
 

  
Abstract—This paper highlights a series of proven concepts 

aimed at facilitating the design of next generation systems. 
Practical system design examples are examined and provide 
insight on how to cope with today’s complex design challenges. 
 

1 INTRODUCTION 
In today’s economy, consumers are always searching for the 

“next experience”. Consumers have grown to expect a steady 
stream of new and constantly improving products like cell 
phones, televisions, automobiles, computers, and other 
electronic gadgets. To meet this demand, the semiconductor 
design community must be able to release next generation 
systems with a regular “heart beat”.  

There are several techniques and methodologies that have 
been employed to aid in this effort. A hierarchical design 
methodology known as “Islands of Synchronicity” (IoS) in 
tandem with advanced System-on-Chip (SoC) infrastructures 
can be used to break down large, complex systems into 
independent, locally synchronous islands. The Islands of 
Power methodology takes this one step further and accounts 
for the advanced power management required in today’s 
systems. Platform based design becomes a reality when these 
methodologies and the infrastructures are fully leveraged and 
the right chip-to-chip interconnect is available. Finally, the 
latest design automation tooling can speed the integration and 
verification of these systems. 

2 ISLANDS OF SYNCHRONICITY  

2.1 Synchronous Design Limitations 
As SoC designs grow bigger, the globally synchronous 

design grows slower. In a globally synchronous environment, 
the maximum operating frequency of on-chip interconnect is 
limited by the absolute delay between the source and 
destination. Interconnect delays are increasing with each new 
geometry node and wire delay now dominates logic delay for 
long traces. Buffer insertion to balance clock trees, to resolve 
edge rates and to avoid cross-talk problems can further limit 
the operating speed of the interconnect. 

Another ominous trend for synchronous design regards 
clock distribution. As SoC designs grow bigger and contain 
more clock domains, clock tree balancing becomes very 
difficult to achieve at any operating point, and is further 
complicated by variations in process, voltage and temperature 
across the die and intentional variations in voltage for power 
management. Globally synchronous designs with deep clock 
buffer trees can suffer from large instantaneous power surges 

and Electro Magnetic Interference (EMI) coincident with the 
clock switching activity.  

This combination of interconnect performance limitations 
and global clocking problems requires new solutions that scale 
with technology and alleviate timing closure issues. 

2.2 Hierarchical Design Trend 
The IoS methodology provides unique solutions for the 

hierarchical design process. The move to a hierarchical 
approach is inevitable for most large SoC designs. Designs are 
just too large and complex to be completed flat. Rather than 
push EDA tools and compute resources beyond their 
capabilities, it makes sense to break designs into smaller, 
manageable pieces. Different design teams in different 
locations can then implement the design, each with its own 
area of expertise, in a concurrent engineering environment.  

2.3 SoC Infrastructure “Seams” 
The key to hierarchical design is efficient partitioning and 

re-assembly. The SoC infrastructure must have “seams” to 
guide the partitioning of the design and identify possible clock 
and voltage domain boundaries. In Figure 1, the seams 
embedded in the infrastructure can be split to allow the design 
to be partitioned into “islands”. Each seam straddles two 
islands and provides asynchronous or source synchronous 
communication between them.  

 

 
Figure 1. Communication Centric System-on-Chip with “Seams”  
 

The non-synchronous inter-island communication keeps the 
timing of the islands independent of the top-level design. It 
also removes the need for global synchronous clocking and 
allows clock trees to be implemented locally within islands, 
making them easier to balance with fewer levels of buffering. 
In fact, clock balancing between islands is not needed. The 
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overall result is a SoC that is globally asynchronous, but 
locally synchronous within the islands. 

2.4 Seam Classification 
There are several varieties of seams based on the possible 

relationships two islands or domains can have with one 
another. A “phase seam” is needed between two islands that 
operate at the same frequency and voltage, but different clock 
phase. When two islands operate at different frequencies, a 
“frequency seam” is needed to enable the communication at 
different rates. A “voltage seam” provides isolation logic 
necessary when two islands communicate but one or both 
sides are capable of turning off. A combination “voltage-
frequency” seam is needed for communication between 
islands with varying voltages and frequencies, which is 
common in designs that utilize Dynamic Voltage Frequency 
Scaling (DVFS). 

