
Test Quality Analysis and Improvement
for an Embedded Asynchronous FIFO

Tobias Dubois
�

Mohamed Azimane
�

Erik Larsson
�

Erik Jan Marinissen
�

Paul Wielage
���

Clemens Wouters
�

�
NXP Semiconductors

Research
High Tech Campus 48, M/S-02

5656AE Eindhoven
The Netherlands

mohamed.azimane@nxp.com
erik.jan.marinissen@nxp.com

paul.wielage@nxp.com

�
NXP Semiconductors

Digital Library Technology
High Tech Campus 46, M/S-11

5656AE Eindhoven
The Netherlands

clemens.wouters@nxp.com

�
Linköpings Universitet

Dept. of Computer Science
Embedded Systems Laboratory

SE-581 83 Linköping
Sweden

tobdu865@student.liu.se
erila@ida.liu.se

Abstract

Embedded First-In First-Out (FIFO) memories are increasingly used in many IC designs. We have created a new full-custom
embedded FIFO module with asynchronous read and write clocks, which is at least a factor two smaller and also faster than
SRAM-based and standard-cell-based counterparts. The detection qualities of the FIFO test for both hard and weak resistive
shorts and opens have been analyzed by an IFA-like method based on analog simulation. The defect coverage of the initial FIFO
test for shorts in the bit-cell matrix has been improved by inclusion of an additional data background and low-voltage testing; for
low-resistant shorts, 100% defect coverage is obtained. The defect coverage for opens has been improved by a new test procedure
which includes waiting periods.

1 Introduction

An increasing number of ICs is utilizing large numbers of First-
In First-Out (FIFO) memories in their design. These embedded
FIFOs are used for intermediate storage, data rate conversion, and
clock domain crossing. Also new design paradigms like Globally-
Asynchronous Locally-Synchronous (GALS) [1] and Network-on-
Chip (NOC) [2] make extensive use of embedded FIFOs. Con-
ventional FIFO designs are typically based on either an embedded
SRAM, or made up entirely from standard-cell logic. Despite the
fact that the individual FIFOs are typically small in area size, due to
the large numbers of FIFOs per IC design, their overall impact on
silicon area is significant. Consequently, NXP Semiconductors has
decided to add full-custom FIFO modules to their library, which are
both smaller and faster than their conventional counterparts. The new
full-custom FIFO module is a micropipeline [3], consisting of a se-
ries of asynchronously communicating stages, each implemented as
a register of latches and a control cell. Design and design-for-test
(DfT) details of the FIFO are described in a companion paper at this
conference [4].

As all on-chip circuitry, this new FIFO module needs to be tested for
manufacturing defects. The size of an individual FIFO is small, and

hence its impact on the IC-level yield and quality is small. However,
the typical use scenario is that hundreds of these FIFOs are used in
a single IC design. This implies that the collective impact of all on-
chip FIFOs on IC-level yield and quality is significant. Consequently,
effective, yet efficient testing is important.

At NXP Semiconductors, we are accustomed to check the defect de-
tection qualities of our tests for embedded memories by means of a
defect-based analysis method based on analog simulation at transistor
level [5, 6, 7]. For a newly developed module and its test, such as
our new FIFO, this is even more important, as during the conceptual
development of the tests of the module, some defects might otherwise
easily be overlooked. This paper describes the defect-based analy-
sis procedure for embedded memories and how it was applied to our
new FIFO module. The analysis led to an improvement of our ini-
tial FIFO test suite, by inclusion of additional data backgrounds and
low-voltage testing.

The remainder of this paper is organized as follows. The FIFO design
is briefly described in Section 2. The defect-based analysis method
used to evaluate and optimize the test set is described in Section 3,
while the original FIFO test procedure is described in Section 4. Anal-
ysis results and test improvements are discussed in Section 5. The
paper is concluded in Section 6.

�
Paul Wielage is currently with NXP Semiconductors’ IC Laboratory in Eindhoven, The Netherlands.

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



2 FIFO Design

The FIFO design and DfT is described in more detail in a compan-
ion paper [4]. In order to make this paper self-contained, this section
gives a brief overview of the most prominent FIFO design features.

