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Abstract

Functional validation of modern microprocessors is an impor-
tant and complex problem. One of the problems in functional val-
idation is the generation of test cases that has higher potential to
find faults in the design. We propose a model based test generation
framework that generates tests for design fault classes inspired
from software validation. There are two main contributions in this
paper. Firstly, we propose a microprocessor modeling and test
generation framework that generates test suites to satisfy Modi-
fied Condition Decision Coverage (MCDC), a structural coverage
metric that detects most of the classified design faults as well as
the remaining faults not covered by MCDC. Secondly, we show
that there exists good correlation between types of design faults
proposed by software validation and the errors/bugs reported in
case studies on microprocessor validation. We demonstrate the
framework by modeling and generating tests for the microarchi-
tecture of VESPA, a 32-bit microprocessor. In the results section,
we show that the tests generated using our framework’s coverage
directed approach detects the fault classes with 100% coverage,
when compared to model-random test generation.

1. Introduction

Functional validation has become a key ingredient in the devel-
opment cycle of current and future microprocessors. Simulation
is widely used to validate large systems like microprocessors. In
simulation based validation, a test is executed in a golden refer-
ence model as well as in the design under test (DUT), which in
this case is the RTL implementation of the microprocessor. The
success of simulation based validation depends on the quality of
tests. A potential fault in the RTL is exposed only if the test re-
sulted in a state deviation of the RTL from that predicted by the
golden model. Coverage metrics inspired from software valida-
tion (statement, branch and path coverage), state machine repre-
sentation (state, transition and path coverage) and functionality of
the microprocessor is used to measure the quality of tests. Effec-
tiveness of coverage directed test generation depends on the types
of faults that can occur and the strength of the coverage metric to
detect these faults.

We analyze the bug descriptions and modeling errors reported
during the study of microprocessor validation in [2, 13] and relate
them to the fault types observed during software validation [7].

The outcome is a high correlation between the fault types and
the modeling errors seen in the control logic of microprocessors.
Hence, we propose a model based test generation framework that
detects these fault classes.

The proposed framework allows modeling the microprocessor
at the architectural and mircoarchitectural abstraction. The mod-
eling language is developed as a metamodel, which provides the
syntax and semantic necessary to describe the architectural and
microarchitectural models. The framework translates these models
into constraint satisfaction problems [4] that are resolved through
a highly scalable constraint solver. The architectural model is con-
verted into architectural constraints that are solved to generate ran-
dom test suites that validates the Microcode. The microarchitec-
ture model is converted into microarchitectural constraints that are
solved to generate random test suites that validates the RTL im-
plementation. However, to improve the quality of the test suite
generated, we enable our framework with coverage-directed test
generation capability. The coverage metric is used to generate ad-
ditional constraints that are given to the solver along with the con-
straints obtained from the model. The validation flow is shown in
Figure 1.
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Figure 1. Validation Flow

We support traditional coverages such as statement and branch
as well as modified condition decision coverage and design fault
coverage. Modified Condition Decision Coverage (MCDC) [6] is
a coverage metric that is widely used for the validation of crit-
ical software systems like avionics. The test suite generated as
result of MCDC-directed test generation is found to detect most
of the design fault classes proposed in [7]. Therefore, we propose
MCDC as a metric for microprocessor validation. The design fault
classes not covered as result of MCDC is detected by generating
additional constraints that tune the solver to generate solutions that
test them. We illustrate our test generation framework by creating
test suites for VESPA [8], a 32-bit pipelined microprocessor. We
provide results to highlight the importance of MCDC-directed test
generation for design fault coverage.
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2. Related Work

Test generation for simulation based validation can be broadly
classified into random and coverage directed test generation. Ran-
dom test generators [3] are extensively used to validate micro-
processors. Several techniques [5, 9, 12] were proposed in the lit-
erature for coverage directed test generation, which differ in the
coverage metric being targeted and the techniques used to gener-
ate test cases.

