
Design and DfT of a High-Speed Area-Efficient
Embedded Asynchronous FIFO

Paul Wielage
���

Erik Jan Marinissen
�

Michel Altheimer
�����

Clemens Wouters
�

�
NXP Semiconductors

Research - Digital Design & Test
High Tech Campus 48, M/S-02

5656AE Eindhoven
The Netherlands

paul.wielage@nxp.com
erik.jan.marinissen@nxp.com

�
NXP Semiconductors

Digital Library Technology
505, Route des Lucioles

Sophia Antipolis, 06560 Valbonne
France

	
NXP Semiconductors

Digital Library Technology
High Tech Campus 46, M/S-11

5656AE Eindhoven
The Netherlands

clemens.wouters@nxp.com

Abstract

Embedded First-In First-Out (FIFO) memories are increasingly used in many IC designs. We have created a new full-custom em-
bedded ripple-through FIFO module with asynchronous read and write clocks. The implementation is based on a micropipeline
architecture and is at least a factor two smaller than SRAM-based and standard-cell-based counterparts. This paper gives an
overview of the most important design features of the new FIFO module and describes its test and design-for-test approach.

1 Introduction

Embedded First-In First-Out (FIFO) memories are increasingly used
in IC design for intermediate storage, data rate conversion, and
clock domain crossing. New design paradigms like Network-on-Chip
(NOC) and Globally-Asynchronous Locally-Synchronous (GALS)
use embedded FIFOs extensively [1, 2]. Despite the fact that a single
individual FIFO is not very large, the number of FIFOs in a circuit
can be huge, and hence their overall silicon area contribution can be
significant. Consequently, it is important that they are implemented
in an area-efficient way.

Conventional FIFO designs are based on random access memory for
storing the data, e.g. an embedded SRAM or one made up entirely
from standard-cell logic. SRAM-based FIFOs offer an area-efficient
bit-cell, but small instances suffer from a relatively large SRAM pe-
riphery (such as address decoders and sense-amplifiers) in addition to
the FIFO control overhead. Standard-cell-based FIFOs omit any kind
of analog circuitry, but require a relatively large area to store a single
data bit.

This paper describes the design of a new full-custom FIFO module
which is now part of the NXP design library. It is a micropipeline,
consisting of a series of asynchronously communicating stages, each
implemented as a register of latches and a control cell. The FIFO
provides area-efficient data storage, a small control path, low energy
consumption, and high-speed operation. The latter is achieved by im-
plementing a modified version of the conventional four-phase hand-
shake protocol for communication between the various stages of the
micropipeline.

We also describe the Design-for-Test (DfT) approach for this FIFO.
The FIFO has a dedicated test, but unlike what is common for most
embedded non-logic modules such as memories, we do not equip our
FIFO with a full test wrapper or Built-In Self Test (BIST). Instead,
dedicated DfT hardware enables the application of test stimuli to mul-
tiple (or all) FIFOs in parallel, while for further test access, the FIFOs
are integrated into the on-chip scan chains.

The remainder of the paper is organized as follows. The FIFO design
is described in Section 2 and its test and DfT approach is detailed in
Section 3. The paper is concluded in Section 4.

2 FIFO Design

The architecture of the FIFO design is depicted in Figure 1(a). The
FIFO consists of a write interface, a read interface, and a core. The
core is an asynchronous micropipeline [3]. The pipeline consists of
a chain of stages, where each stage can hold at most one word of
data. By means of local handshake signaling between the stages data
propagates through the pipeline in a self-timed fashion. The employed
four-phase handshake protocol takes care of a fast and coherent move-
ment of data from one stage to the next stage provided the receiving
stage is ready to accept data. Data that arrives at the read interface of
the FIFO can be read out from the pipeline. Basically, a read opera-
tion frees the last stage of the pipeline, allowing all data to shift one
position towards the output. However, since the read operation cre-
ates only one free position, the whole content is not shifted instanta-
neously, but word by word. So it looks like the read operation creates
a ‘hole’ which ripples from the read side to the write side interface

Paul Wielage is currently with NXP Semiconductors’ IC Laboratory in Eindhoven, The Netherlands.
�

Michel Altheimer is currently with NXP Semiconductors in Crolles, France, e-mail:michel.altheimer@nxpcrolles.st.com.

