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ABSTRACT

Modern Application Specific Instruction Set Processors (ASIPs) have

customizable caches, where the size, associativity and line size can

all be customized to suit a particular application. To find the best

cache size suited for a particular embedded system, the applica-

tion(s) is/are executed, traces obtained, and caches simulated. Typi-

cally, program trace files can range from a few megabytes to several

gigabytes. Simulation of cache performance using large program

trace files is a time consuming process. In this paper, a novel in-

struction cache simulation methodology that can operate directly on

a compressed program trace file without the need for decompres-

sion is presented. This feature allowed our simulation methodology

to have an average speed up of 9.67 times compared to the exist-

ing state of the art tool (Dinero IV cache simulator), for a range of

applications from the Mediabench suite.

1. Introduction
In the last decade, the emergence of ASIPs (such as Xtensa proces-

sor from Tensilica [1]) has provided a superior alternative compared

to simply designing an off-the-shelf processor-based embedded sys-

tems. ASIP allows the customization of functional units for im-

proved performance and lower energy consumption when compared
to off-the-shelf general purpose processor based systems.

The use of ASIPs allows the micro-architecture feature within the

Processor (such as the functional units, cache size, data width size,

etc.), to be customized during the design process. The choice of

cache size or functional units are part of the ASIP design process
and can affect the performance, energy consumption, and the overall

footprint of the system.

The availability of customizable cache memory in a system pro-

vides a designer the option of specifying an optimal cache memory
configuration to match the application requirements in order to� minimize cache energy cost per access,� minimize access time per cache access,� minimize the number of cache misses and reduce the number of
off-chip memory accesses,� or any combination of the above.

In a typical design process, cache simulation is performed for vari-

ous cache configurations to determine the optimal cache parameters

for the given program trace. However, a typical program trace can be
several tens of Gigabytes long. For a 1GHz processor, a one second

snapshot stored as a program trace might translate to a ten gigabyte

file. This becomes even more critical, as tens of processors are in-

cluded in a single embedded system. Although disk space may no
longer be an issue in the near future with the emergence of large hard

drives (up to 750GB [2]), getting large amounts of data to and from

the disk is still a time consuming process.

One method to alleviate the large cost of processing a program trace

file is to compress the trace file. Compression methods have been

proposed in the past to reduce the size of these program trace files.
Although compression allows the reduction of the program trace file

size, the required intermediate memory during decompression and

program trace analysis is still large, requiring enormous number of

reads and writes to disks.
In this paper, we present a novel method to allow cache simula-

tion to be performed from a compressed program trace file such that

only ‘partial decompression’ is necessary. Our experimental results

showed that our cache simulation methodology is on average 9.67

times faster compared to the existing state-of-the-art cache simu-
lation tool. To compress the program trace file, we developed a

compression methodology that allows for random access decompres-

sion [3]. Random access decompression is a term used to describe a

compression methodology that allows the decompression to start at
any point in the compressed file. The random access decompression

feature allows our cache simulation methodology to operate on the

compressed program trace file and provide the opportunity to paral-

lelize the cache simulation methodology.

Compared to existing data compression tools (such as gzip[4]), our
compression rate is anywhere from 2 to 10 times worse when com-

pared to gzip. This is because the compression methodology is not

designed to achieve maximal compression rate, instead it is designed

for minimal processing cost. If a high compression rate is required,
a post-compression step with LZ compression can be used to further

improve the compression rate.

Besides cache analysis, there are many reasons for wanting to ana-

lyze a program trace; such as estimating the energy of a system, eval-

uating system performance, etc. Depending on the type of analysis to
be performed, different compression algorithms can be developed to

overcome the bottleneck posed by the large amount of time needed

to read and write from disks.

The rest of this paper is structured as follows. Section 2 presents
existing trace compression algorithms and cache simulation tools;

Section 3 outlines our methodology; Section 4 describes the trace

compression algorithm; Section 5 provides the cache simulation al-

gorithm using the compressed program trace as its input; Section 6

describes the experimental setup and presents the results; Section 7
concludes this paper.