The architecture of the FIFO design is depicted in Figure 1. The FIFO
consists of a write interface, a read interface, and a kernel. The kernel
is built according to the principle of an asynchronous micropipeline
[3]. It consists of stages that utilize local handshake signals to prop-
agate data from one stage to the next. Each stage can hold one word
of data. Since there is no global clock in the design, a word that is
written into the FIFO ripples automatically through the pipeline till it
arrives at the last empty stage. Similarly, when a word is read, the last
stage becomes empty, which creates an empty word slot (‘hole’) that
ripples towards the input side of the pipeline.

latches

latches

G 	G 


latches

SCSCSC
R 	
A 	R �

A �

wr clk rd clk

w
rite

interface

read
interface

se

full
we

empty
re

streammode reset

2
fillerData

fillerEnable

G �
R 	� 

A 	� 
A �R �R 


A 


sosi

rd datawr data

Figure 1: The architecture of the FIFO module.

The schematic of the data-path latch is given in Figure 2. The bits
in the data path are dual-rail encoded, i.e., both the bit value and its
inverse are stored. This allows to employ an SRAM-like write tech-
nique in the transparent mode of the latch. Two cross-coupled invert-
ers for keeping state are implemented by transistors ��� , ��� , ��� , and
��� . Transistors ��� , ��� , and ��� allow to change state. To write,
transistor ��� must be turned on by a high level on G such that the
true or the complement signal of the cell will be forced to ground,
depending on the data input D (and its complement DN).

N5

N1 P1

N2 P2

N3

N4

G

DN

D
QN

Q

Figure 2: Static latch used in the data path.

The FIFO supports the basic operations (1) write, (2) read, and (3)
shift. While the write and read operations are truly asynchronous,
the shift operation, which actually is a combined write and read op-
eration, only works if wr clk and rd clk are synchronous to each
other. The shift operation can be used when the FIFO is embedded
in a synchronous context, or when the two clock signals are explicitly
made synchronous.

Figure 3: The layout of the 16 � 19-bit FIFO instance.

Three FIFO instances have been developed in a 90 nm CMOS tech-
nology: 16 � 19 (= 16 words � 19 bits per word), 32 � 37, and 64 � 37.
The layouts of these instances were hand-crafted to obtain the small-
est possible area. The layout of the 16 � 19-bit instance (with a total
silicon area of 2,582 � m � ) is shown in Figure 3. The largest layout
block is formed by the bit-cell matrix. Its 19-bit words with alter-
nating data (D) and data-not (DN) cells are clearly distinguishable as
horizontal rows. Power lines are routed left and right of the bit-cell
matrix, as well as through the middle. The asynchronous control cells
are left of the bit-cell matrix. The height of a control cell corresponds
to the height of two rows of bit-cells, and hence the control cells could
be laid out in eight horizontal rows of two control cells each. Other
layout blocks implement the input and output buffers and write and
read interfaces.

3 Defect-Based Analysis Method

At NXP Semiconductors, a defect-based analysis method is used to
assess the defect detection qualities of a test suite for embedded full-
custom modules, such as embedded memories [5, 6]. The method,
which is based on Inductive Fault Analysis (IFA) [8] uses analog
simulations on a transistor-level netlist of the module to determine
if realistic resistive shorts or opens are detected by a given test suite.
For embedded memories, the method has been largely automated in
the form of an in-house tool called MEMSIM. Investigation of un-
detected defects typically leads to modifications and additions in the
tests and/or their stress conditions [7], in order to improve the corre-
sponding defect coverage.

An outline of our method is given by the flow chart shown in Figure 4.
The top part of the flow with dark-gray boxes with white lettering in-
dicates the part of the flow which is executed only once. The bottom
part of the flow consists of two nested loops. The medium-gray boxes
depict what is part of only the outer loop, while the light-gray boxes
indicate which operations are performed in the inner loop.



The flow starts with a layout of the module under consideration. From
this layout, a transistor-level netlist is extracted, which may include
parasitic elements such as resistances, capacitances, and diodes. With
the help of an in-house tool called FAULTGEN, a list of potential de-
fect locations for realistic shorts and opens is extracted from the lay-
out on the basis of critical area analysis [9]. Both operations are only
performed once.