978-3-9810801-2-4/DATE07 © 2007 EDAA

in a direction opposite to the data. When the FIFO is completely full
at the moment of a read operation, this hole must ripple all the way
to the first stage before writing becomes possible again. In short, the
handshake mechanism causes the data to line up at the read-side of
the pipeline and, consequently, the empty positions at the write-side.

The read (write) interface of the FIFO module converts the internally
employed asynchronous handshake protocol into a read (write) enable
signal and an empty (full) status flag that are synchronous to the read
(write) clock. This allows the FIFO to be smoothly integrated in a
synchronously clocked context, possibly with different clock signals
for the write and read interfaces.

The FIFO core is detailed in Figure 1(b). Each stage consists of a
data register and a stage controller (SC). The data register is built of
latches, with one latch per bit of a word. The stage controller de-
termines whether the register is in hold (full) or transparent (empty)
mode by means of signal ������ and � respectively. The commu-
nication between the stages is via channels based on the concept of
bundled data [4, 5]. In here, the data is encoded on a bus of bit sig-
nals and presence resp. acceptance of valid data on the data bus is
encoded by two signals R and A according to a four-phase hand-
shake protocol. In Figure 1(b) the data busses are depicted by the big
arrows.

(b)

latches

SC

latches

SC

G �

(a)wr clk

we
full

re
empty

FIFO CORE

read
interface

w
rite

interface

R �
A �

latches

SC

reset

rd clk

streamMode

R �
A �

G � G � R �����
A �����A �

R �R �
A �

rd datawr data

Figure 1: The FIFO module (a) and its internal asynchronous core (b).

Other micropipeline implementations which exploit bundled data are
MOUSETRAP [6], IPCMOS [7], GasP [8], LPSR2/1 [9], and LPHC
[10]. Our implementation is different in that it (1) employs an op-
timized data latch consisting of seven transistors and (2) provides
very fast propagation of holes from the read to the write interface,
which improves the slowest timing arc of a micropipeline design sig-
nificantly.

The remaining subsections describe the data path, the control path,
and the write and read interfaces in more detail.

2.1 Data Path
The schematic of the data path latch is given in Figure 2. Transistors
P1, P2, N1, and N2 form two cross-coupled inverters for keeping the
state. Transistors N3, N4, and N5 allow changing the state. The bits
in the data path are dual-rail encoded, i.e., both the bit value and its
inverse are stored. This allows to employ an SRAM-like write tech-
nique in the transparent mode of the latch. To that end, transistor N5
must be turned on by a high level on G such that the true or the com-
plement signal of the cell is forced to ground, depending on the data
input D (and its complement DN).

N5G

DN

D
QN

Q

N1 P1

N2 P2

N3

N4

Figure 2: The static latch as used in the data path.

2.2 Control Path

Transfer of data between two successive stages in the pipeline is based
on a four-phase handshake protocol. The typical way of four-phase
handshaking is shown in Cycle 1 of Figure 3, including the dashed
arcs. Since we choose for the early data-valid scheme, the rising
edges of R and A , at the end of Phases 1 and 2, indicate presence
resp. acceptance of data on the channel [4]. With typical four-phase
handshaking, R and A return to zero as shown in Phases 3 and 4,
where the first transition is a condition for the second. This strict or-
dering guarantees that both the request and acknowledgement have
been seen by the other side.

(b)(a)

valid data

transfer

1 32 4 1 12 4 1 2 43 3

R �

A �

Cycle 1 Cycle 2 Cycle 3

Phase

standard 4-phase handshaking ��� �!
�!"

Figure 3: Three possible cycles of the modified 4-phase handshake protocol.

To improve the propagation speed of both data words and holes, we
have implemented an alternative four-phase protocol, which is one
without the dashed arcs. Now, consistant data transfer is guaranteed
when two conditions are met. Firstly, #�$&%'#�(which implicitely im-
plements arc (a) and, secondly, the stage controller is (level) sensitive
to R only when A is low which makes arc (b) superfluous. The dif-
ference with standard four-phase handshaking is depicted in Cycle 3.
In particular, it shows that the modified protocol allows a new request
before de-assertion of a previous acknowledgement. Given this pro-
tocol, the relation between the request signal to the next stage, the
acknowledgement signal to the previous stage and G becomes very

simple:)*+�-,�/. (� �� , provided that G becomes low after an
incoming request event and immediately high after an incomming ac-
knowledgement event.

