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Abstract

This paper proposes a novel technique based on profil-
ing the monomers for reducing the error rate in DNA self-
assembly. This technique utilizes the average concentration
of the monomers (tiles) for a specific pattern as found by
profiling its growth. The validity of profiling and the large
difference in the concentrations of the monomers are shown
to be applicable to different tile sets. To evaluate the error
rate new Markov based models are proposed to account for
the different types of bonding (i.e. single, double and triple)
in the monomers as modification to the commonly assumed
kinetic trap model. A significant error rates reduction is
accomplished compared to a scheme with constant concen-
tration as commonly utilized under the kinetic trap model.
Simulation results are provided.

1. Introduction

Molecular environments based on PCR-like reactions
and DNA self-assembly have been proposed as potential
solutions to achieve nano-scale integration [2]. There is
substantial evidence that DNA self-assembly is one of the
most promising alternatives for manufacturing future chips
as current VLSI methodologies are fast reaching the lim-
its of CMOS. In recent years, DNA self-assembly has been
studied extensively [1].

Even though DNA self-assembly has potentially many
advantages over traditional manufacturing mechanisms,
many challenges are still left unsolved; in particular, pro-
cess robustness is of a major concern, i.e. robustness refers
to the tolerance of errors that may occur in the DNA self-
assembly process. As the number of basic elements (so-
called monomers, or tiles) (usually assumed to have the
same constant concentration) required for self-assembly of
molecular ICs is expected to be in magnitudes of many mil-
lions, even a modest reduction in the error rate has a signifi-

cant impact on manufacturing. Hence, an extensive research
on schemes for error tolerance has been pursued. Several
works have been reported on error tolerance, mostly based
on the utilization of massive redundancy in the tiles; proof-
reading tile sets [4] replace each original tile with a K ×K
block of tiles [6]. [5] has suggested a different scheme,
namely snake proofreading.

In this paper, a reduction in error rate is achieved
through pattern profiling and the utilization of non-constant
monomer concentrations. The concentration of each tile
is found based on the average demand in the desired self-
assembly during the entire growth process. After profiling
the growth patterns, a novel analysis of the bonding process
is proposed to assess the error rate by utilizing new mod-
els. Extensive simulation results are reported to validate the
proposed technique. It is shown that the proposed technique
achieves significant error rate reductions with no use of re-
dundancy.

2 Review

In his seed work [1], Winfree has considered the physi-
cal process of crystallization to model DNA self-assembly.
During crystal growth, each monomer (as basic modular
unit) is added at the boundary of the crystal already formed
in a sequential fashion. The commonly assumed model
for DNA self-assembly is the kinetic Tile Assembly Model
(kTAM). In this model, the basic component is the so-
called monomer (hereafter monomer and tile will be used
exchangeably). An aggregate is formed by adding each tile
to an existing smaller aggregate that initially started from
a seed tile. In the kinetic Tile Assembly Model (kTAM),
the following assumptions [1] are applicable: (1) Monomer
concentration is held constant. Furthermore, all monomer
types are held at the same concentration. (2) Aggregates do
not interact with each other. So, the only reactions are the
addition of monomers to existing aggregates. (3) The for-
ward rate constants of all monomers are identical as in the
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hybridization of oligonucleotides. (4) The reverse rate de-
pends exponentially on the number of base-pair bonds that
must be broken.

The association and dissociation of tiles are controlled
by two parameters: Gmc and Gse. Gmc represents the en-
tropic cost of fixing the location of a monomer and is de-
pendent on the monomer concentration. Gse represents the
energy that is needed for breaking a single sticky-end bond,
i.e. the side of a tile whose strength is one. Both param-
eters are numbers greater than zero. A further parameter
is the forward rate constant, kf . kf doesn’t affect the be-
havior of the model, but it sets the time units. By defining
these parameters, the rate of association in kTAM is given
by rf = kf ×e−Gmc . The rate of dissociation with b sticky-
end bonds is expressed as rr,b = kf × e−bGse .

