

Abstract—This paper highlights a series of proven concepts

aimed at facilitating the design of next generation systems.
Practical system design examples are examined and provide
insight on how to cope with today’s complex design challenges.

1 INTRODUCTION
In today’s economy, consumers are always searching for the

“next experience”. Consumers have grown to expect a steady
stream of new and constantly improving products like cell
phones, televisions, automobiles, computers, and other
electronic gadgets. To meet this demand, the semiconductor
design community must be able to release next generation
systems with a regular “heart beat”.

There are several techniques and methodologies that have
been employed to aid in this effort. A hierarchical design
methodology known as “Islands of Synchronicity” (IoS) in
tandem with advanced System-on-Chip (SoC) infrastructures
can be used to break down large, complex systems into
independent, locally synchronous islands. The Islands of
Power methodology takes this one step further and accounts
for the advanced power management required in today’s
systems. Platform based design becomes a reality when these
methodologies and the infrastructures are fully leveraged and
the right chip-to-chip interconnect is available. Finally, the
latest design automation tooling can speed the integration and
verification of these systems.

2 ISLANDS OF SYNCHRONICITY

2.1 Synchronous Design Limitations
As SoC designs grow bigger, the globally synchronous

design grows slower. In a globally synchronous environment,
the maximum operating frequency of on-chip interconnect is
limited by the absolute delay between the source and
destination. Interconnect delays are increasing with each new
geometry node and wire delay now dominates logic delay for
long traces. Buffer insertion to balance clock trees, to resolve
edge rates and to avoid cross-talk problems can further limit
the operating speed of the interconnect.

Another ominous trend for synchronous design regards
clock distribution. As SoC designs grow bigger and contain
more clock domains, clock tree balancing becomes very
difficult to achieve at any operating point, and is further
complicated by variations in process, voltage and temperature
across the die and intentional variations in voltage for power
management. Globally synchronous designs with deep clock
buffer trees can suffer from large instantaneous power surges

and Electro Magnetic Interference (EMI) coincident with the
clock switching activity.

This combination of interconnect performance limitations
and global clocking problems requires new solutions that scale
with technology and alleviate timing closure issues.

2.2 Hierarchical Design Trend
The IoS methodology provides unique solutions for the

hierarchical design process. The move to a hierarchical
approach is inevitable for most large SoC designs. Designs are
just too large and complex to be completed flat. Rather than
push EDA tools and compute resources beyond their
capabilities, it makes sense to break designs into smaller,
manageable pieces. Different design teams in different
locations can then implement the design, each with its own
area of expertise, in a concurrent engineering environment.

2.3 SoC Infrastructure “Seams”
The key to hierarchical design is efficient partitioning and

re-assembly. The SoC infrastructure must have “seams” to
guide the partitioning of the design and identify possible clock
and voltage domain boundaries. In Figure 1, the seams
embedded in the infrastructure can be split to allow the design
to be partitioned into “islands”. Each seam straddles two
islands and provides asynchronous or source synchronous
communication between them.

Figure 1. Communication Centric System-on-Chip with “Seams”

The non-synchronous inter-island communication keeps the
timing of the islands independent of the top-level design. It
also removes the need for global synchronous clocking and
allows clock trees to be implemented locally within islands,
making them easier to balance with fewer levels of buffering.
In fact, clock balancing between islands is not needed. The

What If You Could Design Tomorrow’s System Today?

Neal Wingen
NXP Semiconductors, USA

a) “Seams” in SoC Infrastructure.

SoC
Infra-

Structure

SoC
Infra-

Structure

f1
f1

f4
f4

f3
f3

f2
f2

f1

f3

f2

Island1

Island3

Island2

b) “Seams” split to make islands.

Island4

SoC
Infra-

Structure
f4

a) “Seams” in SoC Infrastructure.

SoC
Infra-

Structure

SoC
Infra-

Structure

f1
f1

f4
f4

f3
f3

f2
f2

f1

f3

f2

Island1

Island3

Island2

b) “Seams” split to make islands.

Island4

SoC
Infra-

Structure
f4

978-3-9810801-2-4/DATE07 © 2007 EDAA

overall result is a SoC that is globally asynchronous, but
locally synchronous within the islands.