Ur and Yadin [12] presented a method for generation of assem-
bler test programs that probe the microarchitecture of a PowerPC
processor. Benjamin et al. [5] describe a verification methodol-
ogy that uses coverage of formal models to specify tests for a su-
perscaler processor. In [9], Mishra et al. propose graph-based
test generation for validation of pipelined processors that achieves
functional coverage. Andrew Piziali [11] has presented a com-
prehensive study on functional verification coverage measurement
and analysis. To the best of our knowledge, there are no previous
approaches that propose a model based test generation for design
fault coverage on microcode and RTL by applying MCDC and
CSP formulation.

3. Background

We briefly outline the different fault classes and introduce the
coverage metrics satisfied by our test generation.

Table 1. Fault Classes
Fault Class Description
Expression Negation Fault (ENF) A subexpression of S is negated
Term Omission Fault (TOF) A term ti is omitted
Term Negation Fault (TNF) A term ti is erroneously negated
Literal Omission Fault (LOF) A literal xi

j is omitted from a term ti

Literal Insertion Fault (LIF) An extra literal xi
ki+1 is inserted into a

term ti

Literal Negation Fault (LNF) A literal xi
j is erroneously negated in a

term ti

Literal Reference Fault (LRF) A literal y is referenced ins tead of xi
j in a

term ti

Disjunctive Operator Reference
Fault (ORF[+])

A boolean operator (+) in S is replaced by
(.)

Conjunctive Operator Reference
Fault (ORF[.])

A boolean operator (.) in S is replaced by
(+)

Fault Classes: Lau and Yu [7] proposed a comprehensive set
of nine fault classes related to boolean expressions in disjunctive
normal form (DNF). Let us consider a boolean expression in DNF
form with m terms S = t1 + .. + tm. Let ti denote the ith term
in S such that ti is a conjunction of ki literals. Let xi

j denotes the
jth literal in ti, where 1 ≤ j ≤ ki. SE

F is defined as the faulty
implementation of S, where F is the name of the fault class and
E identifies the exact fault in S. Definition 2.1 formally describes
a fault type and Table 1 lists the nine different fault classes.

Definition 3.1. Term Omission Fault (TOF)
If a term ti is omitted from S then S

ti
TOF

= t1+...+ti−1+ti+1+...+tm

where 1 ≤ i ≤ m

Coverage Metrics: We define the three structural coverage cri-
teria, namely statement, branch and MCDC, for which tests are
generated in our framework.

To achieve statement coverage, a test suite should invoke every
executable statement in the code. Branch coverage mandates that
the test suite should execute both the true and false outcomes of all
decisions (eg., if statements) in the code. This metric is stronger

than statement coverage, but is still weak due to the presence of
conditions with in a decision. A condition is defined as a boolean
expression with no boolean operators. A decision is defined as
a boolean expression with zero or more boolean operators. For
example, a decision (A > 10 ‖ B) has two conditions (A > 10)
and B.

MCDC [6] was developed to test the effect of conditions within
a decision. MCDC requires that each condition with in a decision
should independently affect the outcome of the decision. This cov-
erage ensures that the effect of each condition is tested relative to
other conditions within the decision. This implies that no condi-
tion is left untested due to logical masking. For a decision with
m conditions, MCDC requires m + 1 test cases [6]. It is difficult
to attain when compared to statement and branch. For example,
consider a decision d with three conditions (A < 0), B and (C <>

10), the test cases generated are shown below:
Example:
d = ((A<0) ∧ B ∨ (C <> 10))
Test cases generated for MCDC:
case (A<0): T1 = [0, 1, 0] (d=0) and T2 = [1, 1, 0] (d=1)
case B: T3 = [1, 0, 0] (d=0) and T4 = [1, 1, 0] (d=1)
case (C <> 10): T5 = [0, 1, 0] (d=0) and T6 = [0, 1, 1] (d=1)
Test suite: { T1, T2, T3, T6 }

4. Motivation

Velev [13] and Campenhout [2] conducted empirical studies on
error/bug categories observed in academic microprocessor projects.
The bug categories identified were very similar to the faults ob-
served during validation of software systems [6]. The faults were
analyzed and an extended fault model comprising of nine types of
faults on boolean expressions was proposed by Lau et al. shown
in Table 1. Being able to detect these basic fault classes would
result in identifying more complex faults, which follows from the
fault coupling effect hypothesis [7]. We correlate the bug cate-
gories in [2,13] to the extended fault model in [7] and motivate the
need for a test generation framework that provides coverage for
the fault classes.