Iteratively, the following procedure is executed. A simulation test-
bench is defined for the netlist, with as parameters the test stimuli,
supply voltage, temperature, and clock frequency. A (Spice-like)
analog simulation is performed on the defect-free (golden) transistor-
level netlist, and the corresponding responses are stored in a database
for later reference. Subsequently, for each defect location in the de-
fect list, the defect injection operation creates a dedicated defective
netlist, containing the original defect-free netlist augmented with ex-
actly that defect with a certain specified resistive value. Hence, for a
defect list of size � , we will create � different defective netlists. Ana-
log simulations are performed on all defective netlists. The responses
of these simulations are compared against the response database for
the golden netlist. The defects of which the corresponding netlist sim-
ulation leads to a mismatch with the simulation of the golden netlist
are considered as ‘detected’, while others are marked as ‘undetected’.

In the inner loop, this procedure is repeated for a set of representative
defect resistance values. The outer loop is entered only if the resulting
defect coverage is unacceptably low. In that case, we try to improve
the test suite by modifying the testbench parameters. Note that the
outer loop requires re-simulation of the golden netlist.

Layout

Defect Extraction

Defect List

Defect Injection

Defective Netlists

Analog Simulations

Acceptable?

End

Begin

No

Yes

Once

Outer Loop

Inner Loop

Tr-Level Netlist

Netlist Extraction

Golden
Analog Simulation

Golden
Response DB

Define Testbench

C
hange D

efect R
esistance

C
hange Testbench P

aram
etersComparisons

MemSim

FaultGen

Figure 4: The defect-based analysis flow chart.

Due to its many analog simulations, this flow can be very expensive
with respect to compute time. For a circuit with � potential defect lo-

cations, we run �! "� analog simulations per iteration; on the golden
fault-free netlist, and on the set of � netlists each containing exactly
one defect. This inner loop is repeated for the number of distinct de-
fect resistances # . A crucial aspect of our experiments is to obtain re-
alistic and relevant results, while keeping the corresponding compute
time within tractable limits. To this end, we have applied multiple
techniques.

$ Selection of analog simulator. We estimated that an accurate
in-house analog simulator would need several hours of com-
pute time for one golden simulation. As this was considered
too long, we switched to Synopsys’ simulator HSIM. HSIM

is a hierarchical simulator, capable of exploiting regularities
in the circuit and avoiding duplication of simulations. With
HSIM we obtained a compute time of less than 10 minutes per
complete simulation run.

$ Parallel computation. Our tool MEMSIM supports the distribu-
tion of simulations over multiple compute servers. The number
of simultaneous simulations was mostly limited by the number
of HSIM licenses available at any given time.

$ Abort-on-first-fail. The simulations of the defective netlists are
compared on a pattern-by-pattern basis with the ‘golden’ simu-
lation, and aborted as soon as a mismatch is detected. As many
defects are detected somewhere halfway the simulation run,
apply abort-on-first-fail reduces the average simulation time
quite effectively.

$ Selection of simulation instance. We used the smallest FIFO
instance of 16 words � 19 bits for our analog simulations.
This transistor-level netlist contains around 3,500 transistors
and 8,000 parasitic capacitances.

$ Windowing. In order to reduce the number of defect loca-
tions � , we exploited the regular character of the FIFO layout
by considering only defects in a small window. For the bit-
cell matrix of the FIFO, we considered all possible shorts and
opens within a single static latch, as well as all possible shorts
between this latch and its direct neighbor latches. For the asyn-
chronous control of the FIFO, we considered all possible shorts
and opens within a single control slice and all possible shorts
between this control slice and its direct neighbors.