2.4 Seam Classification
There are several varieties of seams based on the possible

relationships two islands or domains can have with one
another. A “phase seam” is needed between two islands that
operate at the same frequency and voltage, but different clock
phase. When two islands operate at different frequencies, a
“frequency seam” is needed to enable the communication at
different rates. A “voltage seam” provides isolation logic
necessary when two islands communicate but one or both
sides are capable of turning off. A combination “voltage-
frequency” seam is needed for communication between
islands with varying voltages and frequencies, which is
common in designs that utilize Dynamic Voltage Frequency
Scaling (DVFS).

2.5 Islands of Power Methodology
New power management techniques like DVFS require

further advancements beyond IoS. Islands of Power (IoP) is an
evolving methodology to enable multiple variable supply
voltage (MVSV) designs. IoP is a comprehensive collection
and alignment of many disciplines, including power aware:
library components, memories, power infrastructure IP, SoC
interconnect, compute engines, EDA tooling and flows, board
components and software.

In DVFS, the major power consumers in the SoC operate as
close to their optimum efficiency curve with respect to voltage
and frequency (Figure 2a). By operating as close to the failure
point as possible, the power consumption is as small as
possible. In a closed loop mode of operation, hardware
automatically finds the optimum voltage given any desired
frequency (Figure 2b).

Figure 2. Dynamic Voltage Frequency Scaling Applied to a Hypothetical
Major Power Consumer.

To raise performance, one must wait for the hardware to
find the new voltage before we increase the frequency via
software. Conversely, to lower performance, one can lower the
frequency immediately while the hardware finds the lowest
operating voltage automatically. The optimum efficiency
curve can change with process and temperature and closed
loop DVFS hardware can account for this fluctuation and can
still find the optimum point for any die at any operating

condition.
An open loop mode of operation utilizes a look up table of

frequencies and voltage stored in software. In the open loop
model, the performance must be chosen for worst case parts
and does not adjust for processing and temperature
fluctuations.

Since DVFS controls the frequency and voltage components
of the power equation, both dynamic and static power can be
reduced.

2.6 Voltage Seams
Voltage seams account for when one side of the seam turns

off voltage. When this happens, the un-driven input signals
need to be clamped and held to their reset states. Signals
traversing from low to high voltage domain also need level
shifters when the voltage difference is great enough. Isolation
logic is inserted in receiving domain. In Figure 3, the source
island can turn off so the destination island utilizes a
combination level shift-clamp cells to provide the necessary
isolation.

Figure 3. Voltage only seam.

2.7 Asynchronous Based Voltage Frequency Seams
An asynchronous link uses a two-phase or four-phase

handshake mechanism to pass data safely between islands.
Figure 5 shows a typical implementation with a request (REQ)
and acknowledge (ACK) signal pair performing the
handshake. The handshake signals are synchronized to the
clock domain they travel to.

Figure 5. Asynchronous Seam.

The 4-phase handshake seams are naturally voltage tolerant,
as the handshake protocol always returns to a known state. A
2-phase handshake seam is toggle based and more difficult to
predict. When voltage domains turn off and on, a false
handshake trigger could occur. To guard against this, both
sides of a 2-phase handshake need to be held in reset when
either side powers down.

f100 200 300 400

0.80

1.00

1.20

1.40

0.60

Minimize Stay!
Wasted
Power!

Keep out!
Part fails!

op
tim

um
 ef

fic
ien

cy

a) Optimum power efficiency
follows green line

V

500

b) DVFS

100 200 300 400

0.80

1.00

1.20

1.40

0.60

V

500

hardware

software

f100 200 300 400

0.80

1.00

1.20

1.40

0.60

Minimize Stay!
Wasted
Power!

Keep out!
Part fails!

op
tim

um
 ef

fic
ien

cy

a) Optimum power efficiency
follows green line

V

500

b) DVFS

100 200 300 400

0.80

1.00

1.20

1.40

0.60

V

500

hardware

software

Source Island Destination Island

clamp_en

Level shifter – clamp combination cell

Source Island Destination Island

clamp_en

Level shifter – clamp combination cell

Source Island

state
machine

clkTx

Destination Island

REQ

data

ACK

state
machine

2.8 Source Synchronous Based Voltage Frequency Seams
A source synchronous link (Figure 4a) transfers the clock

with the data payload from the source island to the destination
island. To limit power consumption, the clock only needs to
be sent when data is present. Tokens or sideband signals can
handle flow control. Typically, storage or data buffering is
best kept on the destination side of the seam. Data storage size
can be tuned to match cache line size, for instance, and can
minimize impact of the latency associated with the link.