In [2], Campenhout et al. analyzed modeling errors commonly
seen in microprocessors and generated error distributions. We seg-
regated the errors related to signals and gates in the control logic
of the processor into three groups: (i) wrong, (ii) missing and (iii)
extra. The study reported 33% of the errors occur due to wrong
signal source and 4.9% due to wrong gate type. The missing gate
errors accounted to 7.4% and missing input(s) to 11.5%. The er-
rors from extra inversion contributed 1.6%. We relate these errors
to the fault classes based on omission, insertion and incorrect ref-
erence (shown in Table 1) and summarize the correlation in Table
2. Note that the exact description of the modeling error were not
provided and certain assumptions were made to arrive at the cor-
relation.

Table 2. Correlation Study

Fault Class in [7] Campenhout et al. [2] Velev [13]
ENF, LNF 1.6% (extra) -
TOF 7.4% (missing) 56.8%(159/280)
LOF 11.5% (missing) 11.4% (32/280)
LIF - -
LRF 32.8% (wrong) 26.4%(74/280)
ORF 4.9% (wrong) 0.4% (1/280)

Velev [13] studied three microprocessors to perform a bug col-



lection in pipelined and superscaler designs and arrived at the fol-
lowing bug categories: (i) incorrect control logic, (ii) incorrect
connections, (iii) incorrect design for formal verification and (iv)
incorrect symbolic simulation. His work identified 280 bugs and
presented a neat description of each bug, which was subjected to
our analysis. We found that 95% of the bugs identified were sub-
sumpted by the fault classification in [7] and the remaining 5%
were artifacts of the formal verification framework in [13]. Our
test generation is directed to detect all the design faults except LIF,
since none of the errors observed was classified as a LIF.

5. Modeling & Test Generation

The modeling framework facilitates microprocessor modeling
through an abstract representation called the metamodel [1]. The
metamodel defines the syntax and semantic for the language in
which the modeler describes the architecture and microarchitec-
ture of the processor.

Architecture Modeling. The processor is specified through a
register/memory-level description (registers, their whole-part re-
lationship and memory schematic) and an instruction set capture
(instruction-behavior). The metamodel for architectural model-
ing provides the user with constructs to describe function blocks,
if-else blocks, statement sequences and loops as well as the reg-
ister map and memory layout. On the left of Figure 2, we show
the jump-if-not-zero instruction (JNZ) that positions the instruc-
tion pointer (IP) to the location specified in source (src) when the
zero flag (ZF) is not set. The IP and ZF are references to registers
modeled as a part of the architecture. The register map specifies
all the registers as well as their whole-part relationship as shown
on the right in Figure 2, whereas the memory schematic describes
the memory hierarchy. The src is an identifier that translates to a
register/memory reference or an immediate value during decoding.

Function block: JNZ
Identifier: src
Register reference: IP
Register reference: ZF
If block:
Guard:
Relational Statement: ZF = 0
Action:
Arithmetic Statement: IP = IP + src

Pentiumr IV
Register: RAX [63:0]
Reg reference: EAX [31:0]→ RAX
Reg reference: AX [15:0] → EAX
Reg reference: AH [15:8] → AX
Reg reference: AL [7:0] → AX

