
CATS: Cycle Accurate Transaction-driven Simulation with Multiple Processor

Simulators

Dohyung Kim
†
 Soonhoi Ha

§
 Rajesh Gupta

†

†
Department of Computer Science and Engineering

§
School of Computer Science and Engineering

University of California, San Diego, USA Seoul Nation University, Korea

{dhkim, rgupta}@ucsd.edu sha@iris.snu.ac.kr

Abstract

 This paper focuses on enhancing performance of cycle

accurate simulation with multiple processor simulators.

Simulation performance is determined by how often simu-

lators exchange events with one another and how accu-

rately simulators model their behavior. Previous tech-

niques have limited their applicability or sacrificed accu-

racy for performance. In this paper, we notice that inaccu-

racy comes from events which arrive between event ex-

change boundaries. To solve the problem, we propose

cycle accurate transaction-driven simulation which main-

tains event exchange boundaries at bus transactions but

compensates for accuracy. The proposed technique is im-

plemented in a publicly available CATS framework and

our experiment with 64 processors achieves 1.2M proces-

sor cycles/s (200K instructions/s) which is faster than

other cycle accurate frameworks by an order of magnitude.

1 Introduction

 Multiple processors with simple architecture possibly

provide demanding computation power in energy efficient

way. In addition, deep submicron technology makes it

easier to integrate more processors into a single chip.

However, software development for multiple processors

becomes more difficult than the case for a single proces-

sor. The design space for multiple processors and an inter-

connection network becomes incredibly large. To handle

those situations, we need methods to evaluate architectural

design accurately and efficiently.

 Moreover, simulation in embedded systems also has to

verify worst case scenarios where a system may not meet

its constraints such as deadlines and response times.

Methods that sacrifice timing accuracy for speed can not

guarantee meeting constraints. Thus this paper focuses on

techniques to enhance simulation performance with multi-

ple processor simulators while maintaining accuracy.

 To identify performance problems, we analyzed major

factors of simulation time in multiprocessor simulation.

First, a multiprocessor simulator usually has a single code

to model processor behavior and switches different proc-

essor instances. Thus, when we invoke a processor, the

instance switch generates additional overheads compared

to a single processor simulator. Second, we have to exe-

cute behavior of processor simulators and an inter-

connection network simulator by advancing their clocks.

However, a simple processor simulator can adopt a static

delay model for an inter-connection network.

 When we optimize those two factors of multiprocessor

simulation, granularity and abstraction of simulators have

major effects to simulation performance. Granularity indi-

cates how often simulators exchange event with one an-

other. Abstraction determines how accurately simulators

model behavior of processors or an inter-connection net-

work. If we can have larger granularity, the number of

instances switches is reduced. If we can apply higher ab-

straction, it reduces time to advance clocks of simulators.

 Previous approaches have utilized granularity and ab-

straction to overcome performance problems of multi-

processor simulation. Software analysis predicts [7] arri-

val times of events by statically analyzing instructions of

other simulators. If we know when the next event arrives

at a simulator, we can safely advance the clock of the

simulator until that time. This technique increases granu-

larity of simulators, which reduces the number of instance

switches. Virtual synchronization [8] suspends to process

events to a simulator by analyzing behavior of the simula-

tor as long as events do not affect behavior of the simula-

tor. If a simulator waits for certain events, the simulator

can skip clock cycles until the simulator receives any of

those events. Thus the technique reduces simulation time

related to instance switches and behavior model. Transac-

tion level model (TLM) [9][10] abstracts behavior of a

simulator by simplifying transitions through multiple

states between abstraction boundaries. TLM reduces all

components of simulation time but may sacrifice accuracy

when a simulator receives any event which affects behav-

ior of the simulator between abstraction boundaries.
 All three approaches try to enlarge granularity between

boundaries. However, the first and the second approaches

have limited their applicability because a static analysis

does not predict dynamic behaviors of caches or operating

systems. The third approach may sacrifice accuracy for

performance.

 We notice that three approaches are complementary and

propose a novel cycle accurate transaction-driven simula-

978-3-9810801-2-4/DATE07 © 2007 EDAA

tion (CATS) technique. In the proposed technique, like the

first and second approaches, we predict incoming events

to a shared bus and advance clocks of simulators based on

the prediction, which prevents accuracy sacrifices of the

third approach. Moreover, an extension to the third ap-

proach is applied to provide accurate timings of outgoing

events to processors. The extension preserves cycle accu-

racy with little overhead. Therefore, CATS enhances

simulation performance by increasing granularity and ab-

straction. However, it maintains cycle accuracy and does

not limit applicability unlike previous approaches.

