
Stochastic Modeling and Optimization for Robust Power Management in a Partially
Observable System

Qinru Qiu, Ying Tan, Qing Wu

Department of Electrical and Computer Engineering
Binghamton University, State University of New York

Binghamton, New York 13902, USA
{qqiu, ytan3, qwu}@binghamton.edu

Abstract
As the hardware and software complexity grows, it is
unlikely for the power management hardware/software to
have a full observation of the entire system status. In this
paper, we propose a new modeling and optimization
technique based on partially observable Markov decision
process (POMDP) for robust power management, which
can achieve near-optimal power savings, even when only
partial system information is available. Three scenarios of
partial observations that may occur in an embedded system
are discussed and their modeling techniques are presented.
The experimental results show that, compared with power
management policy derived from traditional Markov
decision process model that assumes the system is fully
observable, the new power management technique gives
significantly better performance and energy tradeoff.

1. Introduction
Power consumption has become one of the major

roadblocks in the VLSI technology. Most of the state-of-the-
art system modules are capable of trading power for
performance or being put into sleep or low power mode to
reduce power consumption. However, the effectiveness of
the power management approach is highly dependent on the
correct modeling of the system architecture and the
application running on it, as well as the solution techniques
that lead to robust power management policies.

Dynamic power management – which refers to selective
shut-off or slow-down of system components that are idle or
underutilized – is a particularly effective power reduction
technique at the system level. Previous approaches to DPM
can be classified into three major categories: timeout-based,
predictive, and stochastic. A good survey about these
techniques can be found in [1]. Among those techniques, the
stochastic approaches are based on a solid theoretical
foundation, and are thus able to deliver provable optimal
power management policies.

Three stochastic models [2]-[4] are widely used in recent
research works on stochastic power management [6]-[8]. All
of them are based on Markov decision process (MDP). In
[2], Benini et. al model the power managed system as a
discrete-time Markov decision process. Each state of the

Markov process correspond to a system state, which is
characterized by the number of waiting requests, the current
power mode of the service provider and the current request
generation mode of the service requestor. In a computer
system, the service requestor usually is the user software
program and the service provider can be the processor or
hard disk. The power management hardware/software
monitors the state transition in the system and issues control
commands periodically. Reference [3] models the similar
system using the continuous-time Markov decision process.
The new model enables the power manager works in an
asynchronous and event-driven mode, and thus reduces the
performance overhead. Reference [4] proposes a modeling
technique based on the time-indexed semi-Markov decision
process. It improves previous works by considering more
general idle time distribution.

All of the above mentioned modeling and policy
optimization techniques assume that the power manager has
the perfect information of the current state of the system.
Based on this information, the power manager finds the best
power management action from a pre-computed table stored
in the memory.

As the complexity of hardware and software grows,
however, the assumption that the entire system is fully
observable will not be true. Firstly, the power manager may
not be able to detect the request mode change of the service
requestor (i.e. the application software) immediately and
accurately because there is no standard way for software to
pass this information to the OS. Secondly, the power
manager may not be able to detect the mode change of the
service provider in time because, as the size of the hardware
grows, the delay to transmit information from one functional
block to another becomes non-negligible. Therefore, it is
possible that the power manager observes one state while the
system is actually in another. Such system is called partially
observable system because the observed view only provides
partial information of the system state. Because of those
hidden Markov states, the system sometime appears to be
non-stationary and non-Markovian to the power manager.

A robust power management approach should be able
provide good energy – performance tradeoff, even if it has
only partial information of the system. However, our
experimental results show that the existing stochastic power

978-3-9810801-2-4/DATE07 © 2007 EDAA

management based on Markov decision processes cannot
work robustly in a partially observable system.

The modeling and optimization of a partially observable
Markov decision process (POMDP) has been well developed
and widely applied in the research of Artificial Intelligence
[9][10]. In this work, we use POMDP to model and optimize
a power managed system. Besides the observed system state,
a power manager using POMDP maintains a belief state
during the runtime. The belief state is the power manager’s
estimation of the current system state based on the history
information. It provides sufficient information for the power
manager to make power control decision.

To the best of our knowledge, this work is the first that
gives formal modeling and optimization framework for
stochastic power management in a partially observable
system. Compared with power management policy derived
from traditional MDP model that assumes the system is fully
observable, the new technique gives significantly better
energy performance tradeoff. In some test cases, the new
power management technique can achieve near-optimal
power saving as if the system is fully observable.

