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Abstract

Code density is a major requirement in embedded system

design since it not only reduces the need for the scarce re-

source memory but also implicitly improves further impor-

tant design parameters like power consumption and perfor-

mance. Within this paper we introduce a novel and efficient

hardware-supported approach that belongs to the group of

statistical compression schemes as it is based on Canonical

Huffman Coding. In particular, our scheme is the first to

also compress the necessary Look-up Tables that can be-

come significant in size if the application is large and/or

high compression is desired. Our scheme optimizes the

number of generated Look-up Tables to improve the com-

pression ratio. In average, we achieve compression ratios

as low as 49% (already including the overhead of the Look-

up Tables). Thereby, our scheme is entirely orthogonal to

approaches that take particularities of a certain instruction

set architecture into account. We have conducted evalu-

ations using a representative set of applications and have

applied it to three major embedded processor architectures,

namely ARM, MIPS and PowerPC.

1. Introduction and Related Work

The increasing demands on the application of embedded

systems caused them to grow rapidly. For instance, more

than 60MB of software is installed in the current premium

cars [4]. Since the cost of an integrated circuit is closely re-

lated to the die size, and the memory chip dominates a large

part of the chip area, a reduction of the cost can be achieved

by reducing the memory size. This can be done by using

code compression which can also reduce the power con-

sumption since memory consumes a significant amount of

an embedded system’s power consumption [2, 10, 11]. The

beginning of this trend has already been recognized in the

early 1990s, when first approaches to code compression of

embedded applications arose [16]. Proposed compression

schemes may be classified into two general groups: statis-

tical and dictionary schemes [1]. In statistical compression

schemes, the frequency of instruction sequences is used to

choose the size of the code words that replace the original

ones. Thereby, shorter code words are used for the most fre-

quent sequences of instructions, whereas longer code words

are replaced by less frequent sequences. In dictionary com-

pression methods, entire sequences of common instructions

are selected and replaced by a single new code word which

is then used as an index to the dictionary that contains the

original sequence of instructions. In both cases, Look-up

Tables are used to store the original instructions. The com-

pressed instructions serve as indices to the tables. One of

the major problems is that the tables can become large in

size, thus diminishing the advantages that could be obtained

by compressing the code. However, the entire research in

the area has always focused on achieving better code com-

pression without explicitly targeting the problem of large

Look-up Table sizes.

In our work we reduce the size of the Look-up Tables gen-

erated from dictionary and statistical compression meth-

ods by sorting the table’s entries to decrease the number

of bit toggles between every two sequential instructions,

then we optimize the number of generated Look-up Tables

to achieve a better compression ratio. Interestingly, our

method is orthogonal to any kind of approach that uses a

priori knowledge of the instruction set of a specific architec-

ture. Hence, all results we report might be further improved

by ISA-specific compression approaches.

Previous work can be categorized by dictionary- and

statistical-based schemes. There are several related ap-

proaches that use dictionary-based schemes. In [17], the

authors developed a compression algorithm to unify the du-

plicated instructions of the embedded program and assign a

compressed object code. Their technique typically needs a

large external ROM. A 37.5% compression ratio is achieved

for the ARM processor without taking into account the large

external ROM size overhead. In [7, 8], the authors devel-

oped a dictionary-based algorithm that utilizes unused en-
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coding space in the ISA for RISC processor to encode code

words and addresses issues arising from variable-length in-

structions. A compression ratio not better than 65% is

achieved. In [6], the authors extracted common sequences

and placed them in a dictionary. Average compression ra-

tios of 61%, 66% and 74% were reported for the PowerPC,

ARM and i386 processors, respectively.

