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Abstract 
As the hardware and software complexity grows, it is 
unlikely for the power management hardware/software to 
have a full observation of the entire system status. In this 
paper, we propose a new modeling and optimization 
technique based on partially observable Markov decision 
process (POMDP) for robust power management, which 
can achieve near-optimal power savings, even when only 
partial system information is available. Three scenarios of 
partial observations that may occur in an embedded system 
are discussed and their modeling techniques are presented. 
The experimental results show that, compared with power 
management policy derived from traditional Markov 
decision process model that assumes the system is fully 
observable, the new power management technique gives 
significantly better performance and energy tradeoff. 

1. Introduction 
Power consumption has become one of the major 

roadblocks in the VLSI technology. Most of the state-of-the-
art system modules are capable of trading power for 
performance or being put into sleep or low power mode to 
reduce power consumption. However, the effectiveness of 
the power management approach is highly dependent on the 
correct modeling of the system architecture and the 
application running on it, as well as the solution techniques 
that lead to robust power management policies. 

Dynamic power management – which refers to selective 
shut-off or slow-down of system components that are idle or 
underutilized – is a particularly effective power reduction 
technique at the system level. Previous approaches to DPM 
can be classified into three major categories: timeout-based, 
predictive, and stochastic. A good survey about these 
techniques can be found in [1]. Among those techniques, the 
stochastic approaches are based on a solid theoretical 
foundation, and are thus able to deliver provable optimal 
power management policies.  

Three stochastic models [2]-[4] are widely used in recent 
research works on stochastic power management [6]-[8]. All 
of them are based on Markov decision process (MDP). In 
[2], Benini et. al model the power managed system as a 
discrete-time Markov decision process. Each state of the 

Markov process correspond to a system state, which is 
characterized by the number of waiting requests, the current 
power mode of the service provider and the current request 
generation mode of the service requestor. In a computer 
system, the service requestor usually is the user software 
program and the service provider can be the processor or 
hard disk. The power management hardware/software 
monitors the state transition in the system and issues control 
commands periodically. Reference [3] models the similar 
system using the continuous-time Markov decision process. 
The new model enables the power manager works in an 
asynchronous and event-driven mode, and thus reduces the 
performance overhead. Reference [4] proposes a modeling 
technique based on the time-indexed semi-Markov decision 
process. It improves previous works by considering more 
general idle time distribution.  

All of the above mentioned modeling and policy 
optimization techniques assume that the power manager has 
the perfect information of the current state of the system. 
Based on this information, the power manager finds the best 
power management action from a pre-computed table stored 
in the memory.  

As the complexity of hardware and software grows, 
however, the assumption that the entire system is fully 
observable will not be true. Firstly, the power manager may 
not be able to detect the request mode change of the service 
requestor (i.e. the application software) immediately and 
accurately because there is no standard way for software to 
pass this information to the OS. Secondly, the power 
manager may not be able to detect the mode change of the 
service provider in time because, as the size of the hardware 
grows, the delay to transmit information from one functional 
block to another becomes non-negligible. Therefore, it is 
possible that the power manager observes one state while the 
system is actually in another. Such system is called partially 
observable system because the observed view only provides 
partial information of the system state. Because of those 
hidden Markov states, the system sometime appears to be 
non-stationary and non-Markovian to the power manager. 

A robust power management approach should be able 
provide good energy – performance tradeoff, even if it has 
only partial information of the system. However, our 
experimental results show that the existing stochastic power 
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management based on Markov decision processes cannot 
work robustly in a partially observable system.  

The modeling and optimization of a partially observable 
Markov decision process (POMDP) has been well developed 
and widely applied in the research of Artificial Intelligence 
[9][10]. In this work, we use POMDP to model and optimize 
a power managed system. Besides the observed system state, 
a power manager using POMDP maintains a belief state 
during the runtime. The belief state is the power manager’s 
estimation of the current system state based on the history 
information.  It provides sufficient information for the power 
manager to make power control decision.  

To the best of our knowledge, this work is the first that 
gives formal modeling and optimization framework for 
stochastic power management in a partially observable 
system. Compared with power management policy derived 
from traditional MDP model that assumes the system is fully 
observable, the new technique gives significantly better 
energy performance tradeoff. In some test cases, the new 
power management technique can achieve near-optimal 
power saving as if the system is fully observable.  