The danger of omitting the dashed arcs is two-fold: unintended data
duplication and deadlock. The first problem is solved by the timing
constraint #�$0%1#�(. The second problem is solved by setting a lower
bound on #32 . Furthermore, the latter delay constraint also guarantees
that data can be captured robustly in the latch register. By introduc-
ing these timing contraints, we effectively change the controller from
speed-independent into self-timed [5].

Our modified four-phase handshake protocol is summarized in Ta-
ble 1. Given the previously introduced encodings for R and A , data
transfer happens during Phase 2. During this phase (1) valid data is
present since G =0 and (2) the receiving stage is empty since G 54 (=1.
In the first and fourth phases, the channel is waiting for these two
conditions to become true. Since both events can happen in arbitrary
order, Phase 1 has two possible encodings. Finally, Phase 3 is devoted
to the immediate de-assertion of R to prevent duplication of data as
explained.

Phase R / A Action
1 00 or 11 wait for the second data transfer condition
2 10 transfer of data
3 11 de-assert request signal
4 01 wait for a first data transfer condition

Table 1: Modified four-phase protocol with encoding.

To conclude, the proposed handshake protocol allows concurrent sig-
naling of data presence and acceptance of data on the channels be-
tween the stages and this contributes to high-speed operation.

2.3 Read and Write Interfaces

The FIFO supports three basic operations: (1) write, in which data is
written into the FIFO under control of wr clk, we, and full, pro-
vided it is not full, (2) read, in which data is read out of the FIFO
under control of rd clk, re, and empty, provided it is not empty,
and (3) shift, in which all data words in the FIFO are shifted one
stage towards the output. While the write and read operations can
be performed truly asynchronous, the shift operation, which is actu-
ally a combined write and read operation, only works if wr clk and
rd clk are synchronous to each other. The shift operation can be
used when the FIFO is embedded in a synchronous context, or when
the two clock signals are explicitly made synchronous. The latter is
the case in our test mode, as described in Section 3.

The write interface implements four functions: (1) conversion of the
synchronous timing convention at the interface into the handshake
timing convention of the FIFO core, (2) conversion of single-rail data
inputs into dual-rail, (3) capturing the data bus at the rising clock-
edge, such that intermediate transitions on the data bus in between
write operations are blocked, and (4) enabling a shift operation even
when the FIFO is full. The write interface is equipped with an addi-
tional latch register. This supports Function (3) by allowing the first
register stage to effectively behave as a master/slave flip-flop. If sig-
nal STREAMMODE is asserted, the same register implements Func-
tion (4). During shift operation it can be used as an extra word lo-
cation to temporary store a written word while a read-created hole is
still making its way towards the write interface.

The read interface implements four similar functions: (1) conversion
of the synchronous timing convention at the module interface into the
handshake timing convention of the FIFO core, (2) buffering of the
data output bus, (3) providing a flush mechanism to reset the FIFO to
its empty state, and (4) support of the stream mode. The reset function
is implemented as a sequence of asynchronous read operations for as
long as the FIFO contains data and the reset is enabled. The support
of the stream mode is simply a feed-through of the re signal to the
write interface.

2.4 Layout

Three FIFO instances have been developed in a 90 nm CMOS tech-
nology. Table 2 lists the three instance sizes and corresponding silicon
area, and compares that with SRAM-based and standard-cell-based
alternatives.

Silicon Area including DfT
Words 6 Bits SRAM Standard Cell New

(7 m 2) (8 %) (7 m 2) (8 %) (7 m 2)
16 6 19 10,869 +278 12,580 +338 2,875
32 6 37 20,043 +206 35,814 +446 6,554
64 6 37 25,421 +122 62,319 +444 11,453

Table 2: Currently available FIFO instances and their area sizes.