3 Profiling and Non-Constant Concentration

Consider the growth of any specific patterned shape in
DNA self-assembly; differently from the assumption of
kTAM, the demand for each monomer or tile is not constant
among all monomers and varies with the desired pattern.
Different patterns require different monomer concentrations
and self-assembly must be provided with this information to
efficiently execute, hence in this paper the first step for re-
ducing the error rate consists of profiling a growth pattern
using Xgrow as simulation tool. Figure 1 shows different
plots of patterns for various tile sets. The growth snapshots
have been obtained using Xgrow. The demand of each tile
in the set (on the y-axis) is plotted versus the normalized
growth time (on the x-axis). As observed in all patterns of
Figure 1, not only the demand of each tile is not constant
over the normalized growth time but also there is a heavy
demand for some tiles than others throughout the growth
process. Consider, for example, the BinaryCounter pattern
in (c) and (d) of Figure 1. The E tile contributes the most,
while all other tiles show a limited contribution to growth;
moreover maximum demand of E is 1319 at a normalized
time of 0.9, while the minimum demand is 754 at a nor-
malized time of 0. The variation (between maximum and
minimum values) is approximately 75%.

In kTAM, all tiles in the sets have the same (constant)
concentration [1] [4]. While the concentration of each tile
could be varied over time, control of the aggregate is very
complex in laboratory work. However, the demand for a
given tile varies with a pattern. To model and establish
the relationship between monomer concentrations and error
rate some assumptions must be made. (1) The concentration
of each tile in tile set is controllable; monomer concentra-
tion is set by profiling a pattern and the average demand is
utilized for each tile. (2) The total concentration is the same
as in the original kTAM. Therefore, if the concentration of
some tiles increases, then the same amount of concentration

for the other tiles must be decreased. (3) The demand for a
specified monomer is established over the entire growth pe-
riod by profiling the pattern prior to self-assembly for large
scale manufacturing.

4 Bonding Models

The kinetic trap state model has been used for describing
and analyzing errors within kTAM [1]. In the kinetic trap
state model, errors are defined to occur when the growth
of an aggregate is faster than establishing local equilibrium.
So, if an incorrect tile is surrounded by other tiles before it
falls off, then it is trapped permanently in the self-assembly,
and an error is said to occur. If the concentrations of all
monometers are not the same, then the association rate for
each tile is different and the traditional single trap model is
not sufficient. Moreover, for a more accurate and complete
analysis of the error rate in kTAM under constant monomer
concentration, the kinetic trap model must be divided into
three cases based on the bond condition of the empty tile
site as target of the error. Bonding is defined by the number
of sides (either 1, 2 or 3) between a tile and an aggregate.
There exists no quadruple bonding because it corresponds
to the growth completion of a site, Consider the scenario of
single bonding. In this case by considering the target tile,
there are three state levels: each level represents the num-
ber of adjacent tiles attached to the considered (target) tile.
The state model with respect to the target tile is illustrated
in Figure 2; it starts from the empty state (Es) and a tile
is attached to the site after some time, transiting to state
C (correct tile is attached) or I (incorrect tile is attached).
Finally, the target tile is trapped when one last remaining
side is attached by a tile and it transits to the FC or FI
state (from the C and I state respectively where F stands
for frozen or permanently attached). The association and
dissociation rates for each state are shown as labels on each
edge of the state diagram. The association rate r∗ denotes
the approximate rate of growth, r∗ = rf − rr,2.

For double bonding, the kinetic trap model is shown in
Figure 3. For triple bonding the kinetic trap model is shown
in Figure 4. In this case, there are only three state levels
because the first bonding entails three sides of a tile. The
tile attaching to the one remaining side of the target tile de-
termines its final state: FC or FI .

In the proposed non-constant concentration case, the
state diagram for each types of a tile is different because the
association and dissociation rates for the tiles are changed.
As an example, consider in the Sierpinski tile set, the
change of the AA tile’s concentration while each of other
six tiles share the remaining concentration equally. The ki-
netic trap models for the rule tiles in the single, double, and
triple bonding conditions are shown in Figure 5, Figure 6,
and Figure 7, respectively. In all cases, the association rates
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. Profiling of Tile Demand during Growth (a) Snapshot of Barseed growth, (b) Tile demand
during Barseed growth, (c) Snapshot of BinaryCounter growth, (d) Tile demand during BinaryCounter
growth, (e) Snapshot of Lines2 growth, (f) Tile demand during Lines2 growth, (g) Snapshot of Sierpinski
growth, (h) Tile demand during Sierpinski growth,
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Figure 2. Kinetic trap model for single bond-
ing case under constant monomer concen-
tration: target tile mode
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Figure 3. Kinetic trap model for double bond-
ing under constant monomer concentration:
target tile model
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Figure 4. Kinetic trap model for triple bond-
ing under constant monomer concentration:
target tile model