The authors of [12] consider the similar problem and 
proposed a hierarchical power management solution for a 
system with partially observable service requestor. It first 
calculates a set of policy which only considers the state 
transition of the service provider and service queue. Then an 
algorithm is proposed to select one of the pre-calculated 
policies whenever the service requestor reaches an 
observable state.  The policy will not change if the service 
requestor is in an unobservable state. Our approach is 
different in the way that the power manager estimates when 
it enters an unobservable state based on the belief state. 
Therefore, even if the power manager keeps on seeing the 
same observation, it may change the power control action.  

The remainder of this paper is organized as follows: 
section 2 gives the background of POMDP model and its 
policy optimization technique. Section 3 discusses the model 
construction for a power managed system using POMDP. 
How to implement the POMDP based power manager is also 
discussed. Section 4 presents several simulation results of the 
new power management technique. Finally, Section 5 
provides the conclusions of the work. 

2. Background on POMDP 
A traditional MDP can be characterized using four 

parameters.  
• A finite state space, S 
• A finite set of actions, A 
• A transition model, P(s’|s, a), where Sss ∈,'  and Aa ∈ . 

It specifies the probability that the system will switch to 
next state s’ given that the current system state is s and 
current action is a. 

• A reward function, r(s, a), where Ss ∈ and Aa ∈ . It 
specifies the reward that the system receives when it is 
staying in state s and choosing action a. 

A policy },|,{ SsAaas ∈∈><=π  is the set of state-action 
pairs for all the states in an MDP. It specifies the actions for 

different states. An optimal policy is the one that gives 
maximum/minimum average reward/cost. 

The POMDP is a generalized Markov decision process 
(MDP). It does not make assumption that the states are fully 
observable. In addition to the above four parameters, a 
POMDP has two more parameters:  
• An observation set, Z. It specifies a set of states that is 

observable to the decision maker 
• An observation function, ),|( aszP , where Zz ∈ , Ss ∈  

and Aa ∈ . It specifies the observation probability that 
the system is at state s and action a is taken while the 
decision maker observes z.  

In a POMDP system, the environment appears to be non-
stationary and non-Markovian to the decision maker. The 
best policy is also not stationary with respect to the observed 
state. In order to choose an action, the decision maker has to 
refer to all the historical information that includes the initial 
state, the history of observed states, and the actions that have 
been performed. Keeping all of the information in memory 
will be impossible. However, it has been proved that all the 
useful information about the system history can be 
summarized by a belief state, which is a sufficient statistic 
[10] for the decision making. 

A belief state, b, is a vector with |S| entries. The entries of 
the vector represent the probability distribution over all 
states. It is the “belief view” of the environment that the 
decision maker maintains during the runtime. The belief state 
is updated every time after the controller selects an action 
and makes an observation. The update uses the following 
equation: 
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where b is the current belief state, a is the selected action, z is 
the observed state, and )',|(),|'(),|,'( sazPassPaszsP = .  

Because the probability of next belief state depends only 
on the current belief state, the POMDP can be transformed 
into a belief space MDP. The belief space MDP has 
continuous state because the belief states are vectors in 
continuous domain. The transition probability that the belief 
space MDP switches from state b to b’ can be calculated as 
the following equation: 
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In other words, the probability of a belief state is the 
summation of the probabilities of all the observations that 
would lead to this belief state. 

The reward function r(b, a) of the belief space MDP is the 
expectation of r(s, a) over all the states. It can be calculated 
as the following equation: 

∑=
∈Ss

asrsbabr ),()(),(                                                     (3) 



With the help of the belief state, the problem of policy 
optimization for a POMDP is transformed into the problem 
of policy optimization for a continuous-state MDP. The later 
can be solved using the value iteration. In the next, we will 
give a brief introduction of value iteration. 

