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Abstract

We present a compilation technique that targets realtime
applications running on embedded processors with com-
bined dynamic voltage scaling (DVS) and adaptive body
biasing (ABB) capabilities. Considering the delay and en-
ergy penalty of switching between operating modes of the
processor, our compiler judiciously inserts mode switch in-
structions in selected locations of the code and generates
executable binary that is guaranteed to meet the deadline
constraint. More importantly, our algorithm runs very fast
and comes reasonably close to the theoretical limit of en-
ergy optimization using DVS+ABB. At 65 nm technology,
we improve the energy dissipation of the generated code by
an average of 11 � 4% under deadline constraints. While our
technique’s improvement in energy dissipation over conven-
tional DVS is marginal (3%) at 130nm, the average im-
provement continues to grow to 4 � 7%, 8 � 8% and 15 � 4%
for 90nm, 65nm and 45nm technology nodes, respectively.
Compared to a recent ILP-based competitor, we improve
the runtime by more than three orders of magnitude, while
producing improved results.

1 Introduction

Microprocessors are one of the major contributors to en-
ergy consumption in embedded systems. Consequently, a
number of circuit-level techniques such as DVS and ABB
have been developed to reduce the energy consumption of
the processor.

Quadratic dependence of active power on supply volt-
age, along with the lower order impact of supply voltage on
clock frequency has motivated dynamic supply voltage scal-
ing for processors. In this scheme the operating frequency
and supply voltage of processors are throttled at runtime to
save energy whenever full performance is not required. This
technique was very effective in the old technology nodes,

where the share of leakage energy in total energy consump-
tion was negligible. The share of leakage energy, however,
increases with the scaling of CMOS technology. Hence,
conventional dynamic voltage scaling is less effective with
advancement of technology[1].

Adaptive body biasing (ABB) is another well-known
CMOS design technique that allows runtime adjustment of
transistors threshold voltage. Threshold voltage affects both
leakage and delay of the transistors. Hence, its effect can
be combined with supply voltage scaling to minimize total
power consumption for a given frequency [11].

We present a compilation methodology that targets em-
bedded processors with joint DVS and ABB capabilities.
We investigate hard realtime systems that have to meet the
application deadline and have light-weight OS. Our com-
piler judiciously inserts mode switch instructions in the
code, and subsequently generates code that is optimized for
overall energy consumption. The generated code is guar-
anteed to meet the execution deadline over the input data
space.

2 Related Work

Extensive research has been done to minimize dynamic
power consumption of a CMOS design. Dynamic voltage
scaling is utilized in several fabricated academic and com-
mercial processors. However, with the continuing shrink-
age of the device sizes, techniques that only target dynamic
power will not be effective [1]. Adaptive body biasing has
been utilized to reduce the leakage power consumption [6].
Researchers have also studied the application of run-time
ABB techniques [2].

Several research groups have proposed static intrapro-
gram voltage scaling [3, 9]. An analytical study of poten-
tial power savings using intraprogram DVS is reported in
[3]. The authors also propose an ILP-based approach whose
savings come reasonably close to the analytical bounds.
Compiler and operating system level optimization are co-
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ordinated in [9]. None of these techniques consider leakage
power, and the effect of technology scaling on the validity
of their results.

3 Processor Model and Operating Modes

Our proposed compilation technique targets a processor
with combined DVS and ABB capabilities that can operate
at several discrete frequencies. According to [11], each fre-
quency has to be associated with a corresponding pair of
supply and body bias voltages that allow operation of the
processor at that frequency. The combination of the three
parameters, i.e., frequency, supply voltage and body bias,
constitute an operating mode of the processor. The pro-
cessor is assumed to be able to switch between operating
modes by execution of a specialized instruction, referred to
as mode switch instruction. Execution of a mode switch in-
struction initiates the process of setting both supply voltage
and body bias of the processors to the target mode implied
by the instruction. Note that frequency is a function of sup-
ply and body bias voltage, and does not need to be speci-
fied separately. Execution of the mode switch instruction,
or equivalently switching between modes, incurs delay and
energy penalty. Both delay and energy penalty depend on
the voltage difference of the two modes involved in switch-
ing.

We assume that our target processor can operate at 5
different clock frequencies, from 200MHz up to 1GHz at
200MHz steps. We adopt the process technology and pro-
cessor parameters from Predictive Technology Models [5]
and Intel XScale commercial processors, respectively. We
obtain the energy optimal supply and body bias voltages
corresponding to each frequency by applying the conclu-
sion in [11]. Table 1 demonstrates the characteristics of the
operating modes for our target processor in 90nm.