$ Small set of resistances. In order to reduce the number of dis-
tinct defect resistances # , only a small number of defect resis-
tances were considered, while still covering the entire range
from ‘hard’ to ‘weak’ shorts and opens. For shorts, we con-
sidered #�%&� with defect resistance values of 100 ' (‘hard’
short), 1 k ' , 10 k ' , 50 k ' , and 100 k ' (‘weak’ short). While
focusing on low-ohmic shorts, we included 50 k ' and 100 k ' ,
as Montañés et al. showed in [10] that high-ohmic shorts of
20 k ' and more do occur in deep sub-micron designs. In [11],
Montañés et al. showed that deep sub-micron designs can con-
tain opens and that the resistive value of these opens shows a
wide spread. Therefore, we considered for opens #(%)� with
1 G ' (‘hard’ open), 1 M ' , and 10 k ' (‘weak’ open).

$ Implied detection. If for a defect location a weak defect is de-
tected, it is implied that all harder defects will be detected as
well. This can be exploited by simulating weak defects first,
and treating all detected weak defects also as ‘detected’ for
harder resistive values, i.e., without actually simulating them.
For shorts, this implies that we iterate from high to low resis-
tive values, while for opens, we go from low to high resistive
values.



4 Initial FIFO Test

For an *+�-, -bit FIFO (with * even), our initial INTEST procedure [4]
consisted of three steps as listed in Table 1, to be executed at nominal
frequency, temperature, and supply voltage (= 1.2 Volts).

Step Operation #ops
1 Reset 1
2 Write .0/�/2131�14/657�8�91�1�1��3:<;8=>��5</8/+1�1�14/ *? "�
3 Shift-Out .0/8/21�1314/@5��8�91�1�17�A: ;B=C� *

Table 1: Initial FIFO INTEST procedure.

Step 1 resets the FIFO by applying reset %D� for one clock cycle,
thereby effectively flushing the FIFO’s contents.

Step 2 writes an alternating sequence of 00 13171 0 and 11 131�1 1 words
into the FIFO. The net result is that the FIFO’s memory matrix is
filled with a physical checkerboard pattern, as in the dual-rail encoded
FIFO layout every word consists of an alternating sequence of bit and
bit-not lines. This test checks correct writing at different fill levels of
the FIFO, and aims to detect single-cell stuck-at, transition, and delay
fauls, as well as coupling faults between neighboring bit-cells. For an
* -word FIFO, we try to write *E F� words, in order to check whether
the last write operation is refused by the then full FIFO.

All response observation of this test takes place in Step 3. The FIFO
contents is read out by shifting. This exercises some of the worst-case
timing paths in the FIFO, as for every individual shift operation on a
full FIFO a hole needs to be propagated from the read interface to the
write interface through the entire FIFO [4].

5 Defect-Based Analysis Results

In this section, we describe the analysis results for intra- and inter-cell
defects within the largest layout block, i.e., the bit-cell matrix. The
same approach has been used on the other layout blocks, but due to
lack of space, detailed results are omitted here.

5.1 Resistive Shorts in the Bit-Cell Matrix

Resistive short defects, in which two or more signal lines are shorted,
are the most common defect type. In the bit-cell matrix, they may
cause among other stuck-at, transition, delay, or coupling faults. Col-
umn 2 of Table 3 shows the results of the defect-based analysis of the
initial INTEST procedure. Even in the case of hard (= 100 ' ) shorts,
one out of 18 potential defects was not detected, leading to an unac-
ceptably low defect coverage of 94.4%. For weaker shorts, the defect
coverage was even lower.

Simple faults localized to one bit-cell, such as stuck-at and transition
faults, are easily detected by our INTEST procedure. The alternating
bit values that pass through the bit-cells during Steps 2 and 3 will
be disturbed by the stuck-at or transition fault, and hence detected
upon read-out. Analysis showed that indeed all stuck-at and transi-
tion faults were detected by the initial INTEST procedure.

The detection of coupling faults is more complex. The values (‘data
background’) in physically adjacent neighbor cells determine whether
or not a coupling fault is sensitized and detected. The ‘all-zero’ and

‘all-one’ words written in Step 2 of the initial INTEST procedure lead
to a physical checkerboard pattern, given the fact that in the bit-cell
matrix layout words are laid out as an alternating sequence of bit and
bit-not wires. Our analysis showed that this was insufficient to detect
all coupling faults, as one hard short defect led to a coupling fault that
escaped the initial INTEST procedure.