Given a policy π, a value function )(bV π  is the 
discounted expected reward that the system receives if it 
starts from a belief state b. It is defined as 
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Where λ is the discount factor which is less than 1 and 
)( nbπ gives the action for state bn under policy π. The value 

function for the optimal policy can be obtained numerically 
by iterating functions (4)~(6). 
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It can be proved that )(bVn converges to the optimal value 
function [9]. The following theorem gives the stopping 
condition for the iteration [9]. It also shows how to construct 
the policy from the value functions. 
Theorem 1  Let π be the policy given by  

       ( )( )
⎭
⎬
⎫

⎩
⎨
⎧ ∑+=

z

a
zna

bVabzPabrargb ),|),(max)( λλπ ,              (7) 

if η≤− − )()(max 1 bVbV nnb , then 
λ

ηλπ

−
≤−

1
2)()(max * bVbVb , 

where )(* bV  is the value function of the optimal policy.  
To calculate the value of functions (4)~(6) is difficult 

because b is a variable in a continuous space with |S| 
dimensions. However, a nice property of the a

nV 1+  and za
nV ,

1+  
is that they are piece-wise-linear. Each of these functions is a 
convex surface formed by a set of hyperplanes in the |S| 
dimension space. Therefore, each of these functions can be 
represented by a set of vectors that characterize the 
hyperplanes. The operations on a

nV 1+  and za
nV ,

1+ can be 
transformed to the operations on those hyperplanes. Different 
algorithms have been developed for value iteration. For more 
detailed information please refer to reference [10]. 

3. System modeling and policy implementation 
The proposed modeling and optimization method can be 

applied to more complex system. However, in this paper, we 
will focus on the modeling of the power managed system 
with a single service provider.  

We adopt the system configuration in [2] and [3] and 
model the system as a composition of three components: 
Service Requestor (SR), Service Provider (SP), and Service 
Queue (SQ). The SR generates service requests for the SP. 
The SQ buffers the service requests. The SP provides service 
to the requests in a first-in-first-serve manner. In a real 
system, the SR may be a software application, the SP may be 
the processor, and the SQ may be the ready queue that is 
implemented in OS. The power manager monitors the states 

of the three components and issues state-transition 
commands to the SP.  

Similar to [2] and [3], we assume that the power managed 
system is Markovian, i.e. the next state of the system 
depends only on its current state. The history information 
does not impact the behavior of the system. Note that the 
system may appear to be non-Markovian to the power 
manager or user because some states are not observable. If 
the power manager does not have the complete information 
of the system, then the system needs to be modeled as a 
POMDP. To build the POMDP model, we first need to 
construct its embedded MDP, then to characterize the 
observation set and the observation function. 
3.1 Embedded MDP model 

The embedded MDP model of the power managed system 
is constructed in the similar way as reference [2]. Here we 
use the discrete-time model because, to maintain the belief 
state, the power manager needs to observe the system 
periodically. The SR is modeled as an MDP R with state set 
R={ri, s.t. i=0, 1, …, R}. Different states associate with 
different request generating modes which generate service 
request at different rates. The state transition probability can 
be obtained by software profiling. The SP is also modeled as 
an MDP S with state set S={si, s.t. i=0, 1, …, S}. Different 
states associate with different power modes. The state 
transition probability is determined by the power control 
actions and the power mode switching time. The SQ is also 
modeled as an MDP Q with state set Q={qi, s.t. i=0, 1, …, 
Q}. State qi indicates that there are i requests in the service 
queue. The state transition probability is determined by the 
request incoming rate and the request service rate. The 
system state is the composition of SR, SQ and SP. The 
system state is a triplet (s, r, q) where s∈S, r∈R, and q∈Q. 
The probability to switch from state (s, r, q) to (s’, r’, q’) 
under power control action a can be calculated as: 

 )',()',()',())',','(),,,(( , qqPrrPssPqrsqrsP sr
aa ××= , 

where )',( ssPa  is the probability for SP to switch from s to 
s’ under action a, )',( rrP is the probability for SR to switch 
from r to r’ and )',(, qqP sr is the probability for SQ to switch 
from q to q’ when SR is in state r and SP is in state s.  
3.2 Observation set and observation functions 

In this paper, we assume that the power control action 
taken by the power manager does not affect the observation 
of the system state. Therefore, the observation function 

),|( aszP can be reduced to )|( szP .  
We can classify the type of partial observation of the 

power manager into three classes: hidden states, delayed 
observation, and noisy observation. 
3.2.1 Partial observation due to hidden states 

The hidden states are those states that are totally 
unobservable to the power manager. We do not have enough 
information to distinguish these states from each other. For a 
set of hidden states H={h0, h1, …, hn}, there is only one 



observation z. The observation function is defined as: 
1)|( =ihzP , ∀hi∈H.  