The authors of [12] consider the similar problem and
proposed a hierarchical power management solution for a
system with partially observable service requestor. It first
calculates a set of policy which only considers the state
transition of the service provider and service queue. Then an
algorithm is proposed to select one of the pre-calculated
policies whenever the service requestor reaches an
observable state. The policy will not change if the service
requestor is in an unobservable state. Our approach is
different in the way that the power manager estimates when
it enters an unobservable state based on the belief state.
Therefore, even if the power manager keeps on seeing the
same observation, it may change the power control action.

The remainder of this paper is organized as follows:
section 2 gives the background of POMDP model and its
policy optimization technique. Section 3 discusses the model
construction for a power managed system using POMDP.
How to implement the POMDP based power manager is also
discussed. Section 4 presents several simulation results of the
new power management technique. Finally, Section 5
provides the conclusions of the work.

2. Background on POMDP
A traditional MDP can be characterized using four

parameters.
• A finite state space, S
• A finite set of actions, A
• A transition model, P(s’|s, a), where Sss ∈,' and Aa ∈ .

It specifies the probability that the system will switch to
next state s’ given that the current system state is s and
current action is a.

• A reward function, r(s, a), where Ss ∈ and Aa ∈ . It
specifies the reward that the system receives when it is
staying in state s and choosing action a.

A policy },|,{ SsAaas ∈∈><=π is the set of state-action
pairs for all the states in an MDP. It specifies the actions for

different states. An optimal policy is the one that gives
maximum/minimum average reward/cost.

The POMDP is a generalized Markov decision process
(MDP). It does not make assumption that the states are fully
observable. In addition to the above four parameters, a
POMDP has two more parameters:
• An observation set, Z. It specifies a set of states that is

observable to the decision maker
• An observation function,),|(aszP , where Zz ∈ , Ss ∈

and Aa ∈ . It specifies the observation probability that
the system is at state s and action a is taken while the
decision maker observes z.

In a POMDP system, the environment appears to be non-
stationary and non-Markovian to the decision maker. The
best policy is also not stationary with respect to the observed
state. In order to choose an action, the decision maker has to
refer to all the historical information that includes the initial
state, the history of observed states, and the actions that have
been performed. Keeping all of the information in memory
will be impossible. However, it has been proved that all the
useful information about the system history can be
summarized by a belief state, which is a sufficient statistic
[10] for the decision making.

A belief state, b, is a vector with |S| entries. The entries of
the vector represent the probability distribution over all
states. It is the “belief view” of the environment that the
decision maker maintains during the runtime. The belief state
is updated every time after the controller selects an action
and makes an observation. The update uses the following
equation:

∑ ∑

∑
=

s s

sa
z sbaszsP

sbaszsP
sb

'
)(),|,'(

)(),|,'(
)'(, for all Ss ∈' (1)

where b is the current belief state, a is the selected action, z is
the observed state, and)',|(),|'(),|,'(sazPassPaszsP = .

Because the probability of next belief state depends only
on the current belief state, the POMDP can be transformed
into a belief space MDP. The belief space MDP has
continuous state because the belief states are vectors in
continuous domain. The transition probability that the belief
space MDP switches from state b to b’ can be calculated as
the following equation:

 ∑=
∈Zz

a
zbbIabzPabbP),'(),|(),|'(, (2)

where

⎪⎩

⎪
⎨
⎧ =

=
otherwise 0

' if 1),'(
a
za

z
bbbbI and

∑ ∑=
s s

aszPassPsbabzP
'

),'|(),|'()(),|(.

In other words, the probability of a belief state is the
summation of the probabilities of all the observations that
would lead to this belief state.

The reward function r(b, a) of the belief space MDP is the
expectation of r(s, a) over all the states. It can be calculated
as the following equation:

∑=
∈Ss

asrsbabr),()(),((3)

With the help of the belief state, the problem of policy
optimization for a POMDP is transformed into the problem
of policy optimization for a continuous-state MDP. The later
can be solved using the value iteration. In the next, we will
give a brief introduction of value iteration.