Source synchronous links can operate at very high speeds
across long distances. The speed of the link is limited by clock
and the data payload skew alignment (Figure 4b), not
propagation delays like a synchronous connection. Source
synchronous links can be easy to partition if the source and
destination sides are delivered in separate modules.

Source synchronous links may also need provisions to reset
both sides of the link whenever one side powers down to
maintain correct pointer and token values.

Figure 4. Source Synchronous Seam.

2.9 IoS - IoP Design Considerations
2.9.1 Partitioning Criteria

The chip architect must understand the performance
requirements, floor plan, connectivity and use case
information to create effective partitions. There is currently no
automated way to determine the optimum partitioning for a
large SoC.

Island sizes will vary based on the maximum operating
frequency. A smaller island will typically run faster than a
larger island. The island size should also be suitable for EDA
tools to produce short run-times.

Performance or latency requirements will also determine
partition placement. Partition seams have latency associated
with them. Communication that is latency critical should be

self-contained in an island and not travel across a seam to
another island.

Voltage domains also influence the partitioning strategy.
Major power consumers may be controlled using DVFS
techniques and will require hierarchy levels to contain the
specific voltage domains. Use cases may require voltage
domains to turn off in certain situations to meet power budget
requirements. Power supply unit capabilities and internal or
external voltage switches will further determine hierarchy and
may force voltages to be combined or separated.

Partitioning also needs to consider the physical floor plan.
Pin intensive blocks will naturally prefer to be close to the
pads and not combined with a large embedded block. The
design should be partitioned in a way to limit the top-level
wires or the connections on the island boundaries. Major
power consumers should have dedicated power supplies and
should be placed as close as possible to the voltage source. IR-
drop also needs to be tightly limited otherwise the voltage
margin needed for effective DVFS operation is reduced.
2.9.2 Performance

The source synchronous and asynchronous links exhibit
more latency cycles than the synchronous equivalents. But
caches can do an excellent job of hiding these latencies. The
latency impact is only exposed when a cache miss occurs. In a
real-life example that shows the benefit of caching, a VLIW
DSP running an H.264 video decode benchmark with a source
synchronous link towards the main memory controller had
virtually identical performance when compared to a direct
synchronous connection. Of course, the source synchronous
implementation did not require clock balancing and was easier
to timing close. It is very difficult to theorize cache hits and
misses without running an application, but reasonable cache
hit rates would suggest only a modest impact if an embedded
application processor had source synchronous links to the
memory network. Another consideration is that asynchronous
design can run faster than synchronous design, especially for
large devices as simplified timing closure yields higher
frequencies. Asynchronous design can actually be higher
overall performance than synchronous equivalent in some
cases.

The added delay needed for the isolation logic to separate
voltage domains is absorbed well in a voltage seam since the
added propagation delay is of no consequence. This would not
be the case for a synchronous design.
2.9.3 Area Impact

It is difficult to say categorically that an IoS methodology
increases chip area. In some cases, asynchronous versions of
networks can be smaller in area and net count when compared
to a synchronous counterpart. Source synchronous links do
have an area overhead associated with them; however, for
large SoC designs, the added area is typically negligible.

3 PLATFORM BASED DESIGN
In most cases, the next generation product is not a

revolutionary new architecture, but merely an extension or
improvement of the current product. Therefore, to make the
next generation product, new functions need to be added to the

Source Island

source
clock

generation

clkRx
clkTx

Destination Island

destination
data

s-sync
clock

source
data

safe
operating

region

safe
operating

region

data skew data skew

Tsu Th

destination
data

s-sync
clock

source
data

safe
operating

region

safe
operating

region

data skew data skew

Tsu Th

a) Source Synchronous Seam Structure

s-sync
clock

data

existing product. In platform-based design, a platform is built
of the generation N product and this platform is used to create
as many derivatives (generation N+1) as possible.

3.1 History
Making derivatives from a platform is not a new idea. The

automotive and personal computer industries are good
examples of successful platform based design. An automotive
platform can be applied to several different derivative car
styles and models. Automotive designers can concentrate on
the differentiating features of the automobile that return the
maximum value and not the underlying infrastructures. The
automotive industry has proven that platform based design
reduces engineering costs, speeds up development time and
makes it possible to offer a greater variety of new models.
Platform Based Design has never flourished within the
semiconductor industry; however, new industry chip-to-chip
interconnect standards can drive the concept into the
mainstream.

