
Task Scheduling under Performance Constraints for Reducing the Energy
Consumption of the GALS Multi-Processor SoC

Ryo Watanabe† Masaaki Kondo† Masashi Imai‡ Hiroshi Nakamura† Takashi Nanya†
†Research Center of Advanced Science and Technology (RCAST), The University of Tokyo

‡Komaba Open Laboratory (KOL), The University of Tokyo
4-6-1 Komaba, Meguro-City, Tokyo, Japan

{Watanabe, Kondo, Miyabi, Nakamura, Nanya}@hal.rcast.u-tokyo.ac.jp

Abstract

The present paper focuses on applications that are periodic
and have both latency and throughput constraints. For these
applications, pipeline scheduling is effective for reducing en-
ergy consumption. Thus, the present paper proposes a pipelined
task scheduling method for minimizing the energy consumption of
GALS MP-SoC under latency and throughput constraints. First,
we model target GALS MP-SoC architecture and application
tasks. We then show that the energy optimization problem under
this model belongs to the class of Mixed-Integer Linear Program-
ming. Next, we propose a new scheduling method based on simu-
lated annealing for the purpose of solving this problem quickly. Fi-
nally, experimental results demonstrate that the proposed method
achieves a significant energy reduction on a real application under
a practical architecture.

1. Introduction

Increasing energy consumption and heat dissipation are among
the most significant problems in present-day computer systems.
A number of studies have examined energy reduction using Dy-
namic Voltage Scaling (DVS)[5][6]. Energy consumption can be
reduced by lowering its clock frequency and supply voltage while
satisfying the given performance constraints. Ishihara et al. [11]
investigated a method for selecting the optimal voltage setting un-
der a constraint.

The Multi-Processor SoC (MP-SoC) is also an attractive so-
lution to the energy problem because the energy consumed by
a CMOS circuit is approximately proportional to the square of
its computing speed, so that increasing the number of processors
leads to a quadratic decrease in the energy consumption required
to achieve the same performance level [4]. Application tasks are
distributed on each processor in the MP-SoC. Thus, the DVS is
not necessarily effective if the frequencies and voltages of all of
the cores are the same, because the workload of each core is dif-
ferent.

A Globally Asynchronous Locally Synchronous (GALS) de-
sign [16] works very well in this situation. In the GALS design, a
chip is partitioned into several Locally-Synchronous modules and
each module operates at its own clock frequency and supply volt-
age. Thus, the GALS MP-SoC has a great potential for energy
reduction by selecting the appropriate frequency and voltage level
for each processor.

Task and voltage scheduling methods for reducing energy
consumption can be divided broadly into two categories: static

scheduling and dynamic scheduling. In static scheduling, the
allocation of tasks onto processors and selection of the fre-
quency/voltage level are performed prior to runtime, whereas in
dynamic scheduling, the dynamic behavior of the system is ob-
served. The advantages and disadvantages of these methods, as
well as the differences in their targets, are detailed in [4].

In the present paper, we propose a method by which to stati-
cally schedule tasks on GALS MP-SoC for optimizing its energy
consumption under given performance constraints. The optimal
solution from static scheduling indicates the potential of DVS for
reducing energy consumption and is useful as a guide for con-
structing dynamic scheduling algorithms.

Many applications are periodic and have both latency and
throughput constraints. For a movie player, for example, the
throughput is the frame rate, whereas the latency is the response
time from the moment the ”PLAY” button is pushed until the
file begins to play. In such a case, execution of tasks should be
pipelined for energy optimization. By setting the pipeline cycle
time and pipeline depth according to the throughput and latency
constraints, significant energy reduction becomes available, flexi-
bly adapting to these constraints.

The number of cores integrated on a chip is expected to
increase in the future as technology scales. Thus, pipelined
scheduling will become increasingly attractive for exploiting par-
allelism on abundant hardware resources. Therefore, we propose a
pipelined scheduling on GALS MP-SoC for reducing energy con-
sumption.