Given a policy π, a value function)(bV π is the
discounted expected reward that the system receives if it
starts from a belief state b. It is defined as

()⎥⎦
⎤

⎢⎣
⎡ ∑=

∞

=

−

1

1
,)(,)(

n
nn

n
b bbrEbV πλπ

π ,

Where λ is the discount factor which is less than 1 and
)(nbπ gives the action for state bn under policy π. The value

function for the optimal policy can be obtained numerically
by iterating functions (4)~(6).
)(),|()(,

1
a
zn

za
n bVabzPbV λ=+ (4)

 ∑+= ++
z

za
n

a
n bVabrbV)(),()(,

11 (5)

)(max)(11 bVbV a
nan ++ = (6)

It can be proved that)(bVn converges to the optimal value
function [9]. The following theorem gives the stopping
condition for the iteration [9]. It also shows how to construct
the policy from the value functions.
Theorem 1 Let π be the policy given by

 ()()
⎭
⎬
⎫

⎩
⎨
⎧ ∑+=

z

a
zna

bVabzPabrargb),|),(max)(λλπ , (7)

if η≤− −)()(max 1 bVbV nnb , then
λ

ηλπ

−
≤−

1
2)()(max * bVbVb ,

where)(* bV is the value function of the optimal policy.
To calculate the value of functions (4)~(6) is difficult

because b is a variable in a continuous space with |S|
dimensions. However, a nice property of the a

nV 1+ and za
nV ,

1+
is that they are piece-wise-linear. Each of these functions is a
convex surface formed by a set of hyperplanes in the |S|
dimension space. Therefore, each of these functions can be
represented by a set of vectors that characterize the
hyperplanes. The operations on a

nV 1+ and za
nV ,

1+ can be
transformed to the operations on those hyperplanes. Different
algorithms have been developed for value iteration. For more
detailed information please refer to reference [10].

3. System modeling and policy implementation
The proposed modeling and optimization method can be

applied to more complex system. However, in this paper, we
will focus on the modeling of the power managed system
with a single service provider.

We adopt the system configuration in [2] and [3] and
model the system as a composition of three components:
Service Requestor (SR), Service Provider (SP), and Service
Queue (SQ). The SR generates service requests for the SP.
The SQ buffers the service requests. The SP provides service
to the requests in a first-in-first-serve manner. In a real
system, the SR may be a software application, the SP may be
the processor, and the SQ may be the ready queue that is
implemented in OS. The power manager monitors the states

of the three components and issues state-transition
commands to the SP.

Similar to [2] and [3], we assume that the power managed
system is Markovian, i.e. the next state of the system
depends only on its current state. The history information
does not impact the behavior of the system. Note that the
system may appear to be non-Markovian to the power
manager or user because some states are not observable. If
the power manager does not have the complete information
of the system, then the system needs to be modeled as a
POMDP. To build the POMDP model, we first need to
construct its embedded MDP, then to characterize the
observation set and the observation function.
3.1 Embedded MDP model

The embedded MDP model of the power managed system
is constructed in the similar way as reference [2]. Here we
use the discrete-time model because, to maintain the belief
state, the power manager needs to observe the system
periodically. The SR is modeled as an MDP R with state set
R={ri, s.t. i=0, 1, …, R}. Different states associate with
different request generating modes which generate service
request at different rates. The state transition probability can
be obtained by software profiling. The SP is also modeled as
an MDP S with state set S={si, s.t. i=0, 1, …, S}. Different
states associate with different power modes. The state
transition probability is determined by the power control
actions and the power mode switching time. The SQ is also
modeled as an MDP Q with state set Q={qi, s.t. i=0, 1, …,
Q}. State qi indicates that there are i requests in the service
queue. The state transition probability is determined by the
request incoming rate and the request service rate. The
system state is the composition of SR, SQ and SP. The
system state is a triplet (s, r, q) where s∈S, r∈R, and q∈Q.
The probability to switch from state (s, r, q) to (s’, r’, q’)
under power control action a can be calculated as:

)',()',()',())',','(),,,((, qqPrrPssPqrsqrsP sr
aa ××= ,

where)',(ssPa is the probability for SP to switch from s to
s’ under action a,)',(rrP is the probability for SR to switch
from r to r’ and)',(, qqP sr is the probability for SQ to switch
from q to q’ when SR is in state r and SP is in state s.
3.2 Observation set and observation functions

In this paper, we assume that the power control action
taken by the power manager does not affect the observation
of the system state. Therefore, the observation function

),|(aszP can be reduced to)|(szP .
We can classify the type of partial observation of the

power manager into three classes: hidden states, delayed
observation, and noisy observation.
3.2.1 Partial observation due to hidden states

The hidden states are those states that are totally
unobservable to the power manager. We do not have enough
information to distinguish these states from each other. For a
set of hidden states H={h0, h1, …, hn}, there is only one

observation z. The observation function is defined as:
1)|(=ihzP , ∀hi∈H.