3.2 Hardware Platforms

Figure 6. Nexperia TV810 Digital Television Platform.

Nexperia™ is the NXP brand for a unique group of
platforms and products that streamline development of next-
generation, connected multimedia appliances. From highly
integrated, programmable system-on-chip (SoC) and
companion ICs to reference designs, system software, and
development tools, flexible Nexperia solutions help
manufacturers meet demands for new products. Figure 6
shows one example of how the Nexperia platform concept has
been applied to digital television sets. Manufacturers use the
base platform to build their basic sets. The platform is
extended to add features necessary for their higher end
television sets. The extension, in this case, is a companion IC;
however, an FGPA is also a common choice. A high
bandwidth, low pin count chip-to-chip interconnect enables
the two IC’s to communicate with each other.

3.3 Chip-to-Chip Interconnect
The chip-to-chip interconnect used in Figure 6 is from a

family of NXP proprietary links called Transaction Transport
Tunnels. These tunnel mechanisms serve as a bridge to make
the extended logic appear as if it is actually on the original
base platform or reference design.

In Figure 7, IC1 represents the generation N product and
includes a tunnel to extend functionality in the future. The
tunnel contains several layers of abstraction, including
transaction, transport and data link layers and just appears as
an extra port on the internal bus network. By connecting IC2
to IC1 via the tunnel, the next generation product, generation
N+1, is created.

Figure 7. Platform Extension with Chip-to-Chip Interconnect.

In the transaction layer, native bus transactions, such as
AXI, APB and AHB, are passed implicitly between the IC’s.
From the IC perspective, only these native bus transaction
passing between the IC’s are visible.

The transport layer converts the bus transactions into packet
formats needed to pass data, address, general-purpose
signaling, credits and error correction information. The
general purpose signaling is useful for passing power state
information, interrupts or any other relatively low frequency
signaling back and forth. These general-purpose signals can be
transported in a dedicated packet, which can be inserted
anywhere in the packet stream in order to keep the latency
reasonable.

The physical communication link between the two IC’s
occurs in the data link layer. The link information can be
specially encoded and decoded for DC balancing, to increase
noise immunity and minimize power. Low swing I/O are also
a popular choice to improve speed and further reduce power.
In some cases, a PHY device can be used to boost
performance and further minimize pin count. By making this
layer source-synchronous, both sides of the link are free of
synchronous frequency and phase relationship constraints and
the link must only balance skew between the clock and data
payload.

The tunnel has no software view and is transparent from the
application perspective. The IC’s only see the native
transaction protocol, not the special transport protocol or data
link layer. Therefore, the tunnel logic can simply be removed
from the final product without any impact. Of course, the
tunnel mechanisms can be left in, as well, to serve as a means
for possible product differentiation in the future.

The tunnel data width can be configured or tuned to meet
the performance and bandwidth requirements for the
application. Since tunnels are packet based, fewer pins are
necessary, especially when compared to a traditional, on-chip

EXTENSION BASE PLATFORMEXTENSION BASE PLATFORM

Network

IC 1 (Generation N) IC 2 / Extension

IC 1 + IC 2 = (Generation N+1)

tunnel

transport

data link

tunnel

transport

data link

transaction transaction
Network

IC 1 (Generation N) IC 2 / Extension

IC 1 + IC 2 = (Generation N+1)

tunnel

transport

data link

tunnel

transport

data link

transaction transaction

bus being brought off-chip. By using source synchronous
techniques, the tunnels can maintain or exceed the full speed
of the internal bus network, despite traveling off-chip. The
internal, synchronous bus networks are not suited for use off-
chip; resulting in a slower performance and higher pin cost.

Since the base platform and the extension logic can operate
at full speed, real-time prototyping can be utilized. By
operating at the target system speed, real-time system
problems can be exposed and many orders of magnitude more
patterns can be exercised than traditional simulation. In
addition, full speed, real-time operation enables system
capabilities to be fully demonstrated. Engineers are more
efficient at debugging video applications when they can view
video streams and hear audio streams real time. Also, the
actual silicon running at-speed can be more accurate than a
model.