for the AA tile and the other tiles are different and denoted
as rf,x and rf,y , i.e. in the non-constant monomer concen-
tration case, the association and dissociation rates for each
tile are changed, resulting in different rate equations. Con-
sider the Sierpinski tile set, and assume that the AA tile has
a concentration of 40% and each of the other six tiles has a
10% concentration. The error rates are plotted in Figure 8
for single bonding, Figure 9 for double bonding and Figure
10 for the triple bonding. These results confirm that the sin-
gle bonding case is not sufficient to describe the kinetic trap
model, as observed by the abrupt shape of the plot. This can
be intuitively understood as the maximum bonding strength
is only one (i.e. a so-called easy dissociation occurs) and
the state transition is too simplified to capture the behavior
of assembly.

5 Evaluation and Conclusion

The average demand for each tile for various patterns
have been calculated from profiling using Xgrow and are
summarized in Table 1. The results for the error rate are
reported in Table 2. For all patterns, a significant im-
provement in error tolerance is achieved by non-constant
monomer concentration. It is also shown that error toler-
ance by non-constant monomer concentration is possible
for patterns in which smaller tile types account for a large
portion of the total demand. For example, approximately a
70% reduction in error rate is achieved for BinaryCounter
in which one tile type takes nearly 96% of the total demand.

In conclusion, this paper has shown that monomer con-
centration can be used for reducing error rates during DNA
self-assembly by employing no redundancy. A novel model
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Figure 5. Kinetic trap model for single bond-
ing under non-constant monomer concentra-
tion
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Figure 6. Kinetic trap model for double bond-
ing under non-constant monomer concentra-
tion
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Figure 7. Kinetic trap model for triple bonding
under non-constant monomer concentration:
the dotted circle denotes a dummy state used
for readability
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Figure 8. Error Rate of Single Bonding in
Non-Constant Monomer Concentration (AA
tile = 40%, Other tiles = 10%)
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Figure 9. Error Rate of Double Bonding in
Non-Constant Monomer Concentration Case
(AA tile = 40%, Other tiles = 10%)
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Figure 10. Error Rate of Triple Bonding in
Non-Constant Monomer Concentration (AA
tile = 40%, Other tiles = 10%)

Table 1. Average demand for each tile in vari-
ous patterns

Pattern Tile Average % of demand

Types during growth

A=24.58% B=24.29%

Barseed 8 C=24.29% D=24.58%

E=0.6% F=0.6%

G=0.6% H=0.6%

A=0.003% B=0.62%

Binary- 7 C=0.36% D=0.62%

Counter E=95.87% F=0.61%

G=1.962%

A=0.004% B=0.68%

Lines2 7 C=0.2% D=0.2%

E=0.2% F=66%

G=33%

Seed=0.002%

Sierpinski 7 Boundaries (both)=0.94%

BB=78.3% AA=7.24%

AB=6.74% BA=6.76%

Table 2. Error rates for different schemes in
various patterns

Pattern Constant Non-Constant Error

Concentration Concentration Reduction

Barseed 0.0672% 0.0658% 2.083%

Binary- 0.1341% 0.0398% 70.321%

Counter

Lines2 0.0671% 0.0664% 1.043%

Sierpinski 0.1341% 0.1206% 10.067%

that extends the kinetic Tile Assembly Model (kTAM), has
been presented; this new model (as a variant of the kinetic
trap model) accounts for the scenario in which there is a dif-
ferent concentration for each monomer. By profiling differ-
ent patterns, it has been shown that tile demands varies over
the growth process, hence monometer concentration is not
constant (as commonly assumed in existing models). Bond-
ing analysis of the self-assembly process has been pursued
to confirm that monomer concentration has a significant im-
pact on tolerance to errors. The simulation results have
shown that monomer concentration is a promising scheme
for error tolerance in DNA self-assembly.
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