The hidden states may be different request generation
modes of the SR. The previous stochastic power
management framework assumes that the power manager is
able to detect which mode the SR is currently in and then
make a decision correspondingly. This is possible if we
modify the program and embed some instructions to inform
the power manager about the current requester mode.
However, this is not the way that current software was
developed. The processor may be able to observe certain
request modes by using side channel information, such as the
context switching from one process to another. It is not able
to differentiate the request mode within one process.

The hidden states sometimes are added to facilitate the
construction of the embedded MDP. For example, in
reference [5], a “stage method” is proposed to approximate
the non-exponential service or inter-arrival time. Based on
the “stage method”, any state that has random duration with
non-exponential distribution can be decomposed into a set of
parallel/serial connected sub-states whose duration follows
exponential distribution. However, to the power manager,
these sub-states appear to be the same. The traditional
stochastic power management cannot perform robustly in
this situation. However, if the system is modeled as a
POMDP, with the help of the belief state, the power manager
can estimate which hidden state the system is currently in.
The following example shows how the power manager
changes the belief state even though it keeps on seeing the
same observation state.

Figure 1 Detection of hidden state using POMDP.
Example 1: Assume that an SR has two request modes, r1

and r2. The time that it stays in r1 follows normal distribution
with mean 5 and variance 2.6. The time that it stays in r2
follows exponential distribution with mean 2. To model the
normal-distributed duration, we divide r1 into 4 sub-states:
r1,1~r1,4. The duration of each sub-state follows exponential
distribution with mean 1/0.6. Figure 1 (a) and (b) give the
original state transition diagram and the transformed state
transition diagram of the SR respectively. The four stages
r1,1~r1,4 are hidden states. They share one observation r1. The

observation function is 1)|(,11 == irrzP , i=1~4. The
transformed model provides a fairly close approximation of
the normal distribution. Figure 1 (c) shows the comparison
of the probability density function of the time that the SR
stays in r1 and time that the SR stays in either one of r1,1~r1,4.
The belief state is a 1×5 vector

))(),(),(),(),((24,13,12,11,1 rbrbrbrbrb . The ith element of the
vector is the probability that the system is in state i according
to the power manager’s estimation. Assume that the system
start from state r1,1. Therefore, the starting belief state is

)0,0,0,0,1(. Figure 1 (d) shows the changing of the belief
state along the time when the power manager keeps on
observing state r1. As we can see, the probability b(r1,4)
increases while b(r1,1) decreases. Therefore, although the
power manager sees the same observation for all the time, it
“believes” more and more that the SR is currently in state r1,4
instead of r1,1 as the time goes by. There will be different
power control actions associated with different sub-states.
Obviously, the power manager that maintains a belief state
has more information on how to select those actions while
the tradition power manager does not.
3.2.2 Partial observation due to delayed observation

Sometime, because of bus contention or system busy, the
power manager is not able to obtain the accurate system
status information in time. More specifically, after the
system state change from x1 to mode x2, it still appears to be
x1 to the power manager for a short time. To model this
situation in POMDP, for each (x1, x2) pair, we divide the
state x2 into two sub-states: x2,1 and x2,2. The state x2,1 is
always observed as x1 while x2,2 is always observed as x2.
Hence, the observation function is 1)|(1,21 == xxzP
and 1)|(2,22 == xxzP .

Let)|(abP and)|(' abP denote the transition probability
from state a to state b of the original model and the POMDP
model respectively. The following set of heuristic rules can
be used to update the state transition probabilities for the new
model:

)|()|(' 1211,2 xxPxxP = ;
0)|(' 12,2 =xxP ;

)|())|('1()|(' 221,21,21,22,2 xxPxxPxxP ⋅−= ;
)|())|('1()|(' 21,21,21,2 xxPxxPxxP ⋅−= ;

)|()|(' 222,22,2 xxPxxP = ;
)|()|(' 22,2 xxPxxP = ;

where x is all the next state of x2,)|(' 2,12,1 xxP is)11(d− if
the average observation delay is d.