3.4 Tunnels
The AXI Tunnel (also called TAXI, for Tunnel-AXI) was

created by NXP as a way to extend an on-chip AXI bus or
interconnect to a second, off-chip AXI interconnect. Because
information from all five channels of AXI must be sent
through a single connection, bandwidth through the link is
limited. For example, with an 8-bit interface operating at
150MHz, the peak bandwidth is about 200 MB/s (100MB/s in
each direction). With a 48-bit interface, the bandwidth can be
six times higher, but at a cost of nearly six times more pins.
The AXI tunnel gate count is 16K-20K gates, depending on
the configuration.

The CTL12 Tunnel utilizes an NXP proprietary transaction
layer. The transport layer is comprised of 12-bit symbols
while the data link layer utilizes 6b8b decoding. This tunnel
can achieve a relatively high bandwidth (1066MB/s) with a
modest amount of pins (39).

In the future, several industry standard serial interconnects
may become excellent tunnel candidates. The Mobile Industry
Processor Interface (MIPI) Alliance has defined the UniPro
1.0 interface as a mobile terminal device standard and an 8-bit
interface is capable of 250MB/s. Inter-Chip USB extends the
scope of USB 2.0 to include the use of USB within embedded
systems. A full speed IC-USB link can accommodate 1.5MB/s
given a few pins, while the high-speed version will handle
60MB/s. PCI Express can deliver an impressive 500MB/s
through a 4-bit interface.

In general, the industry standards are very robust and have a
larger footprint or gate count than the proprietary interfaces.
Nevertheless, as these interfaces become commodities and
silicon integration capabilities continue their expansion, new
opportunities such as Platform Based Design, become more
feasible.

3.5 Extension Examples
The extension logic provides additional functionality; either

not considered at the time of the original IC design or that is
optional and well suited for a separate IC. For prototyping
purposes, a new IC could be prototyped using an existing IC
together with an FGPA. Also, the companion IC could be in a

different technology than the base platform.

3.6 Architecture Considerations
When designing the platform, it is important to make sure

the available bandwidth of the tunnel can accommodate all the
possible extensions. In a processor-centric platform, the CPU
would typically require a majority of the available bandwidth
through the tunnel device. A product centric platform, where a
majority of the functionality already exists in the platform,
may only require a small additional bandwidth through the
tunnel. If the extension will process a data stream, the tunnel
must be able to accommodate the data bandwidth with the
appropriate margin above and beyond.

4 SOC INTEGRATION AND VERIFICATION

4.1 Nx-Builder
Today’s SoC designs are a myriad of reusable IP

components including peripherals, infrastructures, compute
engines, subsystems, and even entire IC’s. As a result, SoC
integration and verification have become monumental tasks
and the next frontier for the EDA industry. To further facilitate
this effort, the Spirit Consortium [1] has established a set of IP
and tool integration standards with the IP-XACT specification
[2] as the first embodiment. Automation and standards have
the potential to reduce the many months of effort required for
SoC integration and verification to weeks, directly impacting
time to market. Nx-Builder is an NXP proprietary SoC design
environment built on top of Platform Express from Mentor
Graphics and uses a simple “enter, build and verify” approach
to system architecture development.
4.1.1 Design Entry

Design entry is performed with a high-level schematic
editor or a table based entry mechanism. IP is added to the
design with a drag-and-drop approach. Generally, an IP block
is selected from the library window and dropped onto the bus
it is to connect to. If the IP is configurable, the user will be
prompted to provide any necessary parameters. Each IP block
has an “electronic data-sheet” in eXtensible Markup Language
(XML) [3] form that allows the IP to evolve with the design.

There are a number of automation mechanisms in place to
simplify and speed entry. A large design will contain a
daunting number of configuration parameters; however, as
many parameters as possible are automatically derived from
the system context leaving minimal user input. The tool is also
capable of automatically adding interface IP (bus bridges,
adapters) and infrastructure IP (clocks, resets, interrupts,
interconnect networks) during the course of design entry. In
addition, the tool maintains an automated interaction with the
IP repository to track the abstraction of the IP and flag any
possible errors.
4.1.2 Design Build

Once the design has been entered and defined, the
underlying design files can be generated and compiled. The
front-end views (RTL, models, documentation etc) are
extracted from the IP repository given the configuration
parameters defined in the design entry phase. A standardized

file structure helps assemble the individual IP directories in to
a cohesive database. In addition, batch mode flow scripts are
created for synthesis, simulation and design-for-test insertion.
Simple “make” files control the generation and compilation
activities, including provisions to choose a specific hardware
model type or source.
4.1.3 Design Verification

Software is automatically created to exercise the system
hardware. Each piece of IP includes a software module that
tests that particular IP when instantiated in a system. Special
software module “stubs” exercise external interfaces via
software, too. All of the software modules are combined and
compiled for the target system to make a self-checking
executable ready for hardware-software co-simulation or real-
time verification in an FGPA environment. Different software
packages corresponding to various use cases can also be
created. Software to stress performance, quality of service
properties and power management use cases will become
available in the future.