Figure 2. Architectural Modeling

Microarchitecture Modeling. The language allows the mod-
eler to instantiate and configure different pipe stages, provide ports
to interface with the memory and register file, insert instruction
registers and describe the control logic needed to perform data
forwarding and stalling. It provides a set of basic configurable
components such as MUXn, ALU , INCn, etc that can be com-
bined to create complex stages that interact with each other as well
as with the architectural entities through access ports. In Figure 3,
we show the updation of the program counter in the instruction
fetch stage (IF) of the VESPA processor [8] modeled using our
constructs. The selection criterias of the MUXes are not shown,
since they map to statements similar to the ones in architectural
modeling. PC and PC2 are program counters, where PC belongs
to IF and PC2 is an input to instruction decode (ID) stage. PC2 is

updated with the PC or previous PC2 value depending on whether
the pipeline is stalled or not. PC is updated with PC+4 (location of
the next instruction), the previous PC/PC2 (pipeline stall) or a new
address at port Z (branch instruction). The value at Z is obtained
from the EX stage.

//PC Multiplexing
MUX4: PC MUX
PC MUXip: Z, PC, PC+4, PC2
PC MUXop: PC
//Update PC2 after incrementing PC
INC4: INC PC
INC PCip: PC
INC PCop: PC2
//PC2 Multiplexing
MUX2: PC2 MUX
PC2 MUXip: PC, PC2
PC2 MUXop: PC2

Figure 3. PC behavior of the IF in VESPA [8]

Metamodel-based modeling is very similar to having a library
of configurable components that the modeler instantiates and char-
acterizes to perform a certain functionality. Such a language need
not be highly expressive, but it should be extendable. The cus-
tomizability obtained from the metamodel makes the modeling
framework easily extendable with specialized components needed
for speculative and out-of-order execution such as re-order buffers
and memory arrays.

The test generation framework as shown in Figure 4 converts
the architectural and microarchitectural model into Constraint Sat-
isfaction Problems (CSP)s [4] and passes them through a con-
straint solver and a test case generator to create test suites that
validates the microcode and RTL. In order to correctly formulate
the CSP, we convert the architectural and microarchitectural model
into flow graphs and generate constraints in the form single assign-
ments.
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Figure 4. Test Generation Framework

CSP Formulation. A model created using our modeling frame-
work is converted into a Program Flow Graph (PFG), where all the
architectural/microarchitectural constructs are mapped to a bunch
of states, decisions and transitions. For an architectural model,
the statements translate to states and the if-else constructs map to
decisions which capture the guard that causes a transition. Func-
tion blocks map to hierarchical states, whereas loops lead to cyclic
graphs. The identifiers, registers, memory locations and register
references are used to instantiate variables that undergoes a change
in value whenever a statement updates them. In the microarchitec-
ture model, the basic components translate to a bunch of if-else
sequences that when evaluated to true execute a sequence of state-
ments. For example, the MUX is basically an If block sequence
with Assignment Statements that execute based on which selection



criteria is valid in that run. The PFG for the JNZ instruction and
the PC behavior of the fetch stage of VESPA is shown in Figure 5.
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Figure 5. Program Flow Graph

For a graph with a unique path (no branches), the behavior
is converted into CSP in a straightforward manner by generating
constraint variables and assignment constraints. However for a
model with multiple paths, the graph generated undergoes Static
Single-Assignment (SSA) analysis [10] to construct the correct set
of constraints for the CSP formulation for one complete run (en-
try to exit). The analysis focuses on states with multiple incom-
ing transitions, which maps to a statement that follows a set of
conditional branches. At these join states, parent resolution and
variable renaming are performed very similar to how dominance
frontier [10] is computed in SSA during compiler analysis. The
outcome of the analysis is variables and decisions being inserted
to help in the CSP formulation. The resulting variables from the
SSA analysis for the PC behavior in the IF stage is shown on the
left in Figure 6, where (Di =⇒ Si) means if Di is true then Si

is executed.