Statistical methods are used in [12], The authors proposed

LZW-based algorithms to compress branch blocks using a

coding table. The maximum compression ratio achieved is

75% for a VLIW processor. In [16], the authors have de-

signed a new RISC architecture called CCRP (Code Com-

pressed RISC Processor) which has an instruction cache

that is modified to run with compressed programs. Com-

pression ratios are rated from 65% to 75%. In [15],

compiler-driven Huffman-based compression with a com-

pressed instruction cache has been proposed for a VLIW

architecture. An Address Translation Table (ATT) is gen-

erated by the compiler, containing the original and com-

pressed addresses of each basic block and its size. Com-

mon to all work in code compression is that Look-up Ta-

bles are deployed for decoding. They can come as LAT or

ATT. In any case, these tables will take space in memory

and significantly impact the total compression ratio. Hence,

an efficient compression ratio can be accomplished by min-

imizing both the code itself and the table(s). This is crucial

since an average table size can reach more than 30% com-

pared to the original code size as we have found through a

large set of applications (see Fig. 4 and UR bar in Fig. 5).

Our novel contributions are as follows: (1) As the first

hardware-based approach we explicitly reduce the size

of the Look-up Table using a table compression scheme.

Hence, we are the first to combine a code compression

scheme (we use Canonical Huffman coding) with a table

compression scheme. (2) We optimize the number of the

Look-up Tables generated from Canonical Huffman coding

to achieve a better compression ratio. (3) The compression

scheme of the Look-up Table is entirely orthogonal to any

instruction set architecture. That means, the achieved total

compression ratio could be further improved if ISA-specific

knowledge were used on top of our approach.

The rest of the paper is organized as follows. In Section 2

and 3, we present our table compression technique for the

dictionary-based method and the statistical method respec-

tively. In Section 4, we introduce our hardware implemen-

tation for both schemes. Experimental results are presented

in Section 5. We conclude this paper with section 6.

2. Dictionary-Based Compression Scheme

In order to demonstrate the usefulness of our Look-up

Table minimization scheme, we deploy it in conjunction

with Yoshida’s technique [17] that uses a dictionary-based

method to generate the Look-up Table.

Figure 1. Example for compressing LUT.

2.1. Generating compressed code and LUT

To generate the Look-up Table and the compressed code

we conduct the following steps: (1) Starting from the orig-

inal (i.e. un-compressed) binary code, we unify the entire

instruction words. (2) We store all unique instruction words

in one Look-up Table. (3) In the original code we replace

every unique instruction word with a binary index to the

Look-up Table in ascending order starting from 0. Here, the

index has a fixed length equal to log
2

of the number of the

unique instructions. To solve the problem of locating the

branch addresses in memory, we patch these addresses to

the compressed ones as adopted in [6]. We can compute the

compression ratio in this scheme as follows:

CR =
N × log

2
(n) +

∑W

i=1
Ci

W × N
(1)

W: Instruction word length (table width)

N: Number of original instructions

n: Number of unique instructions (number of table entries)

Ci: Size of table column i (in bit)

Obviously, in order to improve the compression ratio by de-

creasing the table size, either the instruction word length W

or the size of table column C needs to be decreased. Note

that W is fixed. That leaves Ci, a measure of the LUT size,

as an option. Decreasing the size of the table columns Ci is

explained in the next section.

2.2. Minimizing the Look-up Table cost

Minimizing the Look-up Table cost can be achieved by

reducing the size (in bits) of the table columns as shown in

CR formula in Section 2.1. The principle of compressing

the table is to minimize the number of bit transitions per

column (for example from top to bottom) and then saving

the indices only where a bit toggle occurs instead of sav-

ing the complete column. See the top part of Fig. 1. This



figure illustrates a demonstration for compressing a Look-

up Table with a number of entries n=7 and instruction word

length W=8. The size (cost) of the original table is 56 bits.