1.1. Contribution of the present study

The contributions of the present study are as follows.
First, to the authors’ knowledge, this is the first work to inves-

tigate the optimization of energy consumption on pipelined task
scheduling when both the throughput and the latency constraints
are given independently. We show conventional task schedul-
ing methods cannot fully utilize opportunities for reducing en-
ergy consumption in such a situation, and that the pipelined task
scheduling is promising for further energy reduction.

Second, both energy and performance overheads due to inter-
processor communication are taken into account. Since these over-
heads are expected to increase as the technology scales, it is im-
portant to consider these overheads.

Third, we model GALS MP-SoC and periodic applications,
and show that the energy optimization problem belongs to the class
of Mixed-Integer Linear Programming (MILP). We show that this
problem belongs to a simpler class of optimization problem than
was claimed in a previous study, although we use a more realistic
assumption whereby the processors can use a limited number of

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



frequency/voltage levels. The optimal task scheduling is derived
by solving a MILP formulation.

Fourth, we propose a simulated annealing-based (SA-based)
task scheduling method to very quickly obtain a near optimal task
scheduling. In solving a MILP formulation, the most time con-
suming part is the branch-and-bound search of integer variables.
In the proposed method, this is replaced by SA.

Fifth, the experimental results show that proposed method can
quickly derive a task scheduling for which the energy consump-
tion is approximately the same as that of the optimal scheduling
when the method is applied to a real application under practical
architectural assumptions.

1.2. Previous work

Several studies have examined energy saving techniques for
MP-SoCs, or more generally System-on-Chips with multiple pro-
cessor cores. Gruian et al.[9] proposed a task scheduling method
by which to optimize the energy consumption under the assump-
tion that the assignment of application tasks to processors is pre-
determined. Luo et al. [15] proposed a method by which to in-
crease battery lifetime by changing the execution order of tasks
and smoothing the power profile. Zhang et al. [21] reported that
the opportunity of lowering the supply voltage is affected by the
task allocation and ordering and introduced a two-phase method
that integrates the task allocation and the voltage scheduling. Le-
ung et al.[14] presented a Mixed-Integer Non-Linear Program-
ming (MINLP) formulation in which the task allocation and the
voltage selection problems are solved simultaneously. Varatkar et
al. [20] proposed a heuristic algorithm that optimizes the energy
consumption of a system while taking the inter-processor commu-
nication into account. Hu et al. [10] studied the case in which the
system is structured as a tile-based NoC with a 2D-mesh network.
Chen et al. [7] proposed a scheduling method for independent
tasks with the consideration of power consumption due to leakage
current.

The main consideration of these methods is to find the opti-
mal scheduling that minimizes energy consumption under the la-
tency constraint for given applications. However, these methods
either do not take into account the throughput constraint, or, the
throughput constraint is implicitly assumed to be equal to the in-
verse of the latency constraint. Therefore, these methods cannot
optimize energy savings if there are different constraints for la-
tency and throughput.

Pipeline scheduling is a well-known method in the field of sig-
nal processing in which the throughput is a major performance
metric. Parazzari et al. [17] presented a method by which to
schedule both periodic tasks with a throughput constraint and non-
periodic interrupting tasks with a latency constraint. Ruggiero et
al. [18] proposed a pipeline scheduling method by which to mini-
mize the amount of inter-processor communication by combining
Linear Programming (LP) and Constrained Programming (CP) ap-
proaches.

The goal of the proposed method is the minimization of energy
consumption by solving the task and voltage scheduling problem
while considering both the latency and throughput constraints. On
this point, the present study differs from previous studies.

2. Problem modeling

Task scheduling is a procedure to map each task (a small unit
of a program, e.g., a basic block or function) to a processor and to
decide the start time and clock frequency/supply voltage for each
task. We call the first step ”task allocation” and the second step
”voltage selection”.

5
T1

2
T2

4
T3

3
T4

2

1

3

4

D12 D24

D13 D34

Figure 1. An example of a task graph.

We consider periodic applications that are executed periodi-
cally for different input data. Periodically released instances of
the application are called jobs, which are represented using task
graphs.