The layout of the 16 6 19-bit instance is shown in Figure 4. The largest
layout block is formed by the memory-cell matrix. It contains 17
words (horizontal rows in the figure) of 19 bit cells each; 16 regular
words plus the additional latch register that is enabled in the stream
mode. The orientation of all memory cells is equal; hence data signal
D of one bit is physically next to data-not DN of an adjacent bit in
the same word. Power lines are routed left and right of the memory-
cell matrix, as well as through the middle. The second-largest layout
block is formed by the asynchronous stage control cells. The control
cells are laid out in eight horizontal rows of two control cells each.
The height of one row of control cells corresponds to the height of
two rows of memory cells. A similar layout set-up works for all three
FIFO instances, as they all have an even number of words. Other lay-
out blocks implement the input and output buffers and write and read
interfaces.

Figure 4: The layout of the 16 9 19-bit FIFO instance.

3 FIFO Test and DfT Approach
3.1 Prior Work in FIFO Testing
Conventional FIFO designs are based on either an SRAM or standard
cells. SRAM-based FIFOs are typically tested with a dedicated BIST
per FIFO as in the approaches by Barbagallo et al. [11], Van de Goor
et al. [12], and Zorian et al. [13]. However, for small FIFOs, the cor-
responding DfT area is relatively large; a dedicated BIST would take
130% for our smallest 16 word 6 19 bits FIFO. This becomes pro-
hibitively expensive in case a large number of FIFOs are used in one
IC design. In order to reduce the DfT area costs, Grecu et al. [14] pro-
pose to use one common BIST controller and stimulus generator for
multiple FIFOs, while only the response evaluator is dedicated per
FIFO. To be efficient, this approach requires all FIFOs to be of the
same size, which unfortunately is rather uncommon. Also, the area
saved by sharing controller and stimulus generator might be spent
again for the wiring between the shared BIST and the various FIFOs
[15].

Two different approaches exist to test standard-cell FIFOs. The first
approach is to make the latches or flip-flops that constitute the FIFO
memory scan-testable and integrate them into the on-chip scan chains.
The associated DfT area costs are high, but the FIFO can now be
tested by ATPG-generated patterns as integral part of the IC’s logic.
The second approach is to treat the FIFO as a separate module that re-
quires a dedicated test. Rearick [16] follows this second approach and
uses, in a pre-test-wrapper era, scan chains surrounding the FIFO to
provide test access; while test generation for embedded FIFO and sur-
rounding logic is separate, the actual execution of both tests is merged
into one. A potential drawback of this approach is that there might
be logic gates between the embedded FIFO and its surrounding scan
chains, that will complicate test generation and access.

Shi et al. [17] describe standard-cell based asynchronous FIFOs and
propose a test method based on ATPG that targets both stuck-at and
delay faults in the micro-pipeline. As DfT structure, a two-input mul-
tiplexer is added at each pipeline stage. This seems an expensive solu-
tion, but area costs are not mentioned. The paper also does not discuss
if embedded FIFOs are wrapped for test, and how test access to them
is achieved.

Van de Goor et al. [12] discuss on a high level defects and fault mod-
els. However, actual defects such as shorts and opens are difficult to
model at high level. Our test solution, as explained below and in com-
panion paper [18], aims at identifying both hard and weak shorts and
opens.

3.2 Modular Test with Partial Test Wrapper

Non-logic modules embedded into an environment consisting of digi-
tal standard-cell logic are traditionally tested as separate units by ded-
icated tests; this was already the case even before the terms ‘SOC’
and ‘core-based testing’ were invented [19]. Examples of such non-
logic embedded modules are custom-designed blocks like memories,
analog, and mixed-signal blocks. The reason for testing them as sep-
arate units is that these modules have circuit structures different from
standard-cell logic, which consequently exhibit different defect mech-
anisms and fault behavior. Our FIFO is also a custom-designed hard
macro, and hence, we adopted from the start of the project the ap-
proach to use a dedicated test.

The common design-for-test approach that enables separate testing
of embedded modules is to encapsulate the module with a test wrap-
per [20]. The test wrapper switches between the functional and test
connections of the module. It supports at least three modes: (1) nor-
mal mode, in which the functional connections are enabled and the
test infrastructure is switched off, (2) INTEST mode, in which the
module is tested internally while external influences are blocked, and
(3) EXTEST mode, in which the test wrapper participates in testing
the circuitry external to the module while blocking signals internal
to the module. Test wrappers with this functionality are nowadays
quite common [21, 22] and have been standardized as IEEE Std. 1500
[23, 24]. For embedded memories, it is quite common to extend the
functionality of the test wrapper with on-chip stimulus generation and
response evaluation capabilities, commonly termed Built-In Self Test
(BIST) [15].