Operating frequency(MHz) 1000 800 600 400 200
Supply voltage(V) 1.63 1.47 1.29 1.11 0.95

Bias voltage(V) -0.08 -0.17 -0.25 -0.35 -0.47

Table 1. Processor operating modes at 90nm

4 ILP-based Intraprogram Supply and Bias
Voltage Scaling

The ILP-based approach aims to achieve this goal by in-
sertion of static mode switch instructions on all of the con-
trol flow edges of the application. To formulate the problem
as an ILP instance, profiling and simulation should be car-
ried out to capture the frequency of executing each edge of
the application control flow graph (CFG), and the average
energy dissipation and delay of application basic blocks in

each of the operating modes. To determine the appropri-
ate mode for each edge of the CFG, a set of binary deci-
sion variables are assigned to each edge of the application
CFG. Subsequently, integer linear constraints are formed
to guarantee the 1) assignment of each CFG edge to ex-
actly one mode, 2) execution of the application, consider-
ing delay penalty when switching modes, within deadline.
The objective function would be another integer linear ex-
pression that estimates the total energy consumption includ-
ing energy penalty of mode switches using integer variables
[3][10].

ILP-based technique has two major drawbacks. Firstly,
ILP is a well-known NP-Hard problem. Therefore, its run-
time is not scalable to large programs. Moreover, it inserts
a mode switch instruction before entering each basic block
(one mode switch per about 5 instructions on average!).
Some modes will be redundant, i.e., they set the proces-
sor to the mode that it is already operating at, and can be
removed using classic compiler optimization passes. Nev-
ertheless, the performance and energy overhead associated
with mode switches partially diminishes the savings. In our
previous work, we observed that the ILP solving time for
typical applications of about two hundred basic blocks ex-
ceeds 30 minutes on an ordinary desktop computer[10]. As
expected, the runtime grows very fast with increase of pro-
gram complexity. For example, it took ILP solver more than
6 hours to solve problem instances associated with typical
applications of about five hundred basic blocks.

In order to accelerate the solution time, it is reasonable
to employ heuristics to reduce the number of constraints in
the ILP instance. This would result in a tradeoff between
quality of the solution (energy savings) and solution time
that might lead to an acceptable balance of the two. In our
study, we filtered out the constraints associated with basic
blocks that do not significantly contribute to total energy
consumption of the application. For example, eliminating
some of the constraints in case of susan testbench, allowed
us to solve the ILP instance on the order of tens of seconds,
while degrading the energy consumption by 12%. However,
the gap between the energy consumption of original-ILP
and simplified-ILP increases with growth of the application
size. Consequently, heuristics applied on top of ILP-based
approaches should be viewed as temporary solutions that
somewhat push the limitations rather than delivering truly
scalable strategies.

5 Efficient and Scalable Mode Switching

5.1 Optimal Scaling Frequency

The basic idea of our method is the following: at each
point of the execution, by knowing the maximum (i.e. worst



case) number of cycles required to finish the execution of
the application, and the time that is left before violating the
deadline, the next operating frequency, Fnext , would be the
slowest possible frequency that guarantees executing the ap-
plication without violating the deadline:

Fnext
� WCRC � Sd

TL
(1)

where WCRC denotes the Worst Case Required Cycles
from that specific point to finish the execution of the appli-
cation, TL stands for ”Time Left” in seconds, and Sd refers
to the delay penalty, in cycles, for switching between two
modes. The motivation for this scaling equation is run the
processor as slow as possible to meet the deadline for the
workload. This equation is proved to be theoretically opti-
mal, if continuous frequencies were available [4]. In prac-
tice, however, processors can only run at a number of dis-
crete frequencies and the available frequency immediately
larger than Fnext would be the right choice.

5.2 WCRC Calculation

In order to utilize this equation and obtain the next scal-
ing frequency for each node of the control flow graph, we
need to estimate WCRC for each node of the application
CFG.

Software timing analysis used to calculate the WCET of
the embedded application can also be used to estimate the
WCRC of the program. We implemented a WCRC calcula-
tion algorithm which is similar to the non-enumeration ap-
proach proposed in [12]. We calculate the WCRC for each
loop in the program by tracking its heaviest path and calcu-
late the WCRC for entire program by traversing the control
flow structure of the program in a bottom-up method. We
assume that the worst case execution time (WCET) over in-
put data space, and the input associated with it are known.
Note that this assumption is not unreasonable, because guar-
anteeing the execution time without knowledge of WCET
and the associated input is not feasible.