The application has two parameters, (PR, DL), where PR is
the period of the job release and DL is the relative deadline of the
job. Although many of the previous studies assumes PR = DL in
their scheduling model, we do not make this assumption and show
that pipeline scheduling can work well in such a situation.

In the present paper, the task, the hardware (system), and the
performance constraints are defined as follows.

Definition 1 (task graph): A task graph is a directed acyclic
graph (DAG) G = (T,D, w, q). Vertices Ti ∈ T represent tasks,
and the amount of computation for task Ti is expressed as w(Ti).
Directed edges Dij ∈ D indicate that Tj is dependent on Ti. This
means that the execution of Tj cannot start before the execution
of Ti and the data transfer from Ti to Tj are finished. Here, the
amount of data to be transferred from Ti to Tj is expressed as
q(Dij). Subscripts i, j, i′, and j′ represent indices for tasks.

Definition 2 (system model): Target MP-SoC S =
(P,V, L, cP , eP , cL, eL) consists of identical processors Px ∈
P. Hereinafter, the subscript x represents the index for proces-
sors. Each processor is defined as a GALS locally-synchronous
region. Therefore, the frequency/voltage level can be chosen in-
dependently for each processor. Vk ∈ V indicates the available
frequency/voltage levels for processors. Hereinafter, the subscript
k represents the index for frequency/voltage levels. The process-
ing time for a unit of computation on a processor that operates at
the level Vk is represented as cP (Vk), while eP (Vk) is the energy
consumption for this computation. All processors are connected
along a shared communication link L and, cL and eL indicate the
transfer time (equal to 1/bandwidth) and energy consumption,
respectively, of L for a unit of interprocessor communication. Un-
like processors, the bandwidth and energy consumption of L are
supposed to be fixed. In addition, processors are not involved in
the control of interprocessor communication because they have
dedicated hardware for this function. Thus, computation and com-
munication can be processed in parallel.

Definition 3 (performance constraint): The performance
constraint is given by two parameters: the pipeline cycle time Cp

and the number of pipeline stages Lp. This means that the sys-
tem must finish executing a job every Cp time units (throughput
constraint, Cp = 1/throughput), and the time for executing a
job cannot exceed Cp Lp (= latency : latency constraint). Cp

must be the same as the job release interval PR, and CpLp must
be the same as the relative deadline DL.

Next, we consider an example using the task graph shown in
Figure 1. Each digit on Ti and Dij represents w(Ti) and q(Dij),
respectively. Suppose this application is scheduled on a system de-
scribed by following parameters: P = (P1, P2), V = (Vlo, Vhi),
(cP (Vlo), eP (Vlo)) = (2, 1), (cP (Vhi), eP (Vhi)) = (1, 2), and
(cL, eL) = (1, 1). The throughput constraint is assumed to be
Cp = 15, while the latency constraint is assumed to be CpLp =
30 (Lp = 2).

The non-pipelined scheduling result is shown in Figure 2(A).
When scheduling jobs in a non-pipelined manner under the con-
dition that latency and throughput constraints are given indepen-
dently, the throughput must be the inverse of the latency. There-



unit

1st stage 2nd stage
1 1 1 1 1 1 1 1 1 11 1

1 1 1 12 3 4 5 6 7 8 9 0 2 2 23 34 4 43 5 6 7 8 9 05 5
time

D12 D34 D12(NEXT) D34(NEXT)

link
T2(NEXT) T4(NEXT)T2 T4

P2

T1 T3 T1(NEXT) T3(NEXT)

P1

D24D13 D13(NEXT)D24(PREV)

link
T3 T4T3(PREV) T4(PREV)

P2

T1 T2 T1(NEXT) T2(NEXT)

P1

T1 T3 T1(NEXT) T3(NEXT)

P1

link
D12(NEXT)D34(PREV) D12 D34

T2 T4T2(PREV) T4(PREV)

P2
(C)Pipelined scheduling result (optimal)
(total energy) 20 = (computation) 17 + (communication) 3

(B)Pipelined scheduling result (communication overhead ignored)
(total energy) 21 = (computation) 14 + (communication) 7

(A)Non-Pipelined scheduling result
(total energy) 27 = (computation) 24 + (communication) 3

Figure 2. Task scheduling results obtained
from three different methods.

fore, the smaller value between Cp and CpLp, that is, Cp, is cho-
sen for both the throughput and latency constraints.