Figure 5: All possible shorts between a bit-cell and its neighbours in
the Metal 1 layer (words are horizontal).

The missed coupling fault is caused by a short between two neigh-
boring bit-not wires within one word. Opposite from what is the case
in the poly-silicon layer, neighboring bit-not wires are adjacent in the
Metal 1 layer. Figure 5 shows all potential shorts between a cell and
its neighbors in the Metal 1 layer. At the bottom right-hand of the
dashed box that indicates the bit-cell, the potential coupling between
two bit-not wires of neighboring cells is shown.

In order to detect this missing fault, a second test was devised, equal
to the initial INTEST procedure, but with a different data background.
With this new data background, neighboring bits within one word get
different logic values, due to which also neighboring bit-not wires get
different values, and hence the missing coupling fault can be detected.
The new test consisted of a repetition of the initial test, with two dif-
ferent data backgrounds, and is listed in Table 2.

Step Operation #ops
1 Reset �
2 Write .0/�/2131�14/657�8�91�1�1��3:<;8=>��5</8/+1�1�14/ *? "�
3 Shift-Out .0/8/2131�14/@5��8�91�1�17�A: ;B=C� *
4 Reset �
5 Write .0/@�-131�14/657�3/+1�1�1��3: ;8=>� 5</6�91�1�14/ *? "�
6 Shift-Out .0/6�-131�14/@5��3/+1�1�17�A:G;B=C� *

Table 2: Modified FIFO INTEST procedure.

Column 3 of Table 3 shows the resulting, improved defect coverage
for the modified INTEST procedure which applies two different data
backgrounds. Good news is that we obtained complete detection of
all hard shorts of 100 ' and 1 k ' , and that also detection of weaker
shorts of 10 k ' and 50 k ' has improved. However, the detection of
weak shorts still requires improvement, especially since weak shorts



of 100 k ' are not detected at all yet.

To improve the defect coverage of highly resistive shorts, we applied
our defect-based analysis with different stress conditions for supply
voltage, temperature, and test frequency. We found out that espe-
cially low-voltage testing increases the defect coverage of highly re-
sistive shorts. Lowering the supply voltage from (nominal) 1.2 Volts
down to 0.9 Volts increased the detection of weak shorts of 50 k '
from 50% to 83% and for 100 k ' even from 0% to 62%. Hence, the
final test advised for this FIFO for detecting resistive shorts consists
of the modified INTEST procedure with two data backgrounds, run at
0.9 Volts. Column 4 of Table 3 shows the defect coverage improve-
ments between the three tests.

Short Relative Defect Coverage
Resistance 1.2 Volts 0.9 Volts

One DBG Two DBGs Two DBGs
100 ' 94.4% 100.0% 100%
1 k ' 94.4% 100.0% 100%

10 k ' 83.3% 88.9% 88.9%
50 k ' 44.4% 50.0% 83.0%

100 k ' 0.0% 0.0% 62.0%

Table 3: Relative defect coverage for resistive shorts with one (00-11)
or two (00-11 + 01-10) data-backgrounds at nominal and low voltage.

5.2 Resistive Opens in the Bit-Cell Matrix

Our defect extraction procedure identified 27 possible open defects
in each bit-cell. We considered open defects caused by line breaks,
broken contacts, and broken vias.

Most of the 1 G ' and 1 M ' opens are detected by the initial INTEST.
The relative defect coverage achieved for the investigated resistances
is shown in Column 2 of Table 5.

Resistive opens cause an increased delay in the affected nets. Since
the asynchronous FIFO pipeline is self-timed, there are time con-
straints on data transfers between bit-cells that may be violated by
an increased wire delay. Because of the asynchronous nature of the
FIFO, changing the external write frequency does not influence these
time constraints. To detect violations of the time constraints, it is suf-
ficient to use an alternating data background. If a data transfer from
one cell to another is delayed long enough, old data will be latched.
Because of the alternating sequence of words the old data will be dif-
ferent from the data that should have been latched.

N1 P1
N3

N4

N5

N2 P2

DN

D
QN

Q
G

Figure 6: Schematic of a bit-cell with a resistive open at one of the
NMOS transistor gates of the cross-coupled inverters.