2. Related Work
There are two types of compression algorithms; lossless and lossy.

Lossless compression allows the exact original source to be repro-

duced from the compressed format. In comparison, lossy compres-

sion generally results in higher compression ratio by removing some

information from the data, thus, it is not possible to recreate the orig-
inal file. The work presented in this paper is a lossless compression

algorithm.

Existing data compression method such as the LZ77 [4] introduced

by Liv and Zempel in 1977, is a well-known compression method

used in gzip. The algorithm reads a file as a stream and uses previous
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texts in the stream to encode the incoming texts in the stream. In

1978, Liv and Zempel presented another version of their algorithm,

known as LZ78 [5]. In 1983, Welch [6] introduces an improvement

to the LZ78 to limit the growth of the dictionary file, known as the
LZW algorithm.

In 1994, Pleszkun [7] presented a two pass algorithm for compress-

ing a program trace file. The first pass is a pre-processing step to

identify the dynamic basic blocks, procedure calls, etc. The trace is

encoded by specifying the basic block and its successor.
Johnson et al. in [8] and [9] presented an offset-encoding compres-

sion scheme known as PDATS. Each address reference in the trace

are to be encoded as its offset from the previous address reference.

In addition, a run-length coding is used to encode sequence of ad-
dresses with the same offset. Their experimental results show an av-

erage compression ratio of seven for large traces and they achieved a

speedup factor of 10 when executing Dinero with PDATS traces.

In 1997, Nevill-Manning and Witten [10] introduced the hierar-

chical compression method known as ‘SEQUITUR’. It constructs
grammar based on the two rules: no pair of adjacent symbols ap-

pears more than once in the grammar, and every rule is used more

than once. SEQUITUR can be applied to any type of information

streams. The processing time of SEQUITUR to process one sym-
bol is O(pn), where n is the number of input symbols encountered.

Our work differs from SEQUITUR as we allow symbols to appear

more than once in a single grammar; this is because the goal of our

compression method is to allow minimal processing cost of the com-

pressed program trace.
In 2003, Kaplan [11] presented two algorithms for trace compres-

sion; ‘Safely Allowed Drop’ (SAD) and ‘Optimal LRU Reduction’

(OLR). These algorithms are lossy in their compression methodology

and are designed for simulating a virtual memory. The methodology
removes references from a trace that do no affect the order of fetches

for a virtual memory.

Milenkovic and Milenkovic [12] presented a compression method-

ology called ‘Stream-Based Compression’ (SBC). SBC performs com-

pression by replacing each address stream by its index in the stream
table. Address streams are identified according to basic blocks in the

program.

In 2004, Burtscher in [13] introduced VPC3 tool. VPC3 runs in

a single pass in linear time over the trace data. The trace data in
VPC3 contains many attributes in addition to the memory address. It

encodes the trace data using value predictors.

Luo and John [14] presented a ‘Locality Based Trace Compres-

sion’ (LBTC). The methodology employs two techniques; the first
technique is offset encoding of the memory references, and the sec-

ond technique is to statically encode the attributes associated with a

memory location through the assumption that most attributes are sta-

tic and do not change frequently from one dynamic access to another.

Their experimental results showed that they improve the compression
rate by 2x over the PDATS method.

Zhang and Gupta in [15] and [16] presented a unified represen-

tation of profiles called ‘Whole Execution Trace’ (WET). WET is

constructed by labeling a static program representation with profile
information. Their experimental results showed that their method

achieved an average compression ratio of 41.

2.1 Existing Work on Cache Analysis
An existing tool called Dinero IV [18] allows for exact cache sim-

ulation. Dinero IV simulates a single processor architecture to esti-

mate the number of cache misses given a cache configuration.
Ghosh et al. [19] introduced the cache miss equation to estimate

cache misses to guide memory optimization methods. Hill and Smith

[20] presented two methods for simultaneous simulations of multi-

ple cache configurations, namely the forest simulation and the all-

associative simulation. Janapsatya et al. [21] designed a novel data
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Figure 1: Compression and cache analysis methodology

structure to reduce the time needed to estimate the cache misses ex-

actly of multiple cache configurations simultaneously. Ghosh et al.
[22] presented a heuristic method to estimate cache configurations

that can predict the worst case cache miss rates.