For our FIFO, we decided not to implement a full test wrapper. A
first-order approximation showed that the silicon area required for im-
plementing only the data portion of such a wrapper (i.e., excluding the
Wrapper Instruction Register [23]) for the smallest 16 6 19-bit FIFO
would in 90 nm CMOS technology take about 1,500 7 m 2 . Compared
to the size of the FIFO, 2,500 7 m 2 , this implies an area cost of well
over 50%! The principal reason of existence for our full-custom FIFO
is its small area size, compared to implementation alternatives based
on SRAM or standard cells. With a conventional IEEE Std. 1500
compliant test wrapper, the FIFO’s area advantage would be com-
pletely destroyed. The absolute sizes of the FIFO and its wrapper are
small, and hence, these area costs are bearable in case only one or
few wrapped FIFOs are integrated into an SOC design. However, the
intended use of the FIFO is especially for SOC designs in which sev-
eral hundreds of FIFOs are integrated, and in that scenario, the area
costs of equipping the FIFOs with a full-fledged test wrapper would
become disproportionally expensive.

Instead of implementing a full test wrapper, we implemented only a
partial wrapper [25]. We used wrapper cells like IEEE Std. 1500 type
WC SD1 COI [26, 23] to provide both controllability and observability
to FIFO inputs we, re, streamMode and reset and FIFO outputs
full and empty. Per IEEE Std. 1500, clock signals wr clk and
rd clk are exempt from having wrapper cells.

The write and read data ports wr data and rd data are not
equipped with wrapper cells. This cuts most of the area costs of a
full wrapper and saves 38 (for the smallest FIFO instance) to 74 (for
the larger FIFO instances) wrapper cells. A Wrapper Instruction Reg-
ister (WIR) and associated Wrapper Serial Control (WSC) port, both
mandatory per IEEE Std. 1500, are not supplied either.

3.3 FIFOs Integrated in Scan Chains

During its shift operation, i.e, when simultaneous write and read op-
erations are applied, an :;6=< -bit FIFO (i.e., a FIFO consisting of :
words of < bits each) filled with > words (�+?@>A?@:) actually be-
haves as < parallel scan chain segments of length > bits each. For test,
we exploit this fact by including all FIFOs into on-chip scan chains.
In this way, the FIFO’s write- and read-data inputs become fully con-
trollable and observable from chip pins, and hence are compensated
for their lacking wrapper functionality.

Inclusion into the on-chip scan chains requires an :;6=< -bit FIFO to
be equipped with an < -bit wide scan-in port si[m-1:0], an < -bit

wide scan-out port so[m-1:0] (tapped off from the rd data out-
put), and a scan enable control input se. Note that the FIFO requires
a filling of at least one word (i.e., to be non-empty) in order to be
able to shift data. As described in Section 2.3, signal streamMode
should be asserted to be able to shift a full FIFO, i.e., a FIFO with a
filling of : words.

The on-chip SOC-level TestRail architecture design [21] is not con-
strained by the inclusion of the FIFO scan chain segments. The SOC
integrator can freely design a TestRail architecture, as long as all FIFO
scan chain segments are connected into one or more scan chains. It
is possible to create dedicated ‘FIFO scan chains’, but it is also al-
lowed to mix and match with regular scan chain segments that run
through the surrounding standard-cell logic. It is possible to concate-
nate the scan chain segments of the FIFO(s) into any smaller numberB

(
BDC �). This allows our approach to be used even for SOCs which

allow only very few scan chains, such as very-low pin-count Smart-
Card ICs.

3.4 FIFO InTest Procedure

For an :;6=< -bit FIFO (with : even), our INTEST procedure consists
of three steps, as listed in Table 3. Note that the reset, write, and shift
operations are all normal functional modes of the FIFO.

Step Operation #ops
1 Reset �
2 Write E/���GF�FHFI�KJL���MFHFHFH��NPO�Q 2 JP���;FHFHFI� :SRT�
3 Shift-Out E/���GFHF�FI�*JH���MFHFHFL�3N O�Q 2 :

Table 3: FIFO INTEST procedure.