5.3 Check Point Insertion

After determining WCRC values for all of CFG edges,
we instrument the code to access the time elapsed and the
number of cycles executed so far from the operating system.
We also need to consider the penalty required for accessing
the operating system. We assume that we consume 100 cy-
cles for accessing the time elapsed and number of cycles
executed.

Capturing the number of cycles executed so far, enables
the compiler to determine the Remaining Cycles at each
point. The number of remaining cycles is simply the max-
imum number of cycles required (or WCRC at the entry)

minus the number of cycles executed so far. Note that re-
maining cycles is a function of the input data, and is not
generally equal to WCRC.

 

Checkpoint H Checkpoint G 

WCRC=9000 

Total Remaining 
cycles = 10000 

BB1 = 1000 cycles 

WCRC=6000 

Remaining 
cycles = 9000 

Remaining cycles > WCRC 
 Fnext  = 6000/TL   

Remaining cycles = WCRC 

Remaining 
cycles = 9000 

Figure 1. Example function of a check-point
The aforementioned steps are implemented at particular

points of execution in regions called check-points. Figure 1
illustrates an example check-point and its function.

As shown in Figure 1, we insert checkpoints for edge G
and H to update the counters used to track the number of
remaining cycles. When the execution goes to check-point
G, the number of remaining cycles is 10,000-1000=9,000,
because 1000 cycles are spent for executing basic block 1.
Checkpoint G finds that the remaining cycles is not greater
than WCRC at that checkpoint. It means that it is not safe to
lower the frequency at this moment because it would violate
the deadline.

On the other hand, if the execution goes to checkpoint H,
the number of remaining cycles is still 10,000-1000=9000,
however, WCRC for execution of the rest of the program
is 6000 cycles. It means that instead of operating under
the original frequency, which must be greater than or equal
to 9000 � TL, we can scale down the frequency to � 6000 � TL
without violating the deadline. After scaling down the fre-
quency, the execution continues and we set the number of
remaining cycles from 9000 to 6000 cycles. Essentially, the
mode switching check-point can be thought of as a virtual
entry point for the rest of the application.

As we take latency penalty into account, the function-
ality of the checkpoint only needs a small modification. In
this case, instead of comparing the number of remaining cy-
cles to WCRC check-point would compare remaining cycles
to WCRC � Sd where Sd is the switching delay in cycles.
If the number of remaining cycles is reasonably larger than
WCRC � Sd, it means that we can scale down the frequency.
If worst case remaining cycle is larger than WCRC but not
reasonably larger than WCRC � Sd , the mode switch will
not be executed. However, we will not waste the existing
slack because the execution slack is captured in the num-
ber of remaining cycles, and it can be utilized in upcoming
check-points.



We can insert check-points on three type of edges. The
first category are the forward branches (Figure 2.a). The
reason is that branching might create changes in the num-
ber of remaining cycles. In addition, check-points can be
inserted on the edges that immediately follow a loop body
(Figure 2.b). The reason we insert checkpoint here is that
it is likely to have slack right after the loop, because the
actual number of iterations in the loop can be less than
the iterations in the worst case. The third option is to in-
sert the check-points in the first basic block of the loop.
By adding check-point in the first basic block, we can ex-
ploit the slack for each single iteration of the loop. We set
minimum distance between two check-points during check-
points insertion. Therefore we do not introduce redundant
switch penalty brought by check-points. If the next desired
frequency is between two processor frequencies, we set the
process to run at the faster frequency to ensure meeting the
deadline constraint. However, calculation of the elapsed
time will take this into account, and will ultimately incor-
porate it into TL at upcoming check-points.

Check-point

a) b)

…

…
beq r1, r2, dest

…

…

…

…

…

…

Check-point

dest:

Figure 2. Check-points are inserted onto se-
lected edges.
In order to determine WCRC values and insert check-

points, our algorithm visits each edge of the application
CFG only three times. Therefore, its runtime complex-
ity is O � m � , where m is the number of edges in applica-
tion control flow graph. For real applications, control flow
graphs are sparse graphs in which, the number of control
flow edges grows linearly with the number of nodes (basic
blocks). Consequently, our algorithm runs very efficiently
and is readily scalable to large applications.