2.5 Islands of Power Methodology 
New power management techniques like DVFS require 

further advancements beyond IoS. Islands of Power (IoP) is an 
evolving methodology to enable multiple variable supply 
voltage (MVSV) designs. IoP is a comprehensive collection 
and alignment of many disciplines, including power aware: 
library components, memories, power infrastructure IP, SoC 
interconnect, compute engines, EDA tooling and flows, board 
components and software. 

In DVFS, the major power consumers in the SoC operate as 
close to their optimum efficiency curve with respect to voltage 
and frequency (Figure 2a). By operating as close to the failure 
point as possible, the power consumption is as small as 
possible. In a closed loop mode of operation, hardware 
automatically finds the optimum voltage given any desired 
frequency (Figure 2b).  
 

 
Figure 2. Dynamic Voltage Frequency Scaling Applied to a Hypothetical 
Major Power Consumer.  
 

To raise performance, one must wait for the hardware to 
find the new voltage before we increase the frequency via 
software. Conversely, to lower performance, one can lower the 
frequency immediately while the hardware finds the lowest 
operating voltage automatically. The optimum efficiency 
curve can change with process and temperature and closed 
loop DVFS hardware can account for this fluctuation and can 
still find the optimum point for any die at any operating 

condition. 
An open loop mode of operation utilizes a look up table of 

frequencies and voltage stored in software. In the open loop 
model, the performance must be chosen for worst case parts 
and does not adjust for processing and temperature 
fluctuations. 

Since DVFS controls the frequency and voltage components 
of the power equation, both dynamic and static power can be 
reduced. 

2.6 Voltage Seams 
Voltage seams account for when one side of the seam turns 

off voltage. When this happens, the un-driven input signals 
need to be clamped and held to their reset states. Signals 
traversing from low to high voltage domain also need level 
shifters when the voltage difference is great enough. Isolation 
logic is inserted in receiving domain. In Figure 3, the source 
island can turn off so the destination island utilizes a 
combination level shift-clamp cells to provide the necessary 
isolation. 

 

 
Figure 3. Voltage only seam. 

2.7 Asynchronous Based Voltage Frequency Seams 
An asynchronous link uses a two-phase or four-phase 

handshake mechanism to pass data safely between islands. 
Figure 5 shows a typical implementation with a request (REQ) 
and acknowledge (ACK) signal pair performing the 
handshake. The handshake signals are synchronized to the 
clock domain they travel to. 

 

 
Figure 5. Asynchronous Seam.  
 

The 4-phase handshake seams are naturally voltage tolerant, 
as the handshake protocol always returns to a known state. A 
2-phase handshake seam is toggle based and more difficult to 
predict. When voltage domains turn off and on, a false 
handshake trigger could occur. To guard against this, both 
sides of a 2-phase handshake need to be held in reset when 
either side powers down. 

f100 200 300 400

0.80

1.00

1.20

1.40

0.60

Minimize Stay!
Wasted 
Power!

Keep out!
Part fails!

op
tim

um
 ef

fic
ien

cy

a) Optimum power efficiency 
follows green line

V

500

b) DVFS

100 200 300 400

0.80

1.00

1.20

1.40

0.60

V

500

hardware

software

f100 200 300 400

0.80

1.00

1.20

1.40

0.60

Minimize Stay!
Wasted 
Power!

Keep out!
Part fails!

op
tim

um
 ef

fic
ien

cy

a) Optimum power efficiency 
follows green line

V

500

b) DVFS

100 200 300 400

0.80

1.00

1.20

1.40

0.60

V

500

hardware

software

Source Island Destination Island

clamp_en

Level shifter – clamp combination cell

Source Island Destination Island

clamp_en

Level shifter – clamp combination cell

Source Island

state
machine

clkTx

Destination Island

REQ

data

ACK

state
machine



 

2.8 Source Synchronous Based Voltage Frequency Seams 
A source synchronous link (Figure 4a) transfers the clock 

with the data payload from the source island to the destination 
island. To limit power consumption, the clock only needs to 
be sent when data is present. Tokens or sideband signals can 
handle flow control. Typically, storage or data buffering is 
best kept on the destination side of the seam. Data storage size 
can be tuned to match cache line size, for instance, and can 
minimize impact of the latency associated with the link. 