2.2 Our Contribution
The motivation for a trace compression methodology is to reduce

the time required to analyze large program trace files. Existing work
on trace compression exclusively aims for maximum compression

ratio which does not alleviate the problem of performing analysis

on large trace files. To use Dinero or other tools for cache analysis,

an initial decompression of the compressed trace file is still needed
before analysis can be performed.

In this paper, a lossless trace compression methodology to compress

a program trace is implemented. To the best of our knowledge, this is

the first time a compression methodology that allows the processing

of the compressed program trace without the need for decompression
is presented.

The compression methodology allows random-access to the com-

pressed trace file to allow direct access at any point in the compressed

file either for decompression or to allow analysis of the compressed
trace file without the need of decompression. In summary, this paper

presents the following contributions:� Novel stream compression methodology that is designed for min-

imal processing cost of cache simulation analysis on the com-

pressed stream.� A novel cache analysis method that allows the analysis of a com-

pressed trace file without the need for decompression.

Limitation

This work is limited to instruction trace only. Data trace compres-

sions have been shown previously in [7], [8], [12], [13], [14], [15] (It

should be noted that none of the existing data compression methods
support random access decompression).

3. Methodology
The methodology flow of the compression and cache analysis process

are as shown in Figure 1. Inputs to the process is a program trace file.

The compression process outputs a dictionary file and a compressed

program trace file. Cache analysis uses the dictionary file and the

compressed program trace file as its input; and it outputs the cache
statistics. As mentioned, the cache analysis process is performed di-

rectly on the compressed trace, without decompression.

3.1 Format of the Trace
We view the program trace as a bit-stream with no knowledge of the

program functionality. We do not know the number of instructions in
the program trace, nor how instructions interact with each other, and

we have no knowledge of which instructions belong to which process

or function. Nevertheless, our method can achieve high compression

rates.
The program trace file contains a trace of memory references. In

comparison to other existing trace format, our trace is identical to the

Dinero input format. An example of the program trace are shown

in Figure 3(a), 3(b), and 3(c). The numbers on the left column are

the sequence number and the numbers on the right column are the
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Figure 2: Compression algorithm

   45 60001a80

   46 60001a88

   47 60001a90

   48 60001a98

   49 60001aa0

   50 60001aa8

   51 60001ab0

   52 60001ab8

   53 60001aa0

   54 60001aa8

   55 60001ab0

   56 60001ab8

(a)

   57 60001a80

   58 60001a88

   59 60001a90

   60 60001a98

   61 60001aa0

   62 60001aa8

   63 60001ab0

   64 60001ab8

   65 60001ac0

   66 60001b18

   67 60001b20

   68 60001b28

(b)

   79 60001a80

   80 60001a88

   81 60001a90

   82 60001a98

   83 60001aa0

   84 60001a88

   85 60001a90

   86 60001a98

   87 60001aa0

   88 60001aa8

   89 60001ab0

   90 60001ab8

(c)

60001a80
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60001ab0

60001aa0
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60001ac0
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60001b28

(d) Forest data structure

Figure 3: Program trace and data structure examples

memory references. We assume all memory addresses are cacheable.

Each memory reference does not contain attributes, such as data de-

pendencies, etc. If required, a data dependencies graph can be built
using the information available in the trace. At the current moment,

our tool only looks at trace of instruction memory references.

4. Compression Algorithm
The compression algorithm is designed to compress the trace file

but also allows the compressed trace to be analyzed without the need

for decompression. The compression algorithm is designed as a

random-access compression algorithm to allow analysis and decom-

pression to start from anywhere in the compressed trace file.
Figure 2 shows the compression algorithm. For ease of explana-

tion, the boxes shown in Figure 2 are labeled Step A, Step B, Step

C, and Step D. In step A and Step B, the trace is analyzed and the

longest repetitive strings are identified. These repetitive strings are
then stored within a forest data structure, this is step C. Step D will

use the forest data structure to encode strings of instructions as read

from the program trace file.