By compressing it, its size becomes 47 bits. To compress

the columns of the LUT, we use the same algorithm used

in [3]. Achieving higher table compression by compressing

more table columns basically depends on the way of sorting

its entries. Therefore, we sort the entries in two phases. In

the first phase, we generate Gray code for W bits (i.e. the

table width), then we locate each table entry in its corre-

sponding position in the generated Gray code. In the sec-

ond phase, we use the Lin-Kernighan heuristic algorithm

[9] which sorts the table entries in a way that the sum of the

distances between each two successive entries is minimal

(or close to it). In our case, the distance between two en-

tries is the number of positions for which the corresponding

bits are different. Sorting the entries of the Look-up Table

will have no impact on the size of the compressed instruc-

tions, because all of them have the same code length (log2

n). It will just decrease the size of the Look-up Table and

consequently improve the compression ratio (Eq. 1 ). Re-

turning to Fig. 1, and after sorting the table’s entries, the

size of the table will be decreased to 35 bits.

3. Statistical Code Compression Scheme

In this scheme we use the Canonical Huffman Coding

to generate the compressed code and the Look-up Tables.

The number of the generated Look-up Tables is equal to the

number of different instruction code lengths. We use our

table compression scheme to minimize the table cost.

3.1. Generating compressed code and LUTs

Huffman Coding [1] is a well known method based on

probabilistic distribution. Most frequent occurring instruc-

tions are encoded with the shortest codes and vice versa.

Huffman Coding produces the best possible compression

ratio for a given input stream of symbols. The problem

in Huffman Coding, however, is the decoding because of

the variable length codes. This is a major problem when

it comes to hardware implementation. To overcome this

problem we use the Canonical Huffman Coding, which

is a subclass of the Huffman Coding that has a numerical

sequence property, i.e. code words with the same length

are binary representations of consecutive integers [14]. We

first encode the instructions using Huffman Coding to find

out the code length for every instruction and the frequency

for every length. Then we compute the first code word for

each code length as follows: The first code word for any

code length is equal to the first code word for the one bit

longer code length plus its code length frequency. Finally,

we create the remaining code words for each length using

the numerical sequence property. We can compute the

Algorithm 1 TCM: Table Cost Minimization

N1, N2: # of all instructions in T1 and T2

ch[min,max]: # of transferred instruction from T1 to T2

F: Instruction’s frequency, L: # of tables

1. default efficiency= 0, k= ch.min= 1, ch.max= N1

2. repeat= 10 // # of repetition steps

/* compute the tables cost before the transferring */

3. cost1= table cost(N1)

4. cost2= table cost(N2)

5. cost before= cost1 + cost2

6. while (k < ch.max) do

7. for (each step s of repeat) do

8. for (each instruction i of k) do

9. transfer random instruction from T1 to T2

10. Loss= Loss + F(i) // compute the loss

11. end for

/* compute the tables cost after the transferring */

12. cost1= table cost(N1 - k)

13. cost2= table cost(N2 + k)

14. cost after= cost1 + cost2

15. efficiency= cost before + cost after - Loss

16. delta= efficiency - default efficiency

/* Check if the transferring is good */

17. if (delta > 0) then

18. default efficiency= efficiency

19. else

20. return the transferred instruction to T1

21. end if

22. end for

23. k++

24. end while

25. return(T1,T2)

compression ratio in this scheme as:

CR =

∑L

i=1
Ni × CLi +

∑L

i=1

∑W

j=1
Cji

W × N
(2)

L: Number of different code lengths (number of LUT)

Ni: Number of instructions which have the code length i

CLi: The code length i

Cji: The size of column j in table i

If L=1 (there is only one Look-up Table), then we will ob-

tain the same compression ratio formula (Eq. 1)

3.2. Minimizing the Look-up Tables cost

Now, we can use the same scheme for minimizing the

cost of each generated Look-up Table (i.e. its size) that we

have used in section 2.2. To minimize the Look-up Tables

size, we use two methods:

(1) Minimizing each Look-up Table size separately. In this

case, the instructions that belong to any LUT will be sorted



Figure 2. Optimizing the number of LUTs

within this table. This will minimize the cost of the LUT

(i.e.
∑L

i=1

∑W

j=1
Cji) and will have no impact on the com-

pressed instruction size (i.e.
∑L

i=1
Ni × CLi) because the

number of instructions which have the code length i (i.e.