Source synchronous links can operate at very high speeds 
across long distances. The speed of the link is limited by clock 
and the data payload skew alignment (Figure 4b), not 
propagation delays like a synchronous connection. Source 
synchronous links can be easy to partition if the source and 
destination sides are delivered in separate modules.  

Source synchronous links may also need provisions to reset 
both sides of the link whenever one side powers down to 
maintain correct pointer and token values. 

 

 
Figure 4. Source Synchronous Seam.  
 

2.9 IoS - IoP Design Considerations 
2.9.1 Partitioning Criteria 

The chip architect must understand the performance 
requirements, floor plan, connectivity and use case 
information to create effective partitions. There is currently no 
automated way to determine the optimum partitioning for a 
large SoC.  

Island sizes will vary based on the maximum operating 
frequency. A smaller island will typically run faster than a 
larger island. The island size should also be suitable for EDA 
tools to produce short run-times. 

Performance or latency requirements will also determine 
partition placement. Partition seams have latency associated 
with them. Communication that is latency critical should be 

self-contained in an island and not travel across a seam to 
another island. 

Voltage domains also influence the partitioning strategy. 
Major power consumers may be controlled using DVFS 
techniques and will require hierarchy levels to contain the 
specific voltage domains. Use cases may require voltage 
domains to turn off in certain situations to meet power budget 
requirements. Power supply unit capabilities and internal or 
external voltage switches will further determine hierarchy and 
may force voltages to be combined or separated. 

Partitioning also needs to consider the physical floor plan. 
Pin intensive blocks will naturally prefer to be close to the 
pads and not combined with a large embedded block. The 
design should be partitioned in a way to limit the top-level 
wires or the connections on the island boundaries. Major 
power consumers should have dedicated power supplies and 
should be placed as close as possible to the voltage source. IR-
drop also needs to be tightly limited otherwise the voltage 
margin needed for effective DVFS operation is reduced. 
2.9.2 Performance 

The source synchronous and asynchronous links exhibit 
more latency cycles than the synchronous equivalents. But 
caches can do an excellent job of hiding these latencies. The 
latency impact is only exposed when a cache miss occurs. In a 
real-life example that shows the benefit of caching, a VLIW 
DSP running an H.264 video decode benchmark with a source 
synchronous link towards the main memory controller had 
virtually identical performance when compared to a direct 
synchronous connection. Of course, the source synchronous 
implementation did not require clock balancing and was easier 
to timing close. It is very difficult to theorize cache hits and 
misses without running an application, but reasonable cache 
hit rates would suggest only a modest impact if an embedded 
application processor had source synchronous links to the 
memory network. Another consideration is that asynchronous 
design can run faster than synchronous design, especially for 
large devices as simplified timing closure yields higher 
frequencies. Asynchronous design can actually be higher 
overall performance than synchronous equivalent in some 
cases. 

The added delay needed for the isolation logic to separate 
voltage domains is absorbed well in a voltage seam since the 
added propagation delay is of no consequence. This would not 
be the case for a synchronous design. 
2.9.3 Area Impact 

It is difficult to say categorically that an IoS methodology 
increases chip area. In some cases, asynchronous versions of 
networks can be smaller in area and net count when compared 
to a synchronous counterpart. Source synchronous links do 
have an area overhead associated with them; however, for 
large SoC designs, the added area is typically negligible. 

3 PLATFORM BASED DESIGN 
In most cases, the next generation product is not a 

revolutionary new architecture, but merely an extension or 
improvement of the current product. Therefore, to make the 
next generation product, new functions need to be added to the 
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existing product. In platform-based design, a platform is built 
of the generation N product and this platform is used to create 
as many derivatives (generation N+1) as possible.  