Step A

The purpose of step A and Step B is to identify patterns that exist in

a program trace file. In our algorithm, we identify two occurring pat-

terns. First pattern is the consecutive repetition of the same instruc-

tions string, for example ‘abcabcabcabcabc’. The second pattern is

the reoccurrence of a string repetitively but not consecutively, for ex-
ample the string ‘abc’ in the text ‘abcqweabcrtyuabcio abckabcfg’

occurs repetitively but not consecutively and has a non-uniform stride

between occurrences.

To identify the pattern within the instruction trace file, a matrix is
build to assist the process. Figure 3(a), 3(b), 3(c) show examples of

a program trace. Figure 5 shows the matrix built from the program

trace shown in Figure 3.

The numbers shown on the bottom of Figure 5 represent the in-

struction sequence, and the numbers on the left (1st column) show

nn Creating the matrixnn n = total number instructions in the windownn h = the height of the matrix, equal to the maximal distance to look fornn repeated instructions
for i = 1 to n

for j = 1 to h
if (W [i℄ ==W [i+ j℄)

M[i; j℄ = 1;
else

M[i; j℄ = 0;

Figure 4: Building matrix M

+14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+12 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+8 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
+7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+4 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 65 64 65 66 67 68

Figure 5: Matrix M

the distance. Since a program trace can be very long, the matrix of

width n covers only a substring of the trace consisting of n consecu-
tive instructions. Even though this is a small substring of the whole

trace, if n is reasonably large (in our implementation of the algorithm

n = 4000), each loop in the program should be identifiable within a

single window. To cover the whole program trace, a sliding win-

dow is used. To prevent some loops being lost in between windows
boundary, the sliding window mechanism will advance the window

by n=2 instructions at a time.

The matrix M of size n�h is built as follows. We take n consecutive

instructions as one window W (i); 1� i� n. The entry in ith column

and jth row of our matrix M is equal to one just in case the W (i) =
W (i+ j); 1� i� n; 1� j � h; otherwise it is equal to zero.

In the matrix shown in Figure 5, the grey shading highlighting the

string of ‘1s’ found in the matrix indicates the repeated occurrence

of the same instruction. These strings are identified in Step A and

analyzed in Step B (shown below) to ensure no repeated sequences
are identified.

Figure 4 shows the algorithm for identifying the patterns in the pro-

gram trace file by utilizing the matrix shown in Figure 5. We now

construct another matrix S of the size (n� h)� h, as shown in Fig-
ure 6. The entry S[i; j℄ is equal to the number of consecutive ‘1s’, in

row j and columns k of Matrix M such that k � i (see Figure 8).

Step B

We now identify strings that are potentially useful for compression

as follows.
The heuristics behind the value of Gain(W [i::i+ j℄) of the string

W [i::i+ j℄ is to assess how useful the string is for the purpose of com-

pression. We want to use the strings that are both long and frequent,

i.e., those that have high gain. In the algorithm shown in Figure 7, the
first “if” clause (S[i; j℄� j) detects strings that repeat consecutively,

for j = 1 to h
for i = 1 to n�h

S[i; j℄ = 0; nn Creating the counting matrix S of size n�h�h
for j = 1 to h

for i = n�h downto 1
if (M[i; j℄ == 1)

S[i; j℄ = S[i+1; j℄+1;
else

S[i; j℄ = 0;

Figure 6: Building matrix S



nn Evaluating the gain of strings that are candidates for the dictionary
for i = 1 to n�h

for j = 1 to h
if (S[i; j℄ � j)

Gain(W [i::i+ j℄) = IntegerPart(S[i; j℄= j)� ( j�1);
j = h;
i = i+ IntegerPart(S[i; j℄= j);

else if (S[i; j℄ > 0)
for k = 1 to h

if S[i;k℄ � S[i; j℄
p = p+1;

if (p� (S[i; j℄�1) > Gain(W [i::i+ j℄))
Gain(W [i::i+ j℄) = p� (S[i; j℄�1);

i = i+1;

Figure 7: Evaluating the gain of strings

+14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+12 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+8 0 0 0 0 0 0 0 0 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0
+7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+4 0 0 0 0 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 65 64 65 66 67 68

Figure 8: Matrix S

such as loops in programs; the second “if” (S[i; j℄> 0) finds remain-

ing strings that are executed frequently within the same window, but
in a scattered manner. For each i the algorithm picks a string with the

highest gain. The algorithm can be easily extended so that if there

are more than one string with the highest gain, the longest string is

picked.