Each colored grid in the figure indicates that the proces-
sor and communication link processes one unit of computa-
tion/communication. The light color indicates that the processor
operates at Vlo, and the dark color indicates that the processor op-
erates at Vhi. ”(PREV)” indicates that the task belongs to the pre-
vious job, and ”(NEXT) indicates that the task belongs to the next
job. This scheduling exploits task level parallelism using two pro-
cessors to obtain opportunities to use a lower frequency/voltage
level.

Figure 2(B) is the result of pipelined task scheduling. The op-
portunity to use a lower frequency/voltage increases by not only
exploitting task level parallelism but also parallelizing the tasks
in other jobs. Pipelining is a method by which to multiply the
throughput of a system, even if the performances of the process-
ing elements do not improve at all. However, from another point
of view, the voltage and frequency of each processor can be low-
ered using a pipelining without decreasing the throughput of the
system. When latency and throughput are given independently as
constraints, pipelining allows the performance of the system to be
fit to constraints and increases the chance for reducing energy con-
sumption.

Figure 2(C) shows another pipelined scheduling result. While
the chance of using a lower frequency/voltage is smaller, it
achieves a smaller energy consumption by optimizing costs in in-
terprocessor communication. Balancing energy consumption in
computation on a processor and communication on a communica-
tion link is also important for energy optimization of the MP-SoC.

These results motivate us to develop an effective task schedul-
ing method.

3. MILP formulation

In this section, using the model described in Section 2, we show
that the energy optimization problem in pipelined task scheduling

timeTn
1 Tn

2 Tn+1
1o 12 = 0

timeo 12 = 2 Tn+3
1Tn

2Tn+2
1

2 11o 12 = -1 Tn TnTn-1
time

Figure 3. Definition of the execution order oij .
Tn

i denotes Ti in the nth job.

under a performance constraint belongs to the Mixed-Integer Lin-
ear Programming (MILP) problem class. The MILP formulation
of this problem has not yet been presented.

3.1. Notations

Real variables
si Time to start executing Ti

rik Proportion of computation executed
at frequency/voltage level Vk to w(Ti)

csij Time to start transferring data of Dij

Integer variables

oij =




n (if Tj in the mth job begins its execution
after Ti in the (m + n)th job is completed
and before Ti in the (m + n + 1)th job
begins (shown in Figure 3))

coiji′j′ =

{
n (Represents the execution order of

communication tasks Dij and Di′j′ .
Defined in the same manner as oij .)

mix =

{
1 (if Ti is allocated on Px)
0 (otherwise)

3.2. Constraint inequalities and equations

All tasks must be completed by the time defined by the latency
constraint.

∀i (si ≥ 0, si + ti ≤ Cp Lp) (1)
ti in (1) is the execution time length of Ti, as described in the

following formula:

ti =
∑

k

w(Ti) rik cP (Vk) (2)

rik represents the ratio of how much Vk is selected within task
Ti, Therefore, the following constraints must be satisfied:

∀i

(∑
k

rik = 1

)
(3)

∀i, k (0 ≤ rik ≤ 1) (4)

The throughput constraint is described as follows. The execu-
tion time of each task must not exceed Cp, otherwise the tasks
cannot be executed every Cp time units on a processor.