Upon start-up of the SOC, the FIFO is in an unknown state. In or-
der to bring it to a known state, Step 1 resets the FIFO by apply-
ing reset �U� for one clock cycle, thereby effectively flushing the
FIFO’s content.

Step 2 tests whether the FIFO correctly performs write operations at
different levels of being filled. At every distinct fill level, a write oper-
ation is confronted with different delay paths, which need to be within
certain margins for the FIFO to operate correctly. In order for Step 2
to cover all fill levels, it is important that only write operations are
executed, and no read (or shift) operations. In this way, we cover all
fill levels, from empty to full. For an : -word FIFO, we write :DRV�
words, in order to let the last write operation test if the FIFO indeed
refuses to write additional data, once full. The alternating sequence of
00 F�FLF 0 and 11 F�FHF 1 words enables to distinguish between neighboring
words of the FIFO. In the layout, each word is in its turn an alternat-
ing sequence of bit and bit-not wires, such that the test data fills the
FIFO with a physical checkerboard pattern. Next to the delay paths
at different fill levels, this test also aims to detect single-cell stuck-at
and transitions faults, as well as coupling faults between neighboring
cells.

In Step 3, we read out the FIFO content by shifting. Shifting a full
FIFO actually exercises the worst-case timing paths in the FIFO, as
for every individual shift operation a hole needs to be propagated from
the read interface to the write interface through the entire FIFO. The
FIFO data is shifted to the chip pins, where the ATE compares actual
with expected responses. Note that depending on the actual chip-level
scan chain configuration (see Section 3.3), the responses scanned out
of the FIFO might require propagation through other FIFOs and/or

logic scan chain segments before actually reaching the chip pins.

3.5 Low-Cost ‘Filler’ DfT

In Step 2 of the INTEST procedure, we cannot perform the write op-
erations at different fill levels by simply shifting all FIFOs together
as part of the SOC scan chains. Write data could be provided via
the scan chains only if the subsequent FIFOs execute and complete
their respective Steps 2 one by one. This would require a test con-
trol infrastructure that allows us to subsequently activate the FIFOs.
This could be implemented by means of a dedicated on-chip counter
per FIFO or, alternatively, a dedicated control pin per FIFO; both so-
lutions were considered prohibitively expensive. In a very-low pin-
count SOC, such as a SmartCard IC, where we need to concatenate
even the scan chain segments through a single FIFO, Step 2 of our
test cannot be performed at all by means of scan access, as it would
require bit > of the FIFO words to shift, while bit W is only written and
does not shift (for �X?Y> % WZ?Y<).

To overcome the above difficulties, we have implemented addi-
tional write access DfT. This so-called Filler is a degenerate ver-
sion of BIST, which is capable only of providing test stimuli, and
only in a restricted way. It consists of three input bits to the
FIFO, named fillerData[1:0] and fillerEnable. When
control input fillerEnable is asserted, the words written into
the FIFO are determined by fillerData, such that all even bits
correspond to fillerData[0] and all odd bits correspond to
fillerData[1]. This Filler DfT gives us a restricted, but low-
cost and efficient way to control the data written into a FIFO. Due to
the restrictions imposed by the Filler, test stimuli for the FIFO can
now be characterized and denoted by two bits only; one representing
all even bits, and one representing all odd bits in the stimulus words.

The envisioned usage of the three additional Filler inputs at SOC inte-
gration level is that they will be connected up for all FIFOs per signal,
allowing for a broadcast of the same Filler signals to all FIFOs simul-
taneously. Such a connection scheme would allow to carry out Step 2
of our test for all FIFOs in parallel. Steps 1 (reset) and 3 (scan-out)
could already be executed in parallel for all FIFOs, such that now
effectively the entire test can be carried out in parallel for all FIFOs.

te
st

in
pu

ts

we
full

wr clk

FIFO CORE

read
interface

w
rite

interface

empty
re

rd clk

se

testoutputs

reset

fillerEnable
fillerData

streamMode

2

si

wr data rd data

so

Figure 5: The FIFO module and its test-specific terminals.