3.1 History 
Making derivatives from a platform is not a new idea. The 

automotive and personal computer industries are good 
examples of successful platform based design. An automotive 
platform can be applied to several different derivative car 
styles and models. Automotive designers can concentrate on 
the differentiating features of the automobile that return the 
maximum value and not the underlying infrastructures. The 
automotive industry has proven that platform based design 
reduces engineering costs, speeds up development time and 
makes it possible to offer a greater variety of new models. 
Platform Based Design has never flourished within the 
semiconductor industry; however, new industry chip-to-chip 
interconnect standards can drive the concept into the 
mainstream. 

3.2 Hardware Platforms 

Figure 6.  Nexperia TV810 Digital Television Platform. 
 

Nexperia™ is the NXP brand for a unique group of 
platforms and products that streamline development of next-
generation, connected multimedia appliances. From highly 
integrated, programmable system-on-chip (SoC) and 
companion ICs to reference designs, system software, and 
development tools, flexible Nexperia solutions help 
manufacturers meet demands for new products. Figure 6 
shows one example of how the Nexperia platform concept has 
been applied to digital television sets. Manufacturers use the 
base platform to build their basic sets. The platform is 
extended to add features necessary for their higher end 
television sets. The extension, in this case, is a companion IC; 
however, an FGPA is also a common choice. A high 
bandwidth, low pin count chip-to-chip interconnect enables 
the two IC’s to communicate with each other.  

3.3 Chip-to-Chip Interconnect 
The chip-to-chip interconnect used in Figure 6 is from a 

family of NXP proprietary links called Transaction Transport 
Tunnels. These tunnel mechanisms serve as a bridge to make 
the extended logic appear as if it is actually on the original 
base platform or reference design.  

In Figure 7, IC1 represents the generation N product and 
includes a tunnel to extend functionality in the future. The 
tunnel contains several layers of abstraction, including 
transaction, transport and data link layers and just appears as 
an extra port on the internal bus network. By connecting IC2 
to IC1 via the tunnel, the next generation product, generation 
N+1, is created. 
 

 
Figure 7.  Platform Extension with Chip-to-Chip Interconnect.  
 

In the transaction layer, native bus transactions, such as 
AXI, APB and AHB, are passed implicitly between the IC’s. 
From the IC perspective, only these native bus transaction 
passing between the IC’s are visible. 

The transport layer converts the bus transactions into packet 
formats needed to pass data, address, general-purpose 
signaling, credits and error correction information. The 
general purpose signaling is useful for passing power state 
information, interrupts or any other relatively low frequency 
signaling back and forth. These general-purpose signals can be 
transported in a dedicated packet, which can be inserted 
anywhere in the packet stream in order to keep the latency 
reasonable. 

The physical communication link between the two IC’s 
occurs in the data link layer. The link information can be 
specially encoded and decoded for DC balancing, to increase 
noise immunity and minimize power. Low swing I/O are also 
a popular choice to improve speed and further reduce power. 
In some cases, a PHY device can be used to boost 
performance and further minimize pin count. By making this 
layer source-synchronous, both sides of the link are free of 
synchronous frequency and phase relationship constraints and 
the link must only balance skew between the clock and data 
payload.  

The tunnel has no software view and is transparent from the 
application perspective. The IC’s only see the native 
transaction protocol, not the special transport protocol or data 
link layer. Therefore, the tunnel logic can simply be removed 
from the final product without any impact. Of course, the 
tunnel mechanisms can be left in, as well, to serve as a means 
for possible product differentiation in the future. 

The tunnel data width can be configured or tuned to meet 
the performance and bandwidth requirements for the 
application. Since tunnels are packet based, fewer pins are 
necessary, especially when compared to a traditional, on-chip 
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bus being brought off-chip. By using source synchronous 
techniques, the tunnels can maintain or exceed the full speed 
of the internal bus network, despite traveling off-chip. The 
internal, synchronous bus networks are not suited for use off-
chip; resulting in a slower performance and higher pin cost.  