Two hard 1 G ' opens in the gates of the NMOS transistors in the
cross-coupled inverters of the bit-cell were not detected by the initial
INTEST. The defect location for one of these opens is shown in Fig-
ure 6. A hard open at the gate of a transistor substantially limits the
current that can flow to and from the gate, but it is still possible to
charge the gate capacitance through the open. The gate will also be
very sensitive to capacitive coupling.

The voltage level on the gate in the inverter NMOS can be changed
by writing the cell and then waiting until the gate capacitance has
been charged, through the open, to the voltage level of the data line it
is connected to. This takes a long time compared to the regular write
and read speed. If the gate behind the open is initialized to a logic
one it will stay at this level even when the data in the cell changes, if
the changes are fast. This situation can be seen in the first part of Fig-
ure 7. The top graph shows the voltage on a bit-cell data net when the
FIFO is filled with alternating data. The switching of the data comes
from the alternating words that ripple through the bit-cell. The bot-
tom graph shows the voltage on the gate behind the open resistance.
As shown in the figure, the gate voltage level is affected by capacitive
coupling and the gate is slowly charged when the data line is written
to one. But neither of these effects are strong enough to significantly
change the gate voltage. At the moment when all writes have been
performed and the bit-cell latches the data, the gate voltage is still so
low that the NMOS transistor is turned off although it should be on.
This is not detected at this point because data is always written to a
bit-cell by forcing a data net to ground through the write transistors.
Hence, the NMOS transistors in the bit-cell inverters are never used to
change the data in the cell, they are only used to keep the data stable.
Even if the inverter NMOS transistor is turned off, the cell will still
keep its data. If instead the NMOS gate voltage is close to the supply
voltage, the transistor will be turned on. If the data net connected to
the gate is then written to a logic zero the gate voltage will still be
high because of the delay effect of the open. In this situation both
the NMOS transistor and the PMOS transistor of the bit-cell will be
conducting at the same time. Since the NMOS transistor is stronger
than the PMOS transistor, the NMOS transistor will force the inverter
output down to a logic zero although it should be a logic one. This
creates a detectable fault.

Figure 7: Voltage on the data line (upper curve) and on the broken gate
connected to the same data line by a 1 G H resistance (lower curve).

One possible way of detecting the NMOS gate opens in the cross-
coupled inverters of the cell is to add two waiting periods to the initial
INTEST before the data is read out. The proposed test is presented in



Table 4. First, the FIFO is filled with the (00 . . . 0; 11 . . . 1) ;8=>� data
background. Then there is the first waiting period. After this wait-
ing period half of the NMOS inverter gates will be written to a logic
one. According to simulations, the waiting time should be at least
2 � s. The next step is to scan out one word of data. When one word
is scanned out, all words in the FIFO move one stage forward in the
pipeline. Because of the alternating data background this means that
the opposite data will be written into the cells. This enables the detec-
tion of the open defect for half of the NMOS transistors in a cell. To
detect them for the other half, there needs to be a second wait and a
second scan of data. The drawback of this test procedure is that some
defect coverage may be lost for the first words since the data that is
scanned into the FIFO cannot be controlled by the proposed DfT hard-
ware in the general case. It is possible to detect these opens as well,
but that would require an extension of the current DfT-hardware.

Step Operation #ops
1 Reset �
2 Write .0/�/21�1314/657�8�91�1�1��3: ;8=>� *
3 Wait �A�JI �
4 Shift-Out .0/8/2131�1</B:>5 �
5 Wait �A�JI �
6 Shift-Out .G�8�-131�17�A:>5 �
7 Shift-Out .0/8/2131�1</65����K1�171��A: ;B=C� *

Table 4: FIFO bit-cell inverter gate open test procedure.

Table 5 shows the improvement achieved by the improved INTEST.

Open Relative Defect Coverage
Resistance Initial Improved

1 G ' 92.0% 100.0%
1 M ' 92.0% 92.0%
10 k ' 18.0% 18.0%

Table 5: Relative defect coverage for resistive opens with the original
and improved INTEST.