Var pc0, pc1, pc2, pc20, pc21, z0

D1 =⇒ S1: pc1 = z0

D2 =⇒ S2: pc1 = pc0 + 4
D3 =⇒ S3: pc1 = pc0

D4 =⇒ S4: pc1 = pc20

S5: pc2 = pc1 + 4
D5 =⇒ S6: pc21 = pc2

D6 =⇒ S7: pc21 = pc20

Var pc0, pc1, pc2, pc3, pc20, pc21, z0

D1 =⇒ S1: pc1 = z0

D2 =⇒ S2: pc1 = pc0 + 4
D3 =⇒ pc0

D4 =⇒ S4: pc1 = pc20

Additional Decisions
D1 ∨ D2 ∨ D4 =⇒ S8: pc2 = pc1

D3 =⇒ S9: pc2 = pc0

S5: pc3 = pc2 + 4
D5 =⇒ S6: pc21 = pc3

D6 =⇒ S7: pc21 = pc20

Figure 6. SSA analysis outcome of the PFG in Figure 5.b

Consider the decision D3 and state S3, which does not change
the current value of pc but forwards the previous value (pc1 = pc0).
Omission of S3 results in a contention at S5 with multiple paths,
where most of them update the pc register except for one (S3).
Therefore, a parent resolution is performed that inserts additional
decisions and variables as shown on the right in Figure 6. The SSA
is non-trivial when considering nested-ifs and loop unrolling. The
CSP formulation guidelines are outlined below:

Algorithm 1: CSP Formulation
// Given a program flow graph, with variables, states, decisions and transitions
Step 1 For a variable, an input constraint variable with a finite domain [min, max]
is generated.
Step 2 For a decision, the following state should be exercised only when it eval-
uates to true or false, respectively and the decision is converted into a conditional
constraint of the form if-then.
Step 3 For a state, a set of input constraint variables are used to update an output
constraint variable using an assignment constraint (=).

Step 4 If a state assigns a new value to a variable, a new constraint variable is
generated for that variable (renaming act in SSA) and future references to the
variable will refer to the newly generated constraint variable.
Step 5 If a state assigns multiple new values for a program variable, a new con-
straint variable is generated and for each decision that results in a value, the cor-
responding conditional constraint is generated such that the new variable can be
assigned that value (parent resolution in SSA).

The language used to print out the CSP consist of assignment
and conditional constraints. The CSPs developed for the above
examples are shown in Figure 7. On the left, the architectural
constraints for the CSP generated from the JNZ instruction are
shown and on the right the microarchitectural constraints for the
CSP generated from the PC behavior in the IF stage are shown.

if(zf0 = 0) then ip1 = src0 + ip0

else ip1 = ip0

if(D1 = 1) then pc1 = z0
else if(D2 = 1) then pc1 = pc0 + 4
else if(D4 = 1) then S4 : pc1 = pc20
Step 5 Illustration for pc2
if((D1 ∨ D2 ∨ D4) = 1) then pc2 = pc1
else if (D3 = 1) then pc2 = pc0
pc3 = pc2 + 4
if(D5 = 1) then pc21 = pc3
else if(D6 = 1) then pc21 = pc20

Figure 7. CSP formulation for Figure 5.a & 6 (right side)

Test case Generator (TCG). The CSP is given as input to
the constraint solver in the TCG. The constraint solver used in our
framework is ILOG, which is a commercial solver designed for
performance and scalability. The solution generated by the solver
consists of a possible value for every constraint variable in the
problem such that the CSP is satisfied. This solution is called a test
case. Examples of some possible solutions generated for Figure 7
are shown in Figure 8. Test case T1 causes the instruction to jump
to the location src, whereas T2 does not. Test case T3 causes the
IF stage to fetch a branch instruction from #1100 and T4 causes
both IF and ID stages of the pipeline to be stalled.