∀i (ti ≤ Cp) (5)

The order of task execution is constrained if the task depends
on another task. If dependent tasks are allocated on the same pro-
cessor, dependence on the other task cannot begin earlier than the
completion of its preceding task. Otherwise, data transfer begins
after the preceding task is completed and a succeeding task can
begin execution after data transfer has been completed. These cri-
teria are indicated by the following inequalities:



Table 1. Combination of values of the vari-
ables defined in (10).

mix 0 0 1 1
mjx 0 1 0 1
aijx 0 1 1 0
bijx 0 1 1 1

∀i, j s.t. Dij ∈ D

si + ti ≤ sj + Cp Lp dij (6)

si + ti ≤ csij + Cp Lp (1 − dij) (7)

csij + q(Dij) cL ≤ sj + Cp Lp (1 − dij) (8)
Constraints that are valid only under specific conditions are in-

dicated using binary variables, as proposed in [14]. The binary
variable dij in (6), (7), and (8) is equal to 0 if Ti and Tj are al-
located on the same processor, and is equal to 1 otherwise. This
definition is given in following formulas:

∀i

(∑
x

mix = 1

)
(9)

∀i, j, x (mix + mjx + aijx − 2bijx = 0) (10)

∀i, j

(
dij =

1

2

∑
x

aijx

)
(11)

Here, (9) is the definition of task allocation, i.e., a task is exe-
cuted on only one processor, and (10) is a constraint for obtaining
two binary variables aijx and bijx used for calculating dij . The
relationship among variables aijx, bijx, mix, and mjx is shown
in Table 1. As shown in the table, the value of dij is determined
according to (11).

Processors and communication links can process only one task
or one data transfer at a time. Constraints for computation tasks
are placed on all pairs of tasks on the same processors and are
given as follows:

∀i, j

si + ti + Cp oij ≤ sj + Cp Lp dij (12)

sj + tj ≤ si + Cp (oij + 1) + Cp Lp dij (13)
Similarly, constraints for communication tasks are placed on

all pairs of communication tasks.
∀i, j, i′, j′ s.t. Dij ∈ D ∩ Di′j′ ∈ D

csij + q(Dij) cL + Cp coiji′j′

≤ csi′j′ + Cp Lp

(
2 − dij − di′j′

)
(14)

csi′j′ + q(Di′j′) Cp

≤ csij + Cp (coiji′j′ + 1)

+Cp Lp

(
2 − dij − di′j′

)
(15)

3.3. Objective function

The objective function is the energy consumption of the sys-
tem. ∑

i

en(Ti) +
∑

Dij∈D

en(Dij) (16)

In (16), en(Ti) indicates the energy consumption of the pro-
cessor for executing Ti, while en(Dij) represents the energy con-
sumed on the communication link transferring Dij , as given in
(17) and (18).

en(Ti) =
∑

k

w(Ti) rik eP (Vk) (17)

en(Dij) =
∑

x

eL q(Dij) dij (18)

Then, energy-optimal scheduling is obtained by solving the
above formulas with minimizing objective function. Note that the
above formulas include the interprocessor communication over-
heads, and that this formulation is based on a hardware model with
limited number of available frequency / voltage levels, while [14]
and [7] assumed systems with continuous frequency / voltage lev-
els.

4. SA-based scheduling method

Although the optimal solution can be derived by solving the
MILP formulas in Section 3, its computational complexity is a
serious problem when applied to real systems and applications.
MILP solvers use the branch and bound algorithm to obtain pos-
sible values of integer variables. In this task scheduling problem,
allocation of tasks is represented by integer variables mix, oij ,
and coiji′j′ . The size of the search space is proportional to the
number of combination patterns of integer variables, and there-
fore increases exponentially as number of tasks, processors, and
pipeline stages increases.

Therefore, we propose a SA-based scheduling method by
which to obtain a near optimal solution. This method replaces the
branch and bound algorithm used to search integer variables with
simulated annealing. The algorithm is shown as pseudo-code in
Figure 4. In this algorithm, SA searches a set of integer variables,
which represents task allocation. Whenever SA generates a new
allocation of tasks, the value of energy consumption is required
in order to evaluate the objective value. In this situation, integer
variables are replaced by the values obtained from task allocation.
Then, voltage selection is evaluated by solving Linear Program-
ming. Note that the voltage selection is no longer MILP because
all of the integer variables are substituted by specific values in task
allocation. This is the reason why the proposed SA-based solution
is very fast.