Ni) will not be changed after the sorting. (2) Minimizing

the cost of all Look-up Tables together. That means, the in-

structions that belong to any LUT can be transferred to a

new LUT if that will improve the final compression ratio.

Note that this process will decrease the number of LUTs

by deleting the instructions from some of them and insert-

ing them in another LUTs. This will give a better chance

to compress more columns in each table and consequently

minimize the total compressed tables cost. On the other

hand, this process is counterproductive for the code size as

the compressed code is generated using the (non-resorted)

LUT. If some instructions are transferred from one LUT to

another one, the efficiency is computed as follows:

Eff. = Compressed Table Gain - Compressed Code Loss

such that, the compressed table gain is the difference be-

tween the size of the compressed tables before and after

transferring instructions between them. The compressed

code loss is the difference between the size of the com-

pressed codes before and after transferring instructions. Al-

gorithm 1 shows how to minimize the Look-up Tables cost

by transferring instructions between LUTs. The Algorithm

computes the table cost before and after transferring K ran-

dom instructions from one table T1 to another one T2 and

then it computes the efficiency (line 16). If it is better than

the efficiency in the previous step, it keeps the new tables,

otherwise it returns the transferred instructions in this step

back to Table T1. Fig. 2 illustrates the effects of decreas-

ing the number of the LUTs on the compressed instruction

size, the compressed Look-up Tables size and the total com-

pressed code size for the Math benchmark (compiled for

ARM) to optimize the Look-up Table cost. Decreasing the

number of Look-up Tables to be ’1’ can achieve the best

table compression because this will give a better chance to

compress more columns in each table through re-occurring

patterns. On the other hand, this will increase the instruction

cost to its maximum value because all the instructions (the

most frequent and the less frequent sequences) will have the

Figure 3. Canonical Huffman Decoder.

longest code word. Consequently, the code cost will be in-

creased, too. The optimum solution in this example is 8

LUTs. This will increase the tables cost slightly but will

reduce the instructions cost significantly and consequently

the total code cost will be reduced.

4. Hardware for de-compression

The decompression hardware consists mainly of two

parts: Canonical Huffman decoder and Look-up-Table(s)

decoder. The dictionary-based compression scheme uses

the Look-up Table decoder part. The statistical compression

scheme uses both decoder parts.

4.1. Look-up Table decoder

In the Look-up Table decoder, the compressed columns

are stored in FPGA Block RAMs, one column in each Block

RAM, while the un-compressed columns are stored in ex-

ternal ROM. When the decoder receives the compressed in-

struction, it finds out its position in each Block RAM. If it

is in an even position, the decoder generates ’0’ in that po-

sition, otherwise it generates ’1’. We implemented the de-

coder in VHDL and synthesized it with Xilinx ISE8.1 for

VirtexII. An access time of 3 ns was achieved and the num-

ber of slices needed for the decoder was 430.

4.2. Canonical Huffman Decoder

We designed a new Huffman decoder which decodes the

Canonical Huffman encoded instructions on the fly (with-

out delay). The decoder architecture is illustrated in Fig. 3.

The decoder contains two shift registers: 32-bit and L-bit

shift registers (L is the longest Canonical code word length).

The main task for the 32-bit shift register is to receive the

compressed instructions and to keep the L-bit shift regis-

ter filled each time its content is reduced by shifting the

compressed instruction word serially into it. The L-bit shift



Figure 4. Original and unique instructions

Figure 5. Table Compression Ratios

register transfers the L bit code words to the comparators.

The task of these comparators is to decode the length of the

encoded instructions from the incoming L bits. Each com-

parator compares the incoming L bits with the minimum

index of the corresponding table. If the incoming L bits are

bigger or equal to the minimum index of that table, the cor-

responding comparator outputs a ’1’, otherwise ’0’. The ta-

ble selector finds out the smallest comparator which outputs

’1’. This comparator number refers to the code word length

and finally to the corresponding compressed Look-up Ta-

ble. The compressed Look-up Tables are decoded using the

Look-up Table decoder explained in the previous section.