Test cases for JNZ instruction
T1 = {zf0 = 0, src0 = 1001, ip0 = 5, ip1 = 1006}
T2 = {zf0 = 1, src0 = 1001, ip0 = 5, ip1 = 5}
Test cases for PC behavior in IF
T3 = {pc0 = 1000, pc20 = 996, z0 = 1100, pc1 = 1100 (D1 = 1), pc2 = 1100,
pc3 = 1104, pc21 = 1104}
T4 = {pc0 = 1000, pc20 = 996, z0 = 1100, pc1 = 1000 (D3 = 1), pc2 = 1000,
pc3 = 1004, pc21 = 996}

Figure 8. Possible test cases generated for Figure 7

The binary generator creates a program binary by combining
the model with the registers and memory locations initialized to
the values stored in the input constraint variables obtained from
the test case. A program binary for the PC’s behavior initializes
Z, PC and PC2 to the values of z0, pc0, and pc20 respectively.
The output constraints pc3 and pc21 are the results obtained by
executing the test case against the reference model.

Usage Mode. There are two modes of usage for the test gener-
ation framework: (i) Model-random and (ii) Coverage-directed. A
test suite in the model-random mode is generated by converting the
model into a CSP and solving it multiple times through the solver.
Attaining a coverage goal in this mode requires a large number of
test cases. However, validators are interested in design-fault based
testing, the test cases for which are difficult to obtain using the
model-random approach. As a result, the framework also provides
a coverage-directed approach that generates one possible test suite,



which attains 100% coverage of a specific goal. In this mode, cov-
erage constraint are given as input to the solver that directs the test
generation towards the goal as shown in Figure 4.

6. Coverage Constraints

The coverage constraint generator (CCG) takes two set of in-
puts besides the program flow graph. Firstly, the coverage anno-
tations that the modeler provides to expedite the reachability of
the coverage goal. Secondly, the coverage type based on which
the additional constraints are generated. The coverage hints are
embedded into the flow graph for certain coverage types and for
the others specialized constructs that serves as collectors are pro-
vided. The annotations are done by setting the attribute MARK
associated with a state and decision. The coverage types supported
are: (i) Statement Coverage, (ii) Branch Coverage, (iii) MCDC
and (iv) Design Fault Coverage. The test suite created for state-
ment and branch-directed test generation is a subset of the test
suite created for MCDC. Therefore, we only explain how the cov-
erage constraints for MCDC are generated.

Algorithm 2: MCDC Constraint Generation
// Given a program flow graph G, D = collectd(G) and TS = φ
collectd(G) - gets all decisions in G with the MARK attribute set.
collectc(d) - gets all conditions in decision d.
arranged(D) - sorts the decision list D in ascending order based on depth.
find path(G,d) - gets a path from the root node entry in G to the node d.
gen constraint(P) - generates the constraints for the path P.
cr constraint(t) - creates a constraint that enforces t.
check boolean opr(d) - checks if d is a condition with no boolean operators or a
decision with one or more operators.
Step 1 ∀ d ∈ arranged(D)

Step 1.1 P = find path(G, d)
Step 1.2 if check boolean opr(d) == false then

TT = gen constraint(P) ∪ cr constraint(d = 1)
TF = gen constraint(P) ∪ cr constraint(d = 0)
TS = TT ∪ TF

Step 1.3 else
Step 1.3.1 ∀ c ∈ collectc(d)

TT = gen constraint(P) ∪ MCDC cov(c, d, true)
TF = gen constraint(P) ∪ MCDC cov(c, d, false)
TS = TT ∪ TF and TT = TF = φ

Step 1.4 rm duplicate(TS )

MCDC: The objective of MCDC is that every condition within
a decision should independently affect the outcome of the deci-
sion. The CCG works off the flow graph and generates the con-
straints necessary to attain the objective using Algorithm 2. The
validator is allowed to tag the problematic decision points and
the CCG collects them using collectd. It then orders these col-
lected nodes using orderd based on their depth in the graph be-
fore generating the constraints. For every collected decision, the
CCG identifies a path that reaches it using find path and gener-
ates the constraints for the path as well as the additional MCDC
constraints for that decision. The constraints for the path is gener-
ated using the gen constraint function. For a decision thats just a
condition, branch and MCDC generates identical test suites. How-
ever for a decision with one or more boolean operators found us-
ing check boolean opr, the additional constraints are generated
to tune the evaluation of the decision to the condition’s effect.
For each condition, the decision should evaluate to true and false
based on whether it is assigned a ‘0’ or a ‘1’. This results in
m test cases for the 0-value scenario and another m for the 1-
value scenario. After removal of the duplicate test cases using
rm duplicate MCDC results in m + 1 test cases. To perform
MCDC on a decision d with m conditions, w.r.t the jth condition,
CCG generates constraints for both the 0 and 1-value scenarios

using Function 1.
Function 1: MCDC cov(cs, d, val)