Figure 5 shows the FIFO module and highlights the addi-
tional test-specific inputs and outputs. They are si[m-1:0],
so[m-1:0], and se for scan access, and fillerData[1:0] and
fillerEnable for Filler access. The overall DfT area costs of our
solution is 15%, 7.1%, and 4.1% for the three instances respectively.

4 Conclusion
Many IC designs use numerous embedded FIFO memories for in-
termediate storage, data rate conversion, and clock domain cross-
ing. The usage of embedded FIFOs is expected to grow, as new
design paradigms such as Network-on-Chip (NOC) and Globally-
Asynchronous Locally-Synchronous (GALS) use FIFOs extensively.
We have developed a new embedded asynchronous FIFO mod-
ule, based on a micropipeline architecture. Due to its full-custom
design, the new FIFO is substantially smaller than SRAM-based
and standard-cell-based counterparts; the savings are 3.4 mm 2 and
7.3 mm 2 in 90 nm technology for 250 FIFOs of 32 words 6 37 bits,
respectively.

As hard macro, the FIFO is tested with a dedicated test. The initial
test procedure is described in this paper, while a companion paper
describes the process of analyzing and improving the detection quali-
ties of this test [18]. Contrary to what is common for embedded hard
macros, the FIFO is not equipped with a full test wrapper, in order to
maintain its area advantage. Instead, the FIFO has a partial test wrap-
per, while the data path has been made controllable and observable
during testing by integrating it into the regular on-chip scan chains.
A dedicated ‘Filler’ interface allows restricted write access, which is
sufficient to test multiple FIFOs in parallel. With our approach, the
overall DfT costs range between 4.1% and 15% of the bare FIFO sil-
icon area.

Acknowledgements

The authors thank Mohamed Azimane of NXP Research in Eindhoven, The
Netherlands, and Tobias Dubois and Erik Larsson of Linköpings Universitet
in Linköping, Sweden for working with us on the improvement of the FIFO
test procedure [18]. Furthermore, we thank Erik van Geest of NXP Semi-
conductors and Ananta Majhi, Bart Vermeulen, and Kees Goossens of NXP
Research in Eindhoven, The Netherlands for constructive criticism on an early
draft of this paper.

References
[1] Kees Goossens, John Dielissen, and Andrei Rădulescu. The Æthereal

network on chip: Concepts, architectures, and implementations. IEEE
Design and Test of Computers, 22(5):21–31, Sept-Oct 2005.

[2] Jens Muttersbach, Thomas Villiger, and Wolfgang Fichtner. Practical de-
sign of globally-asynchronous locally-synchronous systems. In Proceed-
ings Intnl. Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC), pages 52–59, Eilat, Israel, April 2000.

[3] Ivan E. Sutherland. Micropipelines. Communications of the ACM,
32(6):720–738, June 1989.

[4] Ad M.G. Peeters. Single-Rail Handshake Circuits. PhD thesis, Eind-
hoven University of Technology, June 1996.

[5] Jens Sparsø and Steve Furber, editors. Principles of Asynchronous Cir-
cuit Design: A Systems Perspective. Kluwer Academic Publishers, Dor-
drecht, The Netherlands, September 2001.

[6] Montek Singh and Steven M. Nowick. MOUSETRAP: Ultra-High-
Speed Transition-Signaling Asynchronous Pipelines. In Proceedings
International Conference on Computer Design (ICCD), pages 9–17,
Austin, TX, USA, September 2001.

[7] S. Schuster et al. Asynchronous Interlocked Pipelined CMOS Circuits
Operating at 3.3-4.5 GHz. In Proceedings International Solid State Cir-
cuits Conference (ISSCC), pages 292–293, San Francisco, CA, USA,
February 2000.

[8] Ivan Sutherland and Scott Fairbanks. GasP: A Minimal FIFO Control. In
Proceedings Intnl. Symposium on Advanced Research in Asynchronous

Circuits and Systems (ASYNC), pages 46–53, Salt Lake City, UT, USA,
March 2001.

[9] Montek Singh and Steven M. Nowick. High-Throughput Asynchronous
Pipelines for Fine-Grain Dynamic Datapaths. In Proceedings Intnl. Sym-
posium on Advanced Research in Asynchronous Circuits and Systems
(ASYNC), pages 198–209, Eilat, Israel, April 2000.