Step C

We now create a forest data structure to store the strings identified

in Step B; we store the starting memory address of the sequences

identified in Step B. Each tree within the forest is used to store the

subsequent memory addresses in the strings that were identified. An
example of the forest data structure is shown in Figure 3(d). This tree

corresponds to the program trace shown in Figure 3; the left branch

corresponds to the trace shown in Figure 3(c) and the left branch of

the right branch corresponds to the trace shown in Figure 3(a), and

the right part of the right branch corresponds to the trace shown in
Figure 3(b). Each node where a string terminates has a counter asso-

ciated with it; this counter is incremented each time the correspond-

ing string is found. Thus, the final value of the counter will reflect

how many times the corresponding string has been found in step B.
Step D

In step D, we encode the trace. The encoded trace file is a sequence of

either addresses that are not initial element of a string from the forest

(i.e., not a root of any of the trees in the forest) or as a sequence of

indices that point to the dictionary entries. Figure 9 shows the trace
encoding procedure. We read the trace file matching read addresses

with strings in the tree, until we cannot traverse down the tree. We

look at all substrings of the traversed branch of the tree and pick the

string with largest gain (if several strings have such gain, the longest
string is picked).

4.1 Computational Complexity
Building the matrix M for a window of size n is quadratic in n;

building the counting matrix S is cubic in n. Note that this is an ex-
tremely pessimistic estimate and in practice the time complexity is

essentially quadratic in n, because the matrix M is very sparse, and

the largest sequence of consecutive ones to be counted is very small

compared to the window size n. If the trace is of size t, then the

number of windows to process is 2t=n. Thus the total work prior

trace index = 0;
dict index = 1;
while trace file != EOF

max string = null;
addr = read(trace file, trace index);
trace index++;
string = null;
until f ound in the tree(string+addr) == null

string = string + addr;
if gain(string) � gain(max string)

max string = string;
addr=read(trace file, trace index);
trace index++;

if max string == NULL
compress = compress + addr;

else
if dict index(max string) == 0

dict index(max string)=dict index;
dict index++;

compress = compress + index(max string);
dictionary = dictionary + (dict index(max string), max string);
trace index = trace index(max string) + 1;

Figure 9: Trace encoding procedure

OutputDecompression ProcessInput

Compressed 

program trace 

file

Dictionary file

Decompression

Build

decompression 

table

Program trace 

file
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to encoding is O(t � n) (expected), O(t � n2) (unrealistic worst case).

Finally, encoding is linear in t. Thus, as verified in practice, the
expected run time is proportional to t � n. Notice that the compres-

sion efficiency, for as long as reasonably feasible, is not very critical.

This is because the compression is just a preprocessing step that is

done only once for each program trace. Subsequently, a set of stored
pre-processed (compressed) traces is reused many times for different

statistical analyses of various applications with various inputs.

4.2 Decompression for Verification Purpose
To verify and guarantee the correctness of the compression algo-

rithm, a decompression algorithm was built to reproduce the trace

file given the dictionary file and the compressed trace file. Note that
in actual use, decompression is not needed; our analysis algorithm

executes on the compressed trace.

The decompression algorithm is shown in Figure 10. The decom-

pression algorithm takes the compressed trace file and the dictionary
file as inputs, and outputs the trace file.

As shown in Figure 10, the algorithm reads the dictionary file to

build a decompression table. The decompression step reads the list of

indexes stored in the compressed trace file and uses the information

in the decompression table to produce the trace file.

5. Cache Simulation Algorithm
Cache simulation algorithm aims to calculate the number of cache

misses that can occur given a cache configuration and a compressed
program trace. Inputs to the cache simulation algorithm are the cache

parameters, the dictionary file, and the compressed program trace

file. Figure 11 shows the procedures of the cache simulation algo-

rithm.