Example: Consider the SR model in Figure 2 (a).
Assume that there is always a delay for the power manager
to detect the transition from r1 to r2. The average delay is
1.25 time steps. The corresponding POMDP model is given
in Figure 2. In order to verify if the POMDP model keeps the
characters of the original model, we compare the cumulative
distribution function of the duration of r2 in the original
model and the duration of r2,1 and r2,2 in the POMDP model.

r1 r2r1 r2

(a) Two request
states in SR. (b) r1 is divided into 4 sub-states.

r1,1 r1,2 r1,3 r2

0.5

0.5

0.4

0.6

0.4 0.4

0.6 r1,4

0.4

0.6 0.6r1,1 r1,2 r1,3 r2

0.5

0.5

0.4

0.6

0.4 0.4

0.6 r1,4

0.4

0.6 0.6r1,4

0.4

0.6 0.6

(c) Actual distribution vs.
approximated distribution.

(d) Change of the belief
state along the time.

1 6 11 16
time

b(r1,1)
b(r1,2)b(r1,3)b(r1,4)

0
0.2
0.4
0.6
0.8
1

1.2

be
lie

f s
ta

te

1 6 11 16
time

b(r1,1)b(r1,1)
b(r1,2)b(r1,2)b(r1,3)b(r1,3)b(r1,3)b(r1,4)b(r1,4)

0
0.2
0.4
0.6
0.8
1

1.2

be
lie

f s
ta

te

0
0.2
0.4
0.6
0.8
1

1.2

be
lie

f s
ta

te

0
0.04
0.08
0.12
0.16
0.2

0 5 10 15 20
duration

original
Approximated

f(
x)

0
0.04
0.08
0.12
0.16
0.2

0 5 10 15 20
duration

original
Approximated
original
Approximated

f(
x)

The duration of r2 in the original model is a random variable
with exponential distribution with mean 1/0.2. Hence its
cumulative distribution function is t

r etF 2.01)(2
−−= .

The duration of r2,1 and r2,2 are both exponential
distributions with mean 1/0.8 and 1/0.2 respectively. Denote
their probability density function as)(1,2 tfr and)(2,2 tfr .
Also denote their cumulative distribution function as

)(1,2 tFr and)(2,2 tFr . The cumulative distribution function of
the time that the system stays in either r2,1 and r2,2 can be
calculated as

)33.11(8.0)1(2.0

)(2.0)()(8.0)(

2.08.0

1,20 2,21,2

tt

rr

ee

tFdxxtFxftF

−

∞

−+−=

⋅+−∫⋅=

Figure 2 (c) shows the comparison of the cumulative
distribution function of the time that the SR stays in r2 and
the time that the SR stays in either r2,1 or r2,2. As we can
these two random variables follows very similar distribution.
For the extreme case when the information of mode
switching is lost indefinitely, the r2 will become a hidden
state. It will always be observed as r1. The state transition
diagram for the POMDP model of the extreme case is given
in Figure 2 (d).

Figure 2 POMDP model of a delayed observation.

3.2.2 Partial observation due to observation noise
The above mentioned two types of partial observation are

the most common ones in an embedded system. There will
be many other reasons that a power manager will obtain
inaccurate information of the system. We will not further
classify them. Instead, we assume that they are all caused by
random noise during the observation. For this type of partial
observation, if state x has px,y probability to be observed as
state y, then we will have the observation function as

yxpxyzP ,)|(== . Note that 1)|(=∑ =∈Xy xyzP , where
X is the entire state set of the system.

3.2 Implmentation of POMDP power manager
Given the POMDP model, the optimal policy can be

calculated using value iteration as discussed in Section 2.
The result of the value iteration is a value function of the
belief state. In each time step, the power manager first
updates the belief state using equation (1), and then
calculates the best action using equation (7). Complex
computing is involved in this procedure which increases the
overhead of the power manager.

It has been shown [13] that the believe space can be
partitioned into regions such that the same action will be
chosen for all belief states within this region. Furthermore,
given the optimal action and the resulting observation, all
belief states in one partition transform to new belief states
that are in the same partition. Based on the partition, a policy
graph can be constructed. Each vertex in the policy graph
associates with a partition and each edge associates with an
observation. If there is the edge from vertex x to vertex y and
it is associated with observation z, then all belief state in
partition x transform to new belief states in partition y if z is
observed.