6 Quantitative Analysis and Validation

6.1 Experimental Setup

In order to experiment the effectiveness of our technique,
we have developed two compilation flows including well-
known ILP-based [10] energy optimization and our pro-
posed Check-Point Insertion Method (CPIM). Both of the

compilers generate executable code for our target processor.
Figure 3 illustrate our experimental setup for the CPIM.

We use MachineSUIF compiler framework [8] to extract
the control flow graph of the applications. We simulate pro-
gram performance and energy to estimate the power and
latency of application basic blocks by using our XTREM-
based cycle-accurate DVS+ABB simulator[10]. To perform
the worst case analysis, we select the most complex input
of each application as its train input. For each application,
there are also a number of simpler input data would result
in faster program execution. We refer to them as test in-
put. By using the train input to profile the application, we
can capture the WCET and the maximum number of loop
iterations. After worst case analysis, we apply CPIM in-
cluding WCRC analysis and checkpoint insertion. Finally
we generate the code and simulate it using our simulation
framework to measure the energy and performance of the
generated code.

 

 CC  CCooddee  
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Figure 3. The setup of experiments for Check-
Point Insertion Method (CPIM)
Table 2 summarizes the complexity, execution time, and

compilation time for both ILP and CPIM for the selected ap-
plications from [7]. The selected application domains jus-
tify the need for execution deadline constraint and realtime
operation of the generated code.

Table 2 reports the baseline execution time of the appli-
cations (using train input) with no frequency scaling when
our proposed processor runs at 600MHz. In order to inves-
tigate the effect of deadline relaxation on the quality of dif-
ferent frequency scaling methods, we have carried out ex-
tensive experiments using five different deadlines for each
application. The first four deadlines are determined by av-
eraging the adjacent execution times (e.g., execution time
@800MHz and @600MHz). For example, the first deadline
is equal to the average execution time at 1GHz and 800MHz
frequencies, with no frequency scaling mechanism. The last
(fifth) deadline is set to 95% of the execution time at the
slowest mode, i.e., running the processor at 200MHz. Be-
cause of the page limitation, we can only report the exper-
iment results for one of the deadlines in which, the dead-
line is the average of the execution time at 600MHz and
400MHz. We would like to point out that the results are
very consistent over different deadlines, and improvements
generally grow with more relaxed deadlines.



6.2 Experimental Result

We implemented the experimental flows depicted in Fig-
ure 3 and generated code for five applications listed in Table
2. The compilation, corresponding simulations and analy-
sis are performed using the train input. The train input is
the one associated with worst case execution time (WCET).

The energy optimization techniques used in the exper-
iment are ILP-based DVS only (without body bias), ILP-
based DVS+ABB, and the CPIM-based DVS+ABB tech-
nique. To better measure the optimality gap of these tech-
niques, we also adopted the analytical modeling and opti-
mality analysis existing in the literature [4, 3], and applied
it to our testbenches and processor model. When we cal-
culate this analytical energy lower bound, we make some
assumptions to the theoretical energy model of the proces-
sor. First of all, the ideal energy processor model has no
switch latency and energy. Secondly, the ideal processor
have exact the same frequency-voltage pairs as our realistic
model and can not switch to other frequency or voltage ar-
bitrarily. As for the memory, we keep it asynchronous with
the processor in our ideal model. Then we use the simulator
to determine the total execution cycles and time, total idle
cycles and time for cache miss, and total cycles and time for
processor operation.

According to [4], we need only two frequencies in the
optimal discrete voltage schedule. We then apply the equa-
tion in [4] to calculate two consecutive frequencies for the
analytical model. By using two consecutive frequencies and
total time for processor operation, we can get the energy
consumed by the processor operation. As for the energy
consumed during the cache miss, we estimate the static en-
ergy consumption by applying the total cache miss time to
the average static power consumption under zero bias volt-
age.

Note that the optimal energy dissipation predicted by
such analytical modelings are only a lower bound on the
amount of energy dissipation using any dynamic voltage
scaling (either intra-task or inter-task) technique. The
bounds are not tight, and in practice are not feasible.
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Figure 4. Energy Trend over the technology
size for train input
Due to the page limitation, we are unable to report the

experimental results for all of the hundred simulated cases
(five applications under five deadlines and four technolo-
gies). We report the results only under one of the dead-
lines. Figure 4 and table 2 show that CPIM reduces the
compilation time by more than three orders of magnitude
for large programs, while achieving energy savings that are
very close to the ILP-based results. More importantly, the
results are only about 10 � 20% away from the theoreti-
cal loose bound of energy savings, which means that our
method comes reasonably close to the theoretical limit of
the DVS+ABB technology.