Each entry in the dictionary is an instruction string that represent
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Figure 11: Cache analysis methodologynn Initialize the cache address arraynn M = total number of cache locationnn M is equal to number of cache set for a direct-mapped cache
for a = 0 to M

cache = 0;nn process the dictionary filenn N = total number on entries in the dictionary based on the dictionary index
for b = 1 to N

sim cache(b);nn start of cache analysisnn S = total number of entries in the compressed trace file
for c = 0toS

if (c == dictionary index)
update cache(dict data(c));

else
update cache(c);

Figure 12: Cache simulation algorithm

the sequence of memory references. Figure 12 displays the cache

simulation algorithm. The algorithm reads the compressed program
trace file and determines the number of cache misses that occur.

The cache simulation algorithm starts by initializing an array to

keep track of the content of each cache location. Size of the array

for keeping track of the content of the cache is dependent on the
cache parameters (i.e. cache associativity, cache line size, and cache

size).

The dictionary file is then read and cache simulation (function

sim cache) is performed for each instruction string entry in the dic-

tionary. Cache simulation on the instruction strings will calculate
the cache compulsory miss for loading the particular string into the

cache, the cache conflict miss for executing the string, and finally the

resulting cache footprint after the execution of the instruction string.

sim cache function simulates the instruction string as if the instruc-
tions were to be executed through the cache memory. After process-

ing the entries in the dictionary, a cache statistics table is obtained.

The table is indexed using the instruction string index and each table

entry store the following information.� cache compulsory content, a list of instructions that occupy the

cache pre-execution of the instruction string� cache con f lict, cache conflict miss number due to the execution

of the string� cache f oot print, a list of instructions that occupy the cache post-

execution of the instruction string.

The cache simulation algorithm then continues by reading the com-

pressed program trace file. If a memory reference is read, it is to
be compared with the existing entry or entries (depending on cache

associativity parameters) in the same cache location and a cache hit

or miss can then be determined and the cache content for that loca-

tion is to be updated with the read memory reference. Otherwise, if

a dictionary index is read from the compressed trace file, the index
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Figure 13: Cache simulation total runtime

is used to access the entry in the cache statistics table using the func-

tion update cache. The following three steps are performed by the

update cache function.

1. The existing cache entry is compared with the entries in the

cache compulsory content list from the table to determine the

number of cache hit or miss occurred.

2. The cache con f lict value is added to the total cache miss number.

3. The content of the cache is updated with the resulting cache foot-

print, cache f oot print list from the table.

Performance improvement over existing cache analysis tools such

as DineroIV [18] is expected due to the smaller compressed trace

file to process, compared to the existing trace file size, and due to

pre-simulation of subsets of the trace when analyzing the dictionary

entries. Results from the cache simulation is verified by comparing
against the output from DineroIV [18]. We found our cache simu-

lation algorithm to be 100% accurate compared to DineroIV outputs

(i.e. there are no errors in the output).

6. Experimental Setup and Results
Experiments were performed to gauge the compression ratio of the

compression algorithm and to verify the cache simulation algorithm

with an existing tool (Dinero IV[18]).

Benchmarks were taken from Mediabench [17]. Column 1 in Table1

shows the six benchmarks used in experiments. The rest of Table 1

displays the following information; column 2 shows the number of
memory references in the trace, column 3 shows the size of the trace

file in bytes, column 4 shows the size of the gzip trace file in bytes,

column 5 shows the resulting compressed file size in bytes, column 6

shows the ratio of the compressed trace file compared to the original
trace file (column 5 divided by column 3), column 7 shows the size

of the compressed trace file with ’gzip’, column 8 shows the ratio of

Dinero IV total runtime compared to the total runtime of our cache

simulation methodology, and column 9 shows the ratio of Dinero IV
with inputs piped from a gzip trace file using zcat compared to the

total runtime of our simulation.

Program traces were generated using Instruction Set Simulator (ISS)

for Tensilica Xtensa proccesor [1]. The compression algorithm was

implemented in C and compiled with gcc version 4.0.2; the program
was executed in a dual processor dual Opteron 2.2GHz machine.