A MILP solver with the branch and bound algorithm is used
only to give the initial state for SA. The proposed method termi-
nates the MILP solver once any feasible solution is found. Thus,
the computational complexity becomes less problematic.

5. Evaluation

5.1. Assumptions

In order to evaluate the effectiveness of our SA-based schedul-
ing method on the reduction of energy consumption, we herein
perform a number of experiments.

We evaluate 16 randomly generated task graphs, each of which
has eight tasks, and the values of w(Ti) and q(Dij) are 100 ∼
800 Kcycle, 100 ∼ 800 Kbit, respectively. These graphs are
generated so that

∑
i
w(Ti) is equal to 3Mcycle. These graphs are

evaluated under two settings of the throughput constraint: Cp =
3 ms and Cp = 4 ms .

We also evaluate a task graph derived from the Rijndael
cipher[8] encoder. The Rijndael encoding algorithm for 128 −bit
blocks and 128−bit keys is divided into 40 tasks. Values of w(Ti)
and q(Dij) are estimated from the algorithm. Because the task
graph of 40 tasks cannot be scheduled in a reasonable time, even
in the SA-based method, part of the task graph that has 32 tasks is
used for the experiment. We assume that the throughput constraint
Cp is 4 µs.

We assume that the evaluated MP-SoC consists of three
ARM11 processors for evaluating randomly generated tasks and
four ARM11 processors for Rijndael encoding. Each processor
consumes 450 pJ/cycle at 500 MHz [2] and is assumed to have



Input
MILP formulas described in Section 3

Output
Sbest: task scheduling result (set of all scheduling variables)

{
/* initialize SA */
Start MILP solver, which uses branch and bound;
Terminate MILP solver once any feasible solution S

that satisfies all constraints of MILP is found;
Let E be the energy consumption on the scheduling S;
Let P be the set of integer variables in S;
Let T be the starting temperature, as described in [19];
Ebest = E; Pbest = P ; Sbest = S
/* start SA */
while (terminating condition[19] is not satisfied) {

/* monte carlo cycle at temperature T */
for (i=0;i<num iter;i++) {

Make a new variable set P ′, which is in the vicinity of P ;
Make LP substituting variables in P ′ into MILP;
Solve LP to obtain scheduling result S′;
Let E′ be the energy consumption on the scheduling S′;
if (E′ < E) {

E = E′; P = P ′; /* unconditionally accept */
if (E′ < Ebest) {

Ebest = E′; Pbest = P ′; Sbest = S′
}

} else {
k = random(between 0 and 1);
if (k < exp(E − E′)/T ) {

E = E′; P = P ′;
}

}
} /* end for */
T = r × T /* lower the temperature */

} /* end while */
} /* end scheduling */

Figure 4. SA-based scheduling method.

Table 2. Setting of frequency / voltage levels.

frequency [MHz] 500 400 300 200 100
energy [pJ/cycle] 450.0 349.2 261.5 186.3 123.8

five frequency/voltage levels, as shown in Table 2, which is de-
rived from the linear approximation relationship between the fre-
quency and voltage settings of a Pentium M processor[12]. We
also assume that the energy consumption per cycle is quadratically
proportional to the voltage.

The Shared communication link used in the evaluation is as-
sumed to be based on AMBA AHB[1], which operates at 200
MHz and has a 32 −bit data bus. Its transferring speed and en-
ergy consumption are assumed to be 0.16 ns/bit and 0.5 pJ/bit,
respectively[13].

Under the above assumption, task scheduling is performed us-
ing the proposed method, while varying the latency constraint.
Note that the XPRESS Solver Engine[3] is used to solve the MILP.

5.2. Results

Figure 5 shows the energy consumption and time required to
solve the scheduling problem for each method. Each figure cor-
responds to the case of Cp = 3 ms and Cp = 4 ms . The val-
ues of energy consumption are normalized to 1.0 in the case of
non-pipelined (Lp = 1) scheduling using MILP. The values in the
figures are the averages for the results of 16 task graphs.