The hidden states may be different request generation 
modes of the SR. The previous stochastic power 
management framework assumes that the power manager is 
able to detect which mode the SR is currently in and then 
make a decision correspondingly. This is possible if we 
modify the program and embed some instructions to inform 
the power manager about the current requester mode. 
However, this is not the way that current software was 
developed. The processor may be able to observe certain 
request modes by using side channel information, such as the 
context switching from one process to another. It is not able 
to differentiate the request mode within one process.  

The hidden states sometimes are added to facilitate the 
construction of the embedded MDP. For example, in 
reference [5], a “stage method” is proposed to approximate 
the non-exponential service or inter-arrival time. Based on 
the “stage method”, any state that has random duration with 
non-exponential distribution can be decomposed into a set of 
parallel/serial connected sub-states whose duration follows 
exponential distribution. However, to the power manager, 
these sub-states appear to be the same. The traditional 
stochastic power management cannot perform robustly in 
this situation. However, if the system is modeled as a 
POMDP, with the help of the belief state, the power manager 
can estimate which hidden state the system is currently in. 
The following example shows how the power manager 
changes the belief state even though it keeps on seeing the 
same observation state. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1 Detection of hidden state using POMDP. 
Example 1: Assume that an SR has two request modes, r1 

and r2. The time that it stays in r1 follows normal distribution 
with mean 5 and variance 2.6. The time that it stays in r2 
follows exponential distribution with mean 2.  To model the 
normal-distributed duration, we divide r1 into 4 sub-states: 
r1,1~r1,4. The duration of each sub-state follows exponential 
distribution with mean 1/0.6. Figure 1 (a) and (b) give the 
original state transition diagram and the transformed state 
transition diagram of the SR respectively. The four stages 
r1,1~r1,4 are hidden states. They share one observation r1. The 

observation function is 1)|( ,11 == irrzP , i=1~4. The 
transformed model provides a fairly close approximation of 
the normal distribution. Figure 1 (c) shows the comparison 
of the probability density function of the time that the SR 
stays in r1 and time that the SR stays in either one of r1,1~r1,4. 
The belief state is a 1×5 vector 

))(),(),(),(),(( 24,13,12,11,1 rbrbrbrbrb . The ith element of the 
vector is the probability that the system is in state i according 
to the power manager’s estimation. Assume that the system 
start from state r1,1. Therefore, the starting belief state is 

)0,0,0,0,1( . Figure 1 (d) shows the changing of the belief 
state along the time when the power manager keeps on 
observing state r1. As we can see, the probability b(r1,4) 
increases while b(r1,1) decreases. Therefore, although the 
power manager sees the same observation for all the time, it 
“believes” more and more that the SR is currently in state r1,4 
instead of r1,1 as the time goes by. There will be different 
power control actions associated with different sub-states. 
Obviously, the power manager that maintains a belief state 
has more information on how to select those actions while 
the tradition power manager does not. 
3.2.2 Partial observation due to delayed observation 

Sometime, because of bus contention or system busy, the 
power manager is not able to obtain the accurate system 
status information in time. More specifically, after the 
system state change from x1 to mode x2, it still appears to be 
x1 to the power manager for a short time. To model this 
situation in POMDP, for each (x1, x2) pair, we divide the 
state x2 into two sub-states: x2,1 and x2,2. The state x2,1 is 
always observed as x1 while x2,2 is always observed as x2. 
Hence, the observation function is 1)|( 1,21 == xxzP  
and 1)|( 2,22 == xxzP .  

Let )|( abP and )|(' abP denote the transition probability 
from state a to state b of the original model and the POMDP 
model respectively.  The following set of heuristic rules can 
be used to update the state transition probabilities for the new 
model: 

)|()|(' 1211,2 xxPxxP = ; 
0)|(' 12,2 =xxP ; 

)|())|('1()|(' 221,21,21,22,2 xxPxxPxxP ⋅−= ; 
)|())|('1()|(' 21,21,21,2 xxPxxPxxP ⋅−= ; 

)|()|(' 222,22,2 xxPxxP = ; 
 )|()|(' 22,2 xxPxxP = ; 

where x is all the next state of x2, )|(' 2,12,1 xxP  is )11( d−  if 
the average observation delay is d. 