[10] Montek Singh and Steven M. Nowick. Fine-Grain Pipelined Asyn-
chronous Adders for High-Speed DSP Applications. In Proceedings of
the IEEE Computer Society Workshop on VLSI, pages 111–118, Orlando,
FL, USA, April 2000.

[11] S. Barbagallo et al. A Parametric Design of a Built-In Self Test FIFO
Embedded Memory. In Proceedings IEEE Intnl. Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT), pages 221–229, Boston,
MA, USA, November 1996.

[12] Ad J. van de Goor, Ivo Schanstra, and Yervant Zorian. Functional Test
for Shifting-Type FIFOs. In Proceedings European Design and Test
Conference (ED&TC), pages 133–138, Paris, France, March 1995.

[13] Yervant Zorian, Ad J. van de Goor, and Ivo Schanstra. An Effective BIST
Scheme for Ring-Address Type FlFOs. In Proceedings IEEE Interna-
tional Test Conference (ITC), pages 378–387, Washington, DC, USA,
October 1994.

[14] Cristian Grecu et al. Methodologies and Algorithms for Testing Switch-
Based NoC Interconnects. In Proceedings IEEE Intnl. Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT), pages 238–246,
Monterey, CA, USA, October 2005.

[15] Rob Aitken. A Modular Wrapper Enabling High Speed BIST and Re-
pair for Small Wide Memories. In Proceedings IEEE International Test
Conference (ITC), pages 997–1005, Charlotte, NC, USA, October 2004.

[16] Jeff Rearick. Practical Scan Test Generation and Application for Embed-
ded FIFOs. In Proceedings IEEE International Test Conference (ITC),
pages 294–300, Atlantic City, NJ, USA, September 1999.

[17] Feng Shi, Yiorgos Makris, Steven M. Nowick, and Montek Singh.
Test Generation for Ultra-High-Speed Asynchronous Pipelines. In Pro-
ceedings IEEE International Test Conference (ITC), pages 1009–1018,
Austin, TX, USA, November 2005.

[18] Tobias Dubois, Mohamed Azimane, Erik Larsson, Erik Jan Marinissen,
Paul Wielage, and Clemens Wouters. Test Quality Analysis and Im-
provement for an Embedded Asynchronous FIFO. In Proceedings De-
sign, Automation, and Test in Europe (DATE), Nice, France, April 2007.

[19] Frans Beenker, Karel van Eerdewijk, Robert Gerritsen, Frank Peacock,
and Max van der Star. Macro Testing: Unifying IC and Board Test. IEEE
Design & Test of Computers, 3(4):26–32, December 1986.

[20] Yervant Zorian, Erik Jan Marinissen, and Sujit Dey. Testing Embedded-
Core Based System Chips. In Proceedings IEEE International Test Con-
ference (ITC), pages 130–143, Washington, DC, USA, October 1998.

[21] Erik Jan Marinissen et al. A Structured And Scalable Mechanism for
Test Access to Embedded Reusable Cores. In Proceedings IEEE Inter-
national Test Conference (ITC), pages 284–293, Washington, DC, USA,
October 1998.

[22] Teresa McLaurin and Souvik Ghosh. ETM10 Incorporates Hardware
Segment of IEEE P1500. IEEE Design & Test of Computers, 19(3):6–
11, May/June 2002.

[23] Francisco DaSilva, editor. IEEE Std 1500 []\ -2005, IEEE Standard
Testability Method for Embedded Core-based Integrated Circuits. IEEE
Standards Association, New York, NY, USA, August 2005.

[24] Erik Jan Marinissen et al. On IEEE P1500’s Standard for Embedded
Core Test. Journal of Electronic Testing: Theory and Applications
(JETTA), 18(4/5):365–383, August 2002.

[25] Nur Touba and Bahram Pouya. Testing Embedded Cores Using Partial
Isolation Rings. In Proceedings IEEE VLSI Test Symposium (VTS), pages
10–16, Monterey, CA, USA, April 1997.

[26] Erik Jan Marinissen, Yervant Zorian, Rohit Kapur, Tony Taylor, and Lee
Whetsel. Towards a Standard for Embedded Core Test: An Example. In
Proceedings IEEE International Test Conference (ITC), pages 616–627,
Atlantic City, NJ, USA, September 1999.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