// Given a condition cs in decision d and, val-scenario and the additional con-
straint set CC = φ
Step 1 d′ = rename(copy(d))
Step 2 CC ∪ cr constraint(d = val ∧ d′ = !val)
Step 3 Cd = collectc(d) and Cd′ = collectc(d′)
Step 4 ∀ ci ∈ Cd

Step 4.1 if ci = cs then CC ∪ cr constraint(ci <> Cd′ [i])
Step 4.2 else CC ∪ cr constraint(ci = Cd′ [i])

Step 5 return CC

Function 2 MCDC cov(cs, d, val) copies d into d′ and re-
names the conditions in d′. Then, it generates constraints that
assert d to val and d′ to !val by the cr constraint function. It
also enforces that every condition in d and d′ have identical values
except for the condition cs in d and its corresponding copy in d′

using the same function.
Design Fault Coverage: The design fault classes are provided

in Table 1. To attain this coverage goal, test cases that cover each
of these fault class are generated by the CCG. Our probabilistic
analysis of the fault detection capability of MCDC revealed that
seven of the nine fault classes are covered by the test suite gener-
ated as result of MCDC-directed test generation.

Consider the literal omission fault class (LOF), MCDC detects
this fault because to satisfy this coverage, every literal in the de-
cision has to affect the output of the decision. Therefore a pair
of test cases that causes the missing literal to affect the decision’s
output in the reference model exist, which is missing in the im-
plementation. For atleast one of these test cases, the output of the
decision in the implementation will differ from the fault-free deci-
sion. Therefore, MCDC-directed test generation finds the bug with
a probability 1. The only fault class not covered by MCDC with
a probability 1 is literal reference fault, for which CCG produces
additional constraints that guide the TCG to detect it.

Example:
d = A ∧ B ∨ C (fault-free decision)
d′ = A ∧ B (LOF’y decision)
Test cases generated:
case A : [0, 1, 0] (d=0) and [1, 1, 0] (d=1)
case B : [1, 0, 0] (d=0) and [1, 1, 0] (d=1)
case C : [0, 1, 0] (d=0) and [0, 1, 1] (d=1)
Test case [0,1,1] executed on d′, results in d <> d′

Literal Reference Fault Coverage: The annotations to at-
tain this coverage is captured using the LRF list construct, which
allows to create a list of variables. The validator associates a
LRF list with every problematic variable v that tells CCG that
v can be replaced by an instance of any variable in the given
LRF list, which results in a fault. If a LRF list is not provided
then, the CCG assumes that every variable can be replaced incor-
rectly by every other variable, which results in a large set of test
cases. Therefore, the validator is recommended to specify a pos-
sible LRF list with a variable and mark that variable, such that
CCG can take advantage it. The constraints generation for LRF
coverage is shown in Algorithm 3.

Algorithm 3: LRF Constraint Generation
// Given a fault-free decision d with m literals in DNF, a LRF list associated with
literal xi ∈ d, and TS = φ
Step 1 ∀ yi ∈ LRF list

Step 1.1 de = copy(d, 0, i-1) ∨ yi ∨ copy(d, i+1, m)
Step 1.2 TF = cr constraint(d = 0 ∧ de = 1)
Step 1.3 TF ∪ cr constraint(yi <> xi)
Step 1.4 TT = cr constraint(d = 1 ∧ de = 0)
Step 1.5 TT ∪ cr constraint(yi <> xi)
Step 1.6 TS = TT ∪ TF and TT = TF = φ

After specifying the coverage type and inserting the coverages



hints, the CCG generates the coverage constraints. These are given
as additional constraints to the TCG to generate the test suite that
achieves the coverage goal.