Example: Consider the SR model in Figure 2 (a). 
Assume that there is always a delay for the power manager 
to detect the transition from r1 to r2. The average delay is 
1.25 time steps. The corresponding POMDP model is given 
in Figure 2. In order to verify if the POMDP model keeps the 
characters of the original model, we compare the cumulative 
distribution function of the duration of r2 in the original 
model and the duration of r2,1 and r2,2 in the POMDP model. 

r1 r2r1 r2

(a) Two request 
states in SR. (b) r1 is divided into 4 sub-states. 
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(d) Change of the belief 
state along the time. 
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The duration of r2 in the original model is a random variable 
with exponential distribution with mean 1/0.2. Hence its 
cumulative distribution function is t

r etF 2.01)(2
−−= .  

The duration of r2,1 and r2,2 are both exponential 
distributions with mean 1/0.8 and 1/0.2 respectively. Denote 
their probability density function as )(1,2 tfr and )(2,2 tfr . 
Also denote their cumulative distribution function as 

)(1,2 tFr and )(2,2 tFr . The cumulative distribution function of 
the time that the system stays in either r2,1 and r2,2 can be 
calculated as  

)33.11(8.0)1(2.0        

)(2.0)()(8.0)(
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Figure 2 (c) shows the comparison of the cumulative 
distribution function of the time that the SR stays in r2 and 
the time that the SR stays in either r2,1 or r2,2. As we can 
these two random variables follows very similar distribution. 
For the extreme case when the information of mode 
switching is lost indefinitely, the r2 will become a hidden 
state. It will always be observed as r1. The state transition 
diagram for the POMDP model of the extreme case is given 
in Figure 2 (d). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 POMDP model of a delayed observation. 

3.2.2 Partial observation due to observation noise 
The above mentioned two types of partial observation are 

the most common ones in an embedded system. There will 
be many other reasons that a power manager will obtain 
inaccurate information of the system. We will not further 
classify them. Instead, we assume that they are all caused by 
random noise during the observation. For this type of partial 
observation, if state x has px,y probability to be observed as 
state y, then we will have the observation function as 

yxpxyzP ,)|( == . Note that 1)|( =∑ =∈Xy xyzP , where 
X is the entire state set of the system. 

3.2 Implmentation of POMDP power manager 
Given the POMDP model, the optimal policy can be 

calculated using value iteration as discussed in Section 2. 
The result of the value iteration is a value function of the 
belief state. In each time step, the power manager first 
updates the belief state using equation (1), and then 
calculates the best action using equation (7). Complex 
computing is involved in this procedure which increases the 
overhead of the power manager.  

It has been shown [13] that the believe space can be 
partitioned into regions such that the same action will be 
chosen for all belief states within this region. Furthermore, 
given the optimal action and the resulting observation, all 
belief states in one partition transform to new belief states 
that are in the same partition. Based on the partition, a policy 
graph can be constructed. Each vertex in the policy graph 
associates with a partition and each edge associates with an 
observation. If there is the edge from vertex x to vertex y and 
it is associated with observation z, then all belief state in 
partition x transform to new belief states in partition y if z is 
observed.  

Example: Figure 3 (a) shows the value function of a two 
state POMDP. It is the convex surface that is formed by two 
dashed lines. The surface can be partitioned into two regions, 
v1 and v2. The corresponding best actions for the two regions 
are a1 and a2 respectively. If the system is in region v1 and a 
z1 is observed, then it will switch to v2. If the system is in 
region v2 and a z2 is observed, then it will switch to v1. The 
corresponding policy graph is given in Figure 3 (b). The best 
action can be determined based on the policy graph and the 
observation. 

 
 
 
 
 
 
 

Figure 3 Example of policy graph. 
The policy graph can be implemented as a finite state 

controller. In this way, the implementation and computation 
complexity of the power manager is reduced significantly. 