Since the base platform and the extension logic can operate 
at full speed, real-time prototyping can be utilized. By 
operating at the target system speed, real-time system 
problems can be exposed and many orders of magnitude more 
patterns can be exercised than traditional simulation. In 
addition, full speed, real-time operation enables system 
capabilities to be fully demonstrated. Engineers are more 
efficient at debugging video applications when they can view 
video streams and hear audio streams real time. Also, the 
actual silicon running at-speed can be more accurate than a 
model. 

3.4 Tunnels 
The AXI Tunnel (also called TAXI, for Tunnel-AXI) was 

created by NXP as a way to extend an on-chip AXI bus or 
interconnect to a second, off-chip AXI interconnect. Because 
information from all five channels of AXI must be sent 
through a single connection, bandwidth through the link is 
limited. For example, with an 8-bit interface operating at 
150MHz, the peak bandwidth is about 200 MB/s (100MB/s in 
each direction). With a 48-bit interface, the bandwidth can be 
six times higher, but at a cost of nearly six times more pins. 
The AXI tunnel gate count is 16K-20K gates, depending on 
the configuration. 

The CTL12 Tunnel utilizes an NXP proprietary transaction 
layer. The transport layer is comprised of 12-bit symbols 
while the data link layer utilizes 6b8b decoding. This tunnel 
can achieve a relatively high bandwidth (1066MB/s) with a 
modest amount of pins (39). 

In the future, several industry standard serial interconnects 
may become excellent tunnel candidates. The Mobile Industry 
Processor Interface (MIPI) Alliance has defined the UniPro 
1.0 interface as a mobile terminal device standard and an 8-bit 
interface is capable of 250MB/s. Inter-Chip USB extends the 
scope of USB 2.0 to include the use of USB within embedded 
systems. A full speed IC-USB link can accommodate 1.5MB/s 
given a few pins, while the high-speed version will handle 
60MB/s. PCI Express can deliver an impressive 500MB/s 
through a 4-bit interface. 

In general, the industry standards are very robust and have a 
larger footprint or gate count than the proprietary interfaces. 
Nevertheless, as these interfaces become commodities and 
silicon integration capabilities continue their expansion, new 
opportunities such as Platform Based Design, become more 
feasible. 

3.5 Extension Examples 
The extension logic provides additional functionality; either 

not considered at the time of the original IC design or that is 
optional and well suited for a separate IC. For prototyping 
purposes, a new IC could be prototyped using an existing IC 
together with an FGPA. Also, the companion IC could be in a 

different technology than the base platform. 

3.6 Architecture Considerations 
When designing the platform, it is important to make sure 

the available bandwidth of the tunnel can accommodate all the 
possible extensions. In a processor-centric platform, the CPU 
would typically require a majority of the available bandwidth 
through the tunnel device. A product centric platform, where a 
majority of the functionality already exists in the platform, 
may only require a small additional bandwidth through the 
tunnel. If the extension will process a data stream, the tunnel 
must be able to accommodate the data bandwidth with the 
appropriate margin above and beyond. 

4 SOC INTEGRATION AND VERIFICATION 

4.1 Nx-Builder 
Today’s SoC designs are a myriad of reusable IP 

components including peripherals, infrastructures, compute 
engines, subsystems, and even entire IC’s. As a result, SoC 
integration and verification have become monumental tasks 
and the next frontier for the EDA industry. To further facilitate 
this effort, the Spirit Consortium [1] has established a set of IP 
and tool integration standards with the IP-XACT specification 
[2] as the first embodiment. Automation and standards have 
the potential to reduce the many months of effort required for 
SoC integration and verification to weeks, directly impacting 
time to market. Nx-Builder is an NXP proprietary SoC design 
environment built on top of Platform Express from Mentor 
Graphics and uses a simple “enter, build and verify” approach 
to system architecture development. 
4.1.1  Design Entry 

Design entry is performed with a high-level schematic 
editor or a table based entry mechanism. IP is added to the 
design with a drag-and-drop approach. Generally, an IP block 
is selected from the library window and dropped onto the bus 
it is to connect to. If the IP is configurable, the user will be 
prompted to provide any necessary parameters. Each IP block 
has an “electronic data-sheet” in eXtensible Markup Language 
(XML) [3] form that allows the IP to evolve with the design. 