7. Results

We applied our test generation methodology on VESPA [8],
a 32-bit pipelined RISC microprocessor to evaluate our frame-
work. The microarchitecture of VESPA was modeled using our
metamodel-based language and converted into a program flow graph
from which a CSP was formulated. Additional constraints for
each coverage metric were generated using the coverage constraint
generator. These coverage constraints along with the CSP are re-
solved through a solver to generate the coverage-specific test suite.
Model-random test suites were generated by asserting the state-
ments and decisions in the model with uniform probability.

The model of the microprocessor consist of 330 unique deci-
sions and 400 unique conditions, where the number of conditions
in a decision varied between 1 and 10. These decisions translate
to boolean expressions in the HDL implementation of VESPA and
are prone to modeling errors. Being able to generate tests that de-
tect these errors improve the quality of functional validation.

To evaluate our framework, we inserted modeling errors into
the model from the fault classes described in [7]. Seven modeling
bugs (LOF , LNF , TOF , TNF , ENF , ORF [+] and ORF [.]),
were inserted into each of the 330 decisions in the model. For
LRF , 50 decisions were randomly chosen and the variables in
the decisions were randomly replaced with other variables in the
model. For each inserted bug, we compute the test-set that would
detect the bug. Next, we compared the test cases in the test suite
generated for model-random, statement, branch and MCDC with
the set of test cases that detect each inserted bug (the intersection
of the two test suite). The quality of different coverage metrics is
measured by the number of distinct bugs detected by a test suite
generated to satisfy a coverage metric. In order to do a fair com-
parison, the number of test cases in the test suites being compared
were adjusted to be the same. Table 3 shows the percentage of
bugs detected by each of the test suites.

Table 3. Fault Coverage of different Metrics
S.No Fault Random (%) Stmt (%) Branch (%) MCDC (%)

1 LOF 92.7 28.9 32.7 100
2 LNF 99.9 79.9 80.2 100
3 TOF 92 32 36 100
4 TNF 100 76.4 77.6 100
5 ENF 100 100 100 100
6 ORF[+] 96 32 36 100
7 ORF[.] 98 66.6 61.7 100
8 LRF 92.5 72.5 95 95

It is seen that MCDC is uniformly better in detecting each of
the design faults when compared to statement and branch. MCDC
detects 7 of the 8 fault classes 100% of the time. Statement and
branch are able to cover some of the fault classes completely and
for some they perform badly. Therefore, these metrics are not sta-
ble and weaker than MCDC. This illustration supports our pro-
posal to use MCDC as a coverage goal for microprocessor valida-
tion. Model-random on the other hand performs better than state-
ment and branch because random tests generated in our frame-
work can assert multiple decisions and statements simultaneously
resulting in a higher fault coverage. However, model-random test

generation fails to achieve 100% coverage of design faults such as
LOF and TOF , which are commonly seen bugs in microproces-
sor validation as shown in Table 2.

8. Conclusion And Future Work

Simulation-based validation is widely acknowledged as a ma-
jor bottleneck in current and future microprocessor design due to
the increasing complexity. A possible solution is to perform de-
sign error based test generation from a high level description of
the microprocessor. Our methodology made two important con-
tributions. Firstly, a metamodel-based modeling framework was
developed that captures the structure and behavior of the archi-
tecture (register file and ISA) and the microarchitecture (pipeline
structure, control and data forwarding logic). CSP formulation
of these models resulted in test suites that covered design fault
commonly seen during microprocessor validation therefore, illus-
trating our coverage directed test generation approach. Secondly,
we show a high correlation between the design faults proposed by
software validation and modeling errors/bugs observed during the
study microprocessors validation.

Our future work includes extending the test generation frame-
work to perform exception coverage, event coverage and sequenc-
ing coverage for instructions. We will also perform empirical eval-
uation of the bug finding capability of different coverage metrics
as well as the stability of different coverage metrics across test
suites.
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