The decoder has been implemented in VHDL and synthe-

sized with Xilinx ISE8.1 for VirtexII. The access time of

3.5 ns was achieved and 600 slices were used.

5. Experiments and Results

In this section we present the performance results of both

compression schemes: dictionary-based and statistical-

based compression schemes. In order to show the ef-

ficiency of our schemes, we have conducted results for

three major embedded processor architectures, ARM(SA-

110), MIPS(4KC) and PowerPC(MPC85). It is also a goal

to demonstrate the orthogonality as far as specific ISAs

are concerned. For all architectures and all schemes the

MiBench [13] benchmark suite has served as a representa-

tive set of applications. We have compiled the benchmarks

using three cross-platform compilers, each for one target

architecture. The final results are presented in Figures 4-8.

They do account for the overhead stemming from the LUTs.

In each diagram, the bar labeled ”Average” shows the aver-

age across all benchmarks. Fig. 4 presents the number of

original and unique instructions for different benchmarks

and across the three architectures. This figure shows that

the number of instructions generated by compiling a bench-

mark for the ARM architecture is always less than compil-

ing the same application for MIPS or the PowerPC since

the ARM is the most dense among the other RISC proces-

sors. This will result in the fact that the number of unique

instructions will also be lowest for the ARM. The ratio of

the number of unique instructions to the number of origi-

nal ones, denoted as UR, is presented in Fig. 5. This ratio

gives an idea of how important table compression actually

can be: in fact, we have found that the amount of unique

instructions can account for between 30%, 32% and 37%

of all instructions for ARM, MIPS and PowerPC, respec-

tively. Hence, the LUT has a significant effect on the final

compression ratio. From the experimental results we can

observe the following: (1) Table Compression Ratio TCR,

in Fig. 5, is better for the applications with more unique in-

structions. In Fig. 4, the number of unique instructions in

average is more for MIPS among the other architectures and

hence, the TCR, in Fig. 5, is the best for MIPS. (2) The TCR

in the dictionary based scheme is better than in the statisti-

cal based scheme because the LUTs in the second scheme

are separated into a few smaller LUTs, each of which needs

to be compressed separately. Minimizing the tables cost in

the second scheme improves the TCR but it is still better

in the first scheme. Figures 6, 7 and 8 show the com-

pression results for both schemes and for the architectures

ARM, MIPS and PowerPC, respectively. In each chart the

first bar stands for the original code size. The second and

the third bars stand for the compressed code size for the

first and the second schemes respectively. The compressed

code size includes the size of compressed table(s) + the size

of compressed instructions. The second scheme achieves

a better compression ratio CR than the first one although

the TCR is better for the first scheme, because of using the

Canonical Huffman Coding properties that go along well

with our LUT compression. The average compression ratios

achieved using the first compression scheme are 58%, 60%

and 62%, and using the second scheme are 52%, 49% and

55% for ARM, MIPS and PowerPC, respectively. Note that

no ISA-specific knowledge has been used to obtain these ra-

tios. The best compression ratio in our second compression

scheme was obtained for the MIPS architecture because it

has more number of unique instructions. Fig. 9 shows the

time needed to execute the original and the compressed pro-

grams (in cycles) using the SimpleScaler [5] performance

simulator. The performance overhead obtained is due to the

LUT delay every time a branch instruction occurs.



Figure 6. Compression results for ARM

Figure 7. Compression results for MIPS

6. Conclusion

We have presented a novel approach as a key to ef-

ficient code density namely using LUT compression in

conjunction with statistical- and dictionary-based compres-

sion schemes. Our schemes are orthogonal to any ISA-

specific characteristic. Without ISA-specific knowledge we

achieved an average compression ratios 52%, 49% and 55%

for ARM, MIPS and PowerPC including the LUT over-

head.
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