Previously, using non-pipeline scheduling in which the latency
was equal to the inverse of throughput, the energy consumption
could only reach a level equal to the case of Lp = 1, regard-

Random graphs (8 tasks) on 3 ARM11 processors, Cp=3[ms]

0.7

0.8

0.9

1.0

1.1

1 1.2 1.5 2 3
Number of pipeline stages Lp

E
n
e
r
g
y

c
o
n
s
u
m
p
t
io
n

0

10

20

30

40

T
im
e
 t
o
 s
e
a
r
c
h

[m
in
]

Energy (MILP) Energy (SA-based)
Time (MILP) Time (SA-based)

Random graphs (8 tasks) on 3 ARM11 processors, Cp=4[ms]

0.7

0.8

0.9

1.0

1.1

1 1.2 1.5 2 3
Number of pipeline stages Lp

E
n
e
r
g
y

c
o
n
s
u
m
p
t
io
n

0

10

20

30

40

T
im
e
 t
o
 s
e
a
r
c
h

[m
in
]

Energy (MILP) Energy (SA-based)

Time (MILP) Time (SA-based)

Figure 5. Experimental results using ran-
domly generated task graphs.

Rijndael encoder (32task) on 4 ARM11 processors

0.00

0.25

0.50

0.75

1.00

1 1.2 1.5 2 3 4
Number of pipeline stages Lp

E
n
e
rg
y

c
o
n
s
u
m
p
ti
o
n

0

40

80

120

160

T
im
e
 t
o
 s
e
a
rc
h
 [
m
]

Energy

Estimated Optimal

Time

Figure 6. Experimental results using task
graphs derived from the Rijndael encoder.

less of the relationship between the latency and throughput con-
straints. On the other hand, the results shown in Figure 5 indicate
that pipeline scheduling can reduce the energy consumption by
adapting to the constraints. The proposed pipeline scheduling can
be applied to the situation in which hLp is not an integer (the la-
tency constraint is not a multiple of Cp). Thus, it can be flexibly
applied in various situations.

The results obtained using the proposed SA-based method
shows almost the same effect of energy reduction as the optimal
solution obtained by the MILP solver. In addition, the search time
of the SA-based method does not increase dramatically compared
to that of the MILP solver, even if the search space expands as the
value of Lp increases. Thus, the SA-based method is expected to
be more suitable for larger systems and applications.

Next, we discuss the results of the Rijndael tasks shown in Fig-
ure 6. Since the MILP approach requires a very long time to find
a scheduling candidate, we estimated the energy consumption of
the optimal solution from the average processor workload and the
critical path length of the task graph. As shown in Figure 6, the
proposed method can find a near-optimal solution for a larger task
graph in real application.

Figure 7 shows average processor utilization of the schedule
given by the proposed method. Here, utilization means the fraction



Figure 8. Scheduling result of the Rijndael encoder (Cp = 4 ms , Lp = 3).

Rijndael encoder (32tasks) on 4 ARM11 processors

0.0

0.2

0.4

0.6

0.8

1.0

1 1.2 1.5 2 3 4
Number of pipeline stages Lp

A
v
e
r
a
g
e
 p
r
o
c
e
s
s
o
r

u
t
il
iz
a
t
io
n

Figure 7. Processor utilization of the task
schedule given by the proposed method.

of time which the processor is assigned to execute any task. Higher
utilization means that the tasks take longer time to be executed by
using lower frequency and voltage, which leads to lower energy
consumption. It is shown in the figure that the pipelined task sche-
culing can utilize processors more efficiently than non-pipelined
scheduling, because pipeline scheduling for large Lp can exploit
the inter-job parallelism while non-pipelined scheduling can ex-
ploit only task-level parallelism.

A gantt chart of the scheduling result is shown in Figure 8. In
this graph, each square represents a time slot assigned for a task,
and the colored part shows time slots used for executing tasks in
the same job. It shows that the processors are fully utilized for
increasing chance for lowering frequency and voltage. Although
applications with less task-level parallelism was thought to not
be suitable for the MP-SoC platform, the proposed pipelined task
scheduling enables such an application to be executed efficiently
on the MP-SoC with abundant hardware resources.