There are a number of automation mechanisms in place to 
simplify and speed entry. A large design will contain a 
daunting number of configuration parameters; however, as 
many parameters as possible are automatically derived from 
the system context leaving minimal user input. The tool is also 
capable of automatically adding interface IP (bus bridges, 
adapters) and infrastructure IP (clocks, resets, interrupts, 
interconnect networks) during the course of design entry. In 
addition, the tool maintains an automated interaction with the 
IP repository to track the abstraction of the IP and flag any 
possible errors. 
4.1.2 Design Build 

Once the design has been entered and defined, the 
underlying design files can be generated and compiled. The 
front-end views (RTL, models, documentation etc) are 
extracted from the IP repository given the configuration 
parameters defined in the design entry phase. A standardized 



 

file structure helps assemble the individual IP directories in to 
a cohesive database. In addition, batch mode flow scripts are 
created for synthesis, simulation and design-for-test insertion. 
Simple “make” files control the generation and compilation 
activities, including provisions to choose a specific hardware 
model type or source.  
4.1.3 Design Verification 

Software is automatically created to exercise the system 
hardware. Each piece of IP includes a software module that 
tests that particular IP when instantiated in a system. Special 
software module “stubs” exercise external interfaces via 
software, too. All of the software modules are combined and 
compiled for the target system to make a self-checking 
executable ready for hardware-software co-simulation or real-
time verification in an FGPA environment. Different software 
packages corresponding to various use cases can also be 
created. Software to stress performance, quality of service 
properties and power management use cases will become 
available in the future. 

The generated software can verify the integrity of the IP 
interconnect to the system and give confidence that the design 
has been connected correctly. Also, the SoC infrastructure 
(busses, bridges, register space, memories) can be stressed and 
verified. Modules can be exercised simultaneously, to verify 
interoperability of the system. 

Other design flow scripts for synthesis, static timing 
analysis, formal equivalence checking and Design-for-Test 
insertion can be executed in this stage as well. 

4.2 Methodology Reuse 
Nx-Builder is created based upon designers’ experience and 

standards. It essentially encapsulates the best engineering 
knowledge and makes this available to the entire user 
community, providing a generic framework that enables 
different SoC designers to implement their systems in a 
consistent, flexible and easy-to-use way. 

4.3 Architecture Reuse 
Nx-Builder also raises the level of design reuse, beyond the 

traditional IP level. Integration reuse determines how the IP 
interconnections are made; including the connections to the 
SoC infrastructures and how to constrain these interconnect 
nets. The delivery of simulation and synthesis scripts specific 
to the architecture specified enforces methodology reuse. The 
SoC infrastructure is automatically generated based on the 
system context providing a means for infrastructure reuse. As 
architectures become IP, architecture reuse and software reuse 
matures. 

4.4 Virtual Platforms 
Nx-Builder provides a flexible way to define systems or 

“virtual” platforms and makes it easy to build and evaluate 
platform and derivative architectures, including software, 
without the manufacturing commitment. Virtual platforms are 
cheaper than hardware platforms and can be put on the 
workstation of every software developer. Once the initial 
design is available in Nx-Builder, SoC designs or derivatives 
can be developed and verified in a minimum amount of time. 

5 CONCLUSION 
A platform device has been developed that utilizes all of the 

concepts included herein (Figure 8). 
 

 
Figure 8. Energizer II Platform Chip.  
 

The SoC consists of 11 islands. The 3 major power 
consumers (RISC CPU, VLIW DSP and L2 System Cache) 
are controlled using DVFS. High bandwidth expansion ports 
enable the platform to be extended, with graphics or cellular 
modem subsystems for example. Nx-Builder also played a role 
in the integration and verification effort. This platform chip is 
42mm2 in a 65nm process. 
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