 
simulated with and without co-monitoring in order to 
measure how much overhead is added when 
instrumenting the SystemC simulation and outputting the 
monitoring records to a log file. Table 2 compares the 
SystemC and wall clock times taken by each simulation. 

Our tests confirm that the simulation’s SystemC clock 
time stays exactly the same whether monitoring is enabled 
or not. This means that our co-monitoring does not disturb 
the timing of system-level simulations. On the other hand, 
co-monitoring does increase the wall clock run time of the 
simulation, which means that the user has to wait longer 
before the simulation ends. 
 

 Wall clock run 
time (seconds) 

SystemC clock 
time (seconds) 

Architecture Plain Monitored Plain = Monitored 
HW-TF 16 23 0.18976762 
HW-BCA 24 32 0.36211836 
PART1 98 115 1.02003820 
PART2 198 220 2.13268552 
PART3 284 316 3.01680632 
Table 2: Results for five architectures of the RF 
filter example with and without co-monitoring 

 
Communication path (as shown in 
Figure 5) 

Communication 
volume (kB) 

(1) Producer Filter 256.000 
(2) Filter Mux 256.000 
(3) Mux Memory 256.000 
(4) Controller↔Mux 0.570 
(5) Controller Analyzer 0.285 
(6) Memory Analyzer 580.277 
(7) Analyzer Controller 0.277 
(8) Controller Filter 1.688 
Instruction and data memory ISS 96579.404 

Table 3: Communication volumes in the RF filter, 
with the Analyzer and Controller in SW (PART3) 

 
For all-HW architectures, the absolute size of this 

increase is small (7-8 seconds) whereas its relative size is 
significant (33-44% of the non-monitored wall clock run 
time), which reflects the fact that all-HW SystemC 
simulations are very fast. For partitioned architectures, the 
absolute overhead is larger (17-32 seconds) whereas the 
relative overhead is modest (11-17%). The larger absolute 
overhead in partitioned architectures is due to the 
operations of the ISS monitor and to the monitoring of 
every data and instruction memory access made by the 
ISS (see last line of Table 3), whereas the smaller relative 
overhead reflects the fact that an ISS simulation is 
inherently much more time-consuming than an all-HW 
SystemC simulation. 

Also, Table 3 shows that co-monitoring is able to 
measure the communication volume between a pair of 
components, whether they are both in hardware (paths 1, 
2 and 3 in Figure 5), both in software (paths 5 and 7) or 
are split between HW and SW (paths 4, 6 and 8).   



4.2. JPEG picture processor 
 
The JPEG picture processor example has been detailed 

in [2] as an edge detection application for JPEG images. 
Figure 6 illustrates the components and communication 
paths for this example. 

Like in the preceding example, the picture processor 
was simulated with and without co-monitoring for five 
architectures, as shown in Table 4. Each simulation was 
run for 9 JPEG images with a dimension of 128x128. 
Table 5 summarizes our findings. Again, the wall clock 
overhead is smaller in absolute terms (8-11s) and larger in 
relative terms (33-42%) for all-HW architectures, and the 
reverse is true for partitioned architectures (96-200 
seconds or 14-22% of the wall clock run time). 

 
Figure 6: JPEG picture processor example 

 
Architecture Comm. 

channel 
HW 

partition 
SW 

partition 
HW-TF TF All None 
HW-BCA OPB All None 
PART1 OPB HUFF, IDCT, 

YUV2RGB, 
Edge, Iquant 

Extractor 

PART2 OPB HUFF, IDCT, 
Extractor, 
Edge, Iquant 

YUV2RGB 

PART3 OPB HUFF, IDCT, 
Edge, Iquant 

Extractor, 
YUV2RGB 

Table 4: Five picture processor architectures 
 

 Wall clock run 
time (seconds) 

SystemC clock 
time (seconds) 

Architecture Plain Monitored Plain = Monitored 
HW-TF 19 27 0.15102666 
HW-BCA 33 44 0.36296708 
PART1 494 604 4.69517290 
PART2 683 779 7.27851472 
PART3 1169 1369 11.84522752 

Table 5: Results for five picture processor 
architectures with and without co-monitoring 

 

5. Conclusions 
 

This paper explained how to get, with relatively little 
overhead, a rich set of performance data from an 
embedded system simulated in a hardware/software 
codesign environment. In particular, it demonstrated how 
the activities of hardware and software user modules can 
be seamlessly and non-intrusively monitored inside and 
across partition boundaries and how performance metrics 
and statistics could be efficiently extracted from 
monitoring records obtained from the instrumented 
model. 

Future work remains ahead in the refinement of this 
co-monitoring tool. Monitoring for software user modules 
at a higher level of abstraction, in which the software is 
not run on an ISS but rather inside a host process for 
faster simulation, is still under development.  Also in the 
works is a hardware/software partitioning application that 
would make use of co-monitoring to drive the partitioning 
algorithm. Finally, the technique used for co-monitoring 
is currently employed to implement a non-intrusive ISS-
based RTOS monitoring tool. 
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