According to our experiment result, CPIM acquires
14 � 3% energy saving for the baseline energy and outper-
form ILP based DVS about 6 � 16% in average under the
65nm technology because CPIM also optimize the leakage
energy. Compared to the theoretical energy lower bound,
CPIM is about 14 � 53% worse than the theoretical value.
CPIM outperforms the ILP based DVS and DVS+ABB
techniques by about 11 � 40% and 8 � 8% respectively in av-
erage under the 65nm technology. Compared to the the-
oretical energy lower bound, checkpoint method is about
19 � 65% away from the theoretical value. CPIM has the
obvious advantage over the ILP-DVS technique for the ad-
vanced technology. The reason is that CPIM is designed for
DVS+ABB optimization.

Figure 4 and 5 illustrates energy trend over the device
sizes for our optimized techniques using train input and
test input simulation respectively. The chart shows that the
difference between baseline and optimized techniques be-
comes larger in the advanced technology. Therefore, the
the energy saving will increase greatly as the device size
shrinks.

Energy Trend for Test Inputs
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Figure 5. Energy Trend over the technology
size for test inputs
Based on the experiment, CPIM can achieve the same

energy saving but reduce the compilation time greatly. As
for the compilation time, ILP technique is based on integer
linear programming which grows exponentially with prob-
lem instance complexity. On the other hand, CPIM runtime
depends on the number of basic blocks (control flow edges
to be exact) in the application. Based on this observation,
the complexity of CPIM will be in O � m � , where m means
the total number of the edges in the application CFG. The



Benchmark Application # basic Exec. time Deadline Average MILP Ave. Backtracking speed
domain block @600MHz solution time time up

dijkstra network 36 32.54 37.42 5.22 0.62 8.42
patricia network 138 52.14 63.38 183 1.38 132.75
susan automotive 203 43.14 52.8 1588 4.64 342.28

jpeg-dec consumer 212 45.41 54.87 1613 4.63 348.49
gsm-dec telecom 556 53.51 65.98 22451 14.69 1528.34

Table 2. Applications execution time and MILP solution time (sec)

CPIM visits all of the edges of the CFG three times, and
runs in linear time of the input size.

CPIM even acquires more energy saving when we test
our optimal setting by executing different inputs. Different
from ILP technique, our heuristic will assign the operating
mode of the processor based on the situation of the exe-
cution progress. If the execution progress goes to the non
critical path, checkpoint can determine whether it is worth
to execute a mode switch based on the existing slack. If the
slack is not enough to outperform the switch latency, check-
point will not execute the mode switch instruction. The
checkpoint executes mode switch instruction only when it is
worth to do that. Therefore, CPIM will not waste the slack
in the meaningless mode switch instruction. If checkpoint
does not execute the mode switch instruction, the execut-
ing overhead of the checkpoint is relative slight. However,
ILP-based technique inserts mode switch instruction whose
target operating mode is fixed to the edge of CDFG. Every
fixed mode switch instruction will be executed regardless
of the existence of the slack. Therefore, a difference on the
control flow behavior between the train input and test input
might downgrade the energy saving.

Since CPIM exploits the energy saving of the application
by adaptively utilizing the existing slack, CPIM is closer to
the theoretical limit of the energy saving when executing
test inputs. However, ILP comes slightly closer to the the-
oretical limit of the energy saving when executing the train
input. The reason is that ILP is the optimal solution for
train input, while the static operating mode setting of the
ILP method can not acquire optimal energy saving for dif-
ferent test inputs.

When we have some small slack can not be used to scale
down the processor frequency, checkpoint will leave these
small slack in the worst case remaining cycles and those
slacks can usually be used in the future. This mechanism
increase the opportunities to make use of the slack and re-
duce the waste of the slack when the number of the scaling
frequency are few.

7 Conclusions

We present a methodology to combine dynamic voltage
scaling and adaptive body biasing during compilation of an
application targeting a DVS+ABB enabled embedded pro-
cessor. Compiler-level analysis is particularly useful for
embedded and realtime systems that demand light-weight

operating systems. Additionally, compilers can exploit pro-
gram execution trace information that are not visible to the
operating system, and hence, can assist dynamic voltage
schedulers. Experimental results show that the energy dis-
sipation gap between leakage-aware and conventional DVS
grows with technology scaling. Moreover, they show that
our compiler’s result come reasonably close to theoretical
limits of energy savings using this method.
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