Example: Figure 3 (a) shows the value function of a two
state POMDP. It is the convex surface that is formed by two
dashed lines. The surface can be partitioned into two regions,
v1 and v2. The corresponding best actions for the two regions
are a1 and a2 respectively. If the system is in region v1 and a
z1 is observed, then it will switch to v2. If the system is in
region v2 and a z2 is observed, then it will switch to v1. The
corresponding policy graph is given in Figure 3 (b). The best
action can be determined based on the policy graph and the
observation.

Figure 3 Example of policy graph.
The policy graph can be implemented as a finite state

controller. In this way, the implementation and computation
complexity of the power manager is reduced significantly.

4. Experimental results
A set of simulations has been performed to evaluate the

performance and energy saving of the POMDP based power
management. Three scenarios are compared:
1. The system is fully observable. The policy is derived

from an MDP model.
2. The system is partially observable. However, the power

management policy is derived from an MDP model
which assumes that the system is fully observable.

3. The system is partially observable. The power
management policy is derived from a POMDP model.

The above mentioned three scenarios will be denoted as
“MDP+full”, “MDP+partial” and “POMDP” in the rest of
the paper.

(a) Original model (b) POMDP model

r1

r2

r3

0.8 0.2

0.8

0.2

0.2

0.8

r1

r2

r3

0.8 0.2

0.8

0.2

0.2

0.8

r1

r2,2

r30.8

0.2

0.8

0.2

0.2 0.8

r2,1

0.2

0.64

0.16
r1

r2,2

r30.8

0.2

0.8

0.2

0.2 0.8

r2,1

0.2

0.64

0.16

(c) Cumulative distribution

0
0.2
0.4
0.6
0.8
1

1.2

0 5 10 15 20 25
D

P(
x<
D

)

POMDP model
original model

0
0.2
0.4
0.6
0.8
1

1.2

0 5 10 15 20 25
D

P(
x<
D

)

POMDP model
original model

r1

r2,1

r3

0.8 0.2

0.8

0.2

0.2

0.8

r1

r2,1

r3

0.8 0.2

0.8

0.2

0.2

0.8

(d) POMDP model for the
extreme case

(a) Value function of a two-state POMDP (b) Policy graph

v1 v2

z1

z2

z2

z1v1 v2v1 v2

z1

z2

z2

z1
0 1

V(b)

v1 v2

action: a1

action: a2

0 1

V(b)

v1 v2

action: a1

action: a2

The service provider that is considered in the simulation
is a hard disk drive (HDD) with two power modes, sleep and
active. The power consumption is 2.0W, 0.6W, 1.2W and
1.2W when the HDD is active, sleeping, switching from
active to sleep, and switching from sleep to active. When the
SP is active, the service rate is 0.7. The queue can hold up to
4 waiting requests. The SR has three states, r1, r2, and r3 and
the corresponding request generation rates are 0.1, 0.3 and
0.8 respectively. The transition probabilities among the three
request modes are given in the following

matrix:
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

4.03.03.0
3.04.03.0
3.03.04.0

P . The request mode r3 is not

observable. Furthermore, it will have equal probability to be
observed as r1 or r2.

We use an open source POMDP solver [14] for POMDP
policy optimization. The optimal MDP policy is obtained
using the same software by setting the observation set equal
to the system state. In all the experiments, we consider only
the deterministic policy because it is the only type of policy
that is supported by the value iteration algorithm. The reward
is defined as the weighted sum of the average power
consumption and the average latency of each request. The
discounted factor is set to be 0.95.

We vary the weight of the latency and obtain a set of
policies with different energy latency tradeoffs. Figure 4
gives the comparison of the energy-latency tradeoff curves of
the three scenarios. As we can see, the POMDP policy gives
near optimal energy-delay tradeoff as if the system is fully
observable. It out performs the MDP policy in a partially
observable system.