4. Experimental results 
A set of simulations has been performed to evaluate the 

performance and energy saving of the POMDP based power 
management. Three scenarios are compared: 
1. The system is fully observable. The policy is derived 

from an MDP model.  
2. The system is partially observable. However, the power 

management policy is derived from an MDP model 
which assumes that the system is fully observable.  

3. The system is partially observable. The power 
management policy is derived from a POMDP model.  

The above mentioned three scenarios will be denoted as 
“MDP+full”, “MDP+partial” and “POMDP” in the rest of 
the paper. 
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The service provider that is considered in the simulation 
is a hard disk drive (HDD) with two power modes, sleep and 
active. The power consumption is 2.0W, 0.6W, 1.2W and 
1.2W when the HDD is active, sleeping, switching from 
active to sleep, and switching from sleep to active. When the 
SP is active, the service rate is 0.7. The queue can hold up to 
4 waiting requests. The SR has three states, r1, r2, and r3 and 
the corresponding request generation rates are 0.1, 0.3 and 
0.8 respectively. The transition probabilities among the three 
request modes are given in the following 

matrix:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

4.03.03.0
3.04.03.0
3.03.04.0

P . The request mode r3 is not 

observable. Furthermore, it will have equal probability to be 
observed as r1 or r2.  

We use an open source POMDP solver [14] for POMDP 
policy optimization. The optimal MDP policy is obtained 
using the same software by setting the observation set equal 
to the system state. In all the experiments, we consider only 
the deterministic policy because it is the only type of policy 
that is supported by the value iteration algorithm. The reward 
is defined as the weighted sum of the average power 
consumption and the average latency of each request. The 
discounted factor is set to be 0.95.  

We vary the weight of the latency and obtain a set of 
policies with different energy latency tradeoffs. Figure 4 
gives the comparison of the energy-latency tradeoff curves of 
the three scenarios. As we can see, the POMDP policy gives 
near optimal energy-delay tradeoff as if the system is fully 
observable. It out performs the MDP policy in a partially 
observable system.  

 
 
 
 
 
 
 
 
 
 

Figure 4 Comparison of energy latency tradeoff 
 Table 1 gives the comparison of the average latency (D), 

loss rate (L) and power (P). The first column gives the 
latency weight in the reward function. Columns 2~4 give the 
percentage increasing of latency, loss rate and power of 
POMDP policy comparing with MDP policy under full 
observation. Columns 5~7 give the same information of 
MDP policy under partial observation comparing with MDP 
policy under full observation. When the weight of latency is 
low, both POMDP and MDP policy choose to power on the 
HDD all the time. Therefore, these two policies work equally 
well. For the rest of the cases, comparing with fully 
observable system, the POMDP policy either trades power 
for performance or vise versa.  The MDP policy does not 
work robustly in a partially observable system. For two of 
those cases, it leads to lower performance and higher energy. 
Note that the optimal MDP policies are the same when the 

latency weight equals to 0.6 and 0.7. Therefore the data of 
MDP+partial are exactly the same for these two cases. 

Table 1 Comparison of different power management policy. 
POMDP MDP+partial  weight 

∆D (%) ∆L(%) ∆P(%) ∆D(%) ∆L(%) ∆P(%) 
0.1 0 0 0 0 0 0 

0.2 0 0 0 0 0 0 

0.3 0 0 0 0 0 0 

0.4 -0.8 -1.1 1.8 -1.6 -2.7 4.2 

0.5 0.7 4.5 -0.3 47.0 463.6 -3.3 

0.6 -1.9 16.7 -0.2 50.9 561.1 -2.1 

0.7 -4.0 11.1 0.9 50.9 561.1 -2.1 

0.8 -12.5 -31.3 6.6 31.4 581.3 7.1 

0.9 -60.0 -90.0 21.0 42.8 920 3.1 

5. Conclusions 
In this paper, we propose a new modeling and 

optimization technique based on partially observable Markov 
decision process (POMDP) for robust power management. 
Three scenarios of partial observations which may occur in 
an embedded system are discussed and their modeling 
techniques are presented. The simulation results show that, 
the POMDP policy provides near optimal energy 
performance tradeoff similar as the MDP policy in a fully 
observable system.  
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