Cache analysis is performed for various cache configurations. The

cache parameters used were: cache size of 128 bytes to 16384 bytes,

cache line size of 8 bytes to 256 bytes, and cache associativity from
1 to 32 (each parameter is incremented in powers of two; total cache

configuration simulated is 206). Cache simulations were executed

on the compressed file and the cache miss numbers output from the

cache simulation was verified against Dinero IV to ensure correct-

ness of the cache simulation output.



Application Trace size File size (bytes) gzip file size Compressed file compression gzip compressed runtime runtime

(bytes) size (bytes) ratio file size (bytes) ratio ratio (gzip)

g721enc 108,635,308 977,717,772 12,878,673 38,049,493 25.7 2,743,007 6.41 6.35

g721dec 105,800,842 952,207,578 12,161,013 25,646,458 37.1 1,473,615 8.08 8.0
jpegenc 11,508,580 103,577,220 1,051,695 9,895,273 10.5 195,292 15.32 14.10

jpegdec 2,842,673 25,584,057 422,638 2,681,652 9.5 42,771 15 14.08

mpeg2enc 2,359,305,107 21,233,745,963 297,736,877 1,139,867,708 18.6 46,256,026 5.39 5.35

mpeg2dec 937,319,532 8,435,875,788 111,485,710 255,749,085 33.0 11,621,180 7.8 6.78

Table 1: Benchmark list
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Figure 14: Cache simulation runtime comparison

Figure 13 shows the comparison of the total execution time for

simulating multiple cache configurations with Dinero IV, Dinero IV

with gzip, and our simulation tool. Due to large differences be-

tween the total runtime of the individual benchmarks, the bar graphs
in Figure 13 are not on the same scale. Benchmarks ‘jpegenc’ and

‘jpegdec’ total runtime bar is measured in minutes, while ‘g721enc’,

‘g721dec’, ‘mpeg2enc’, and ‘mpeg2dec’ runtime are measured in

hours. The ratio between the time taken by Dinero IV over our sim-

ulation methodology is shown in column 8 on Table 1.
Figure 14 shows a comparison of the runtime of Dinero IV com-

pared to our simulation methodology for simulating individual cache

configuration of ‘g721enc’ program trace file. The left bars shown

in Figure 14 indicate the Dinero IV runtime and the right bars indi-
cate the runtime of our simulation methodology, the y-axis shows the

runtime in seconds. Table 2 shows the cache configuration for each

of the result shown in Figure 14. Each bar comparison in Figure 13

and Figure 14 show that our simulation methodology is always faster
when compared to Dinero IV runtime.

Column 6 in Table 1 shows that the compression algorithm can

compress program traces by an average factor of 22.4. Results shown

in column 8 of Table 1 show that by using our simulation method-

ology, it is possible to accurately perform faster cache simulation by
an average factor of 9.67 when compared to Dinero IV, and average

speedup factor of 9.10 when compared to Dinero IV with gzip.

7. Conclusions
This paper presents a novel method for cache analysis by analyzing

a compressed program trace file without the need for prior decom-

pression. An average compression ratio of 22.4 is seen in the experi-

mental results for large program trace files with size up to 21Gbytes.

Cache simulation method speedup average of 9.67 is observed when

compared to Dinero IV, and average speedup factor of 9.10 is ob-

Cache Cache parameters Cache Cache parameters
config. size, line size, assoc. config. size, line size, assoc.

A1 512,8,1 B1 512,8,8
A2 1024,8,1 B2 1024,8,8
A3 2048,8,1 B3 2048,8,8
A4 4096,8,1 B4 4096,8,8
A5 8192,8,1 B5 8192,8,8
A6 16384,8,1 B6 16384,8,8
C1 1024,8,1 D1 16384,8,1
C2 1024,8,2 D2 16384,8,2
C3 1024,8,4 D3 16384,8,4
C4 1024,8,8 D4 16384,8,8
C5 1024,8,16 D5 16384,8,16

Table 2: Cache configuration

served when compared to Dinero IV with gzip.
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