Figure 4 Comparison of energy latency tradeoff
 Table 1 gives the comparison of the average latency (D),

loss rate (L) and power (P). The first column gives the
latency weight in the reward function. Columns 2~4 give the
percentage increasing of latency, loss rate and power of
POMDP policy comparing with MDP policy under full
observation. Columns 5~7 give the same information of
MDP policy under partial observation comparing with MDP
policy under full observation. When the weight of latency is
low, both POMDP and MDP policy choose to power on the
HDD all the time. Therefore, these two policies work equally
well. For the rest of the cases, comparing with fully
observable system, the POMDP policy either trades power
for performance or vise versa. The MDP policy does not
work robustly in a partially observable system. For two of
those cases, it leads to lower performance and higher energy.
Note that the optimal MDP policies are the same when the

latency weight equals to 0.6 and 0.7. Therefore the data of
MDP+partial are exactly the same for these two cases.

Table 1 Comparison of different power management policy.
POMDP MDP+partial weight

∆D (%) ∆L(%) ∆P(%) ∆D(%) ∆L(%) ∆P(%)
0.1 0 0 0 0 0 0

0.2 0 0 0 0 0 0

0.3 0 0 0 0 0 0

0.4 -0.8 -1.1 1.8 -1.6 -2.7 4.2

0.5 0.7 4.5 -0.3 47.0 463.6 -3.3

0.6 -1.9 16.7 -0.2 50.9 561.1 -2.1

0.7 -4.0 11.1 0.9 50.9 561.1 -2.1

0.8 -12.5 -31.3 6.6 31.4 581.3 7.1

0.9 -60.0 -90.0 21.0 42.8 920 3.1

5. Conclusions
In this paper, we propose a new modeling and

optimization technique based on partially observable Markov
decision process (POMDP) for robust power management.
Three scenarios of partial observations which may occur in
an embedded system are discussed and their modeling
techniques are presented. The simulation results show that,
the POMDP policy provides near optimal energy
performance tradeoff similar as the MDP policy in a fully
observable system.

6. References

[1] L. Benini, A. Bogliolo and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE
Transactions on Very Large Scale Integrated Systems, Vol. 8, Issue 3,
pp.299-316, 2000.

[2] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli, “Policy
optimization for dynamic power management,” IEEE Transactions on
Computer-Aided Design, Vol. 18, pp. 813–33, June 1999.

[3] Q. Qiu, Q Wu and M. Pedram, “Stochastic modeling of a power-
managed system-construction and optimization,” IEEE Transactions
on Computer-Aided Design, Vol. 20, pp. 1200-1217, October 2001.

[4] T Simunic, L Benini, P Glynn and G. D. Micheli, “Event-driven
power management,” IEEE Transactions on Computer-Aided Design,
Vol. 20, pp. 840-857, Jul. 2001.

[5] Q. Qiu, Q. Wu, M. Pedram, “Dynamic Power Management of
Complex Systems Using Generalized Stochastic Petri Nets,”
Proceedings of the Design Automation Conference, June 2000.

[6] P. Rong and M. Pedram, "Determining the optimal timeout values for
a power-managed system based on the theory of Markovian
processes: Offline and online algorithms," Proc. of Design
Automation and Test in Europe, Mar. 2006.

[7] P. Rong and M. Pedram, "Hierarchical dynamic power management
with application scheduling," Proc. of Symp. on Low Power
Electronics and Design, Aug. 2005.

[8] T. Simunic, S.P. Boyd, P. Glynn, “Managing power consumption in
networks on chips,” IEEE Transactions on Very Large Scale
Integration Systems, Vol 12, Issue 1, pp. 96-107, January 2004.

[9] W. Zhang, “Algorithms for Partially Observable Markov Decision
Processes,” Ph.D thesis, 2001.

[10] A.R. Cassandra, “Exact and Approximate Algorithms for Partially
Observable Markov Decision Processes,” Ph.D thesis, 1994.

[11] E.Y. Chung, L. Benini, A. Bogliolo, Y.H. Lu; G. De Micheli,
“Dynamic power management for nonstationary service requests,”
IEEE Transactions on Computers, Vol. 51, Issue 11, pp. 1345 –
1361, November 2002.

[12] Z. Ren, B.H. Krogh, R. Marculescu, “Hierarchical adaptive dynamic
power management,” IEEE Transactions on Computers, Vol. 54,
Issue 4, pp. 409-420, April 2005.

[13] D. Braziunas, “POMDP Solution Methods,” technical report,
Department of Computer Science, University of Toronto, 2003.

[14] http://pomdp.org/pomdp/code/index.shtml

0.5

1

1.5

2

0 1 2 3 4 5
Latency

En
er

gy

MDP+full MDP+partial POMDP

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