The generated software can verify the integrity of the IP
interconnect to the system and give confidence that the design
has been connected correctly. Also, the SoC infrastructure
(busses, bridges, register space, memories) can be stressed and
verified. Modules can be exercised simultaneously, to verify
interoperability of the system.

Other design flow scripts for synthesis, static timing
analysis, formal equivalence checking and Design-for-Test
insertion can be executed in this stage as well.

4.2 Methodology Reuse
Nx-Builder is created based upon designers’ experience and

standards. It essentially encapsulates the best engineering
knowledge and makes this available to the entire user
community, providing a generic framework that enables
different SoC designers to implement their systems in a
consistent, flexible and easy-to-use way.

4.3 Architecture Reuse
Nx-Builder also raises the level of design reuse, beyond the

traditional IP level. Integration reuse determines how the IP
interconnections are made; including the connections to the
SoC infrastructures and how to constrain these interconnect
nets. The delivery of simulation and synthesis scripts specific
to the architecture specified enforces methodology reuse. The
SoC infrastructure is automatically generated based on the
system context providing a means for infrastructure reuse. As
architectures become IP, architecture reuse and software reuse
matures.

4.4 Virtual Platforms
Nx-Builder provides a flexible way to define systems or

“virtual” platforms and makes it easy to build and evaluate
platform and derivative architectures, including software,
without the manufacturing commitment. Virtual platforms are
cheaper than hardware platforms and can be put on the
workstation of every software developer. Once the initial
design is available in Nx-Builder, SoC designs or derivatives
can be developed and verified in a minimum amount of time.

5 CONCLUSION
A platform device has been developed that utilizes all of the

concepts included herein (Figure 8).

Figure 8. Energizer II Platform Chip.

The SoC consists of 11 islands. The 3 major power
consumers (RISC CPU, VLIW DSP and L2 System Cache)
are controlled using DVFS. High bandwidth expansion ports
enable the platform to be extended, with graphics or cellular
modem subsystems for example. Nx-Builder also played a role
in the integration and verification effort. This platform chip is
42mm2 in a 65nm process.

ACKNOWLEDGMENT
Tim Pontius, Greg Ehmann, George Spatz, Marino Strik,

Ramon Baas, Marc Heijligers

REFERENCES
[1] SPIRIT Consortium, http://www.spiritconsortium.com
[2] SPIRIT Schema Working Group, “IP-XACT User Guide”, Version 1.2,

July 2006
[3] eXtensible Markup Language [Online]. Available at

http://www.w3schools.com/xml/xml_syntax.asp

CGU

Power
&

Reset

Test
&

Debug

SPI,
I2C,

UART,
Timer,

IntC

XTAL
Clocks

External
Power &

Reset
control

IEEE
1149.1
TAP

Peripheral
I/O’s

C
on

tro
l A

cc
es

s N
et

w
or

k

DDR
controller

RISC
CPU

VLIW
DSP

SRAM
controller

Le
ve

l 2
 S

ys
te

m
 C

ac
he

 In
te

rc
on

ne
ct Expansion

Port 0

Expansion
Port 1

External
SDRAM
External
SDRAM

External
FLASH/
SRAM

External
FLASH/
SRAM

Port 0

Port 1

CGU

Power
&

Reset

Test
&

Debug

SPI,
I2C,

UART,
Timer,

IntC

XTAL
Clocks

External
Power &

Reset
control

IEEE
1149.1
TAP

Peripheral
I/O’s

C
on

tro
l A

cc
es

s N
et

w
or

k

DDR
controller

RISC
CPU

VLIW
DSP

SRAM
controller

Le
ve

l 2
 S

ys
te

m
 C

ac
he

 In
te

rc
on

ne
ct Expansion

Port 0

Expansion
Port 1

External
SDRAM
External
SDRAM

External
FLASH/
SRAM

External
FLASH/
SRAM

Port 0

Port 1

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