6. Conclusion

In the present study, we proposed a pipelined task scheduling
method of GALS MP-SoC to reduce the energy consumption un-
der latency and throughput constraints. First, we expressed the
energy optimization problem using MILP formulas. We then pro-
posed a simulated annealing-based method to solve the MILP for-
mulas very quickly. The proposed method was applied to synthetic
task graphs and the Rijndael cipher encoder. The experimental re-
sults revealed that the proposed method can successfully derive
task schedulings that consume approximately the same energy as
the optimal schedulings. In addition, with respect to the Rijndael
encoder, pipelined scheduling was revealed to be very effective
on GALS MP-SoC when both the latency and throughput con-
straints are given. Based on these results, we concluded that the
proposed method is very effective for reducing energy consump-
tion on GALS MP-SoC.

References

[1] Amba home page. http://www.arm.com/products/solutions/
AMBAHomePage.html.

[2] Arm11 family. http://www.arm.com/products/CPUs/families/
ARM11Family.html.

[3] Xpress solver engine. http://www.solver.com/xlsxpresseng.htm.
[4] J. H. Anderson and S. K. Baruah. Energy-efficient synthesis of peri-

odic task systems upon identical multiprocessor platforms. Proc. of
ICDCS, 2004.

[5] T. Burd, T. Pering, A. Stratakos, and R. Brodersen. A dynamic volt-
age scaled microprocessor system. IEEE J. of Solid-State Circuits,
Nov. 2000.

[6] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power
cmos digital design. IEEE J. of Solid-State Circuits, Apr. 1992.

[7] J. J. Chen, H. R. Hsu, and T. W. Kuo. Leakage-aware energy-
efficient scheduling of real-time tasks in multiprocessor systems.
Proc. of RTAS, 2006.

[8] J. Daemen and V. Rijmen. The rijndael block cipher:
Aes proposal. http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-
ammended.pdf, 1999.

[9] F. Gruian and K. Kuchcinski. Lenes: Task scheduling for low-energy
systems using variable supply voltage processors. Proc. of ASP-
DAC, 2001.

[10] J. Hu and R. Marculescu. Energy-aware communication and task
scheduling for network-on-chip architectures under real-time con-
straints. Proc. of DATE, 2004.

[11] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynam-
ically variable voltage processors. Proc. of ISLPED, 1998.

[12] K. Krewell. Pentium m hits the street. Microprocessor Report, Mar.
2003.

[13] K. Lahiri and A. Raghunathan. Power analysis of system-level on-
chip communication architectures. Proc. of CODES+ISSS, 2004.

[14] L. F. Leung, C. Y. Tsui, and W. H. Ki. Minimizing energy consump-
tion of multiple-processors-core systems with simultaneous task al-
location, scheduling and voltage assignment. Proc. of ASP-DAC,
2004.

[15] J. Luo and N. K. Jha. Battery-aware static scheduling for distributed
real-time embedded systems. Proc. of DAC, 2001.

[16] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Ficht-
ner. Globally-asynchronous locally-synchronous architectures to
simplifu the design of on-chip systems. Proc. of ASIC/SOC, 1999.

[17] P. Palazzari, L. Baldini, and M. Coli. Synthesis of pipelined systems
for the contemporaneous execution of periodic and aperiodic tasks
with hard real-time constraints. Proc. of IPDPS, 2004.

[18] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano.
Communication-aware allocation and scheduling framework for
stream-oriented multi-processor systems-on-chip. Proc. of DATE,
2006.

[19] S. M. Sait and H. Youssef. Iterative Computer Algorithms With
Applications in Engineering: Solving Combinatorial Optimization
Problems. IEEE Computer Society, 2000.

[20] G. Varatkar and R. Marculescu. Communication-aware task
scheduling and voltage selection for total systems energy minimiza-
tion. Proc. of ICCAD, 2003.

[21] Y. Zhang, X. Hu, and D. Chen. Task scheduling and voltage selec-
tion for energy minimization. Proc. of DAC, 2002.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