6 Conclusion

Many IC designs use numerous embedded FIFO memories for in-
termediate storage, data rate conversion, and clock domain cross-
ing. The usage of embedded FIFOs is expected to grow, as new
design paradigms such as Network-on-Chip (NOC) and Globally-
Asynchronous Locally-Synchronous (GALS) use FIFOs extensively.
NXP Semiconductors has developed a new embedded asynchronous
FIFO module, based on a micropipeline architecture. Due to its full-
custom design, the new FIFO is substantially smaller and faster than
SRAM-based and standard-cell-based counterparts.

In this paper, we described how we have investigated and improved
the defect detection qualities of our initial test procedure for resistive
shorts and opens in the bit-cell matrix of the new FIFO.

By including an additional data background we managed to reach
100% defect coverage for 100 ' and 1 k ' shorts. The defect coverage
of higher resistance shorts was increased substantially by including
low-voltage testing. The probability of occurence of high-resistant
shorts is a lot smaller than it is for low-resistant shorts, so achieving
100% defect coverage here is not as important.

We found 1 G ' opens in the gates of the NMOS transistors of the
cross-coupled inverters in the bit-cell that were not detected by the

initial test and we were able to create a test procedure with two wait-
ing periods to detect them.

Acknowledgements

The authors thank Michel Altheimer of NXP Semiconductors in
Sophia-Antipolis, France for working with us on the design, layout,
and test strategy for the embedded FIFO module. We thank Erik van
Geest of NXP Semiconductors and Ananta Majhi and Bart Vermeulen
of NXP Research in Eindhoven, The Netherlands for constructive crit-
icism on an early draft of this paper.

References
[1] Jens Muttersbach, Thomas Villiger, and Wolfgang Fichtner.

Practical design of globally-asynchronous locally-synchronous
systems. In Proceedings Intnl. Symposium on Advanced Re-
search in Asynchronous Circuits and Systems (ASYNC), pages
52–59, April 2000.

[2] Kees Goossens, John Dielissen, and Andrei Rădulescu. The
Æthereal network on chip: Concepts, architectures, and imple-
mentations. IEEE Design & Test of Computers, 22(5):21–31,
September/October 2005.

[3] Ivan E. Sutherland. Micropipelines. Communications of the
ACM, 32(6):720–738, June 1989.

[4] Paul Wielage, Erik Jan Marinissen, Michel Altheimer, and
Clemens Wouters. Design and DfT of a High-Speed Area-
Efficient Embedded Asynchronous FIFO. In Proceedings De-
sign, Automation, and Test in Europe (DATE), Nice, France,
April 2007.

[5] Mohamed Azimane and Ananta K. Majhi. New Test Method-
ology for Resistive Open Defect Detection in Memory Address
Decoders. In Proceedings IEEE VLSI Test Symposium (VTS),
pages 123–128, April 2004.

[6] Mohamed Azimane et al. A New Algorithm for Dynamic Fault
Detection in RAMs. In Proceedings IEEE VLSI Test Symposium
(VTS), pages 177–182, May 2005.

[7] Ananta K. Majhi et al. Memory Testing Under Different Stress
Conditions: An Industrial Evaluation. In Proceedings Design,
Automation, and Test in Europe (DATE), pages 438–443, March
2005.

[8] J.P. Shen, W. Maly, and F.J. Ferguson. Inductive Fault Analysis
of MOS Integrated Circuits. IEEE Design & Test of Computers,
2(6):13–26, December 1985.

[9] Jose Pineda de Gyvez. IC Defect Sensitivity for Footprint-Type
Spot Defects. IEEE Transactions on Computer-Aided Design,
11(5):638–658, May 1992.

[10] Rosa Rodrı́gues Montañés, Eric Bruls, and Joan Figueras.
Bridging Defects Resistance Measurements in a CMOS Pro-
cess. In Proceedings IEEE International Test Conference (ITC),
pages 892–899, Baltimore, MD, USA, September 1992.

[11] Rosa Rodrı́gues Montañés, José Pineda de Gyvez, and Paul
Volf. Resistance Characterization for Weak Open Defects. IEEE
Design & Test of Computers, 19(5):18–26, September/October
2002.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