 In addition, OS sensitive scheduling technique further

reduces simulation time of processors by skipping idle

cycles due to interactions between application tasks simi-

lar to the second approach.

 The proposed techniques are implemented in a CATS

framework [1]. The CATS framework extends SimpleSca-

lar [2] to support multiple processor simulators. It also

supports a scriptable architecture description and program

interfaces for a multithreaded programming model. In the

absences of benchmarks for embedded systems supporting

multiple processors, we port Splash-2 benchmark [3] to

evaluate the CATS framework. Our experiments show that

the CATS framework achieves 200K instructions/s with

64 processors in a RADIX application of Splash-2 bench-

mark.

 The main contribution of this paper is to provide a very

fast but accurate multi-processor simulation framework

which is available as an open source to other researchers.

In this paper, we limit our focus on an optimization tech-

nique for a shared bus connected to processors with dedi-

cated caches. We are extending the framework to support

architectures including multiple buses and network on a

chip.

 In section 2, we explain related work to enhance simula-

tion performance. Section 3 and section 4 show cycle ac-

curate transaction-driven simulation and OS sensitive

scheduling respectively. We introduce the CATS frame-

work in section 5 and demonstrate utility of the proposed

technique in section 6. Finally we conclude this paper

with future work.

2 Related Work

 Many cycle accurate simulation frameworks for multiple

processor simulators adopt event-driven simulation [4][5].

Event-driven simulation shows good performance when a

simulation has sparse events. However, in the framework

for multiple processors, simulators are triggered by every

clock cycle. Therefore, overheads to schedule events and

executions of simulators are relatively large.

 When simulators have static periods, cycle-driven simu-

lation [6][7] builds a static scheduler to minimize the

overhead from event-driven simulation. Moreover, using a

function call to change instances between processors,

overhead related to instance switches also is reduced to a

minimal level.

 However, approaches which maintain cycle accuracy

have had limitations to enhance simulation performance

around 100K~300K processor cycles/s because the maxi-

mum granularity is a granule of a clock cycle.

 Software analysis [8] predicts event arrival times to a

shared bus by analyzing application behavior with com-

piler techniques. Based on the predictions, the technique

advances clocks of processor simulators until the next

smallest prediction time. The technique reduces instance

switches for processors but can not handle dynamic be-

havior from cache and an operating system.

 Virtual synchronization [9] enlarges granularity of simu-

lators to data exchange boundary of application tasks. The

technique utilizes application behavior by overriding func-

tion calls which transfer data between tasks. Assuming

that delays from resource conflicts always stall pipeline

stages of a processor, the technique advances the clock of

a processor until a task exchanges data with other tasks

while capturing resource access traces. At each boundary

of event exchanges, trace-driven simulation using resource

access traces calculates delays from resource conflicts.

Then the delays are inserted into processors as pipeline

stalls. Virtual synchronization increases granularity of

simulators to data transfer functions and reduces simula-

tion time of processors by skipping cycles when a proces-

sor waits for a data transfer. However, due to its assump-

tion, it does not handle events from cache coherence pro-

tocol and complex processor models with multiple issued

out-of-order instructions.

 Transaction level model (TLM) [10][11] abstracts be-

havior of an inter-connection network at bus transaction

level and exchanges events at bus transaction boundaries.

With abstracted behavior of simulators, it assumes that

simulators do not have events which affect behavior of the

simulator between bus transaction boundaries. TLM

achieves good performance but suspends to process events

between bus transaction boundaries. Thus TLM with

higher abstraction may suffer from events from interrupts

and cache coherence protocol.

 Approaches which enlarge granularity more than a clock

cycle shows competitive performance but do not handle

some of following events which affect behavior of proces-

sors or an inter-connection network; interrupts, unlocked

bus transaction, early resuming of pipeline stages and

cache coherence protocol. In this paper, we are to solve

how to enlarge granularity and abstract behavior by han-

dling those events.

3 Cycle Accurate Transaction-driven Simu-

lation

processor 1

shared bus

simulated clock

processor 2

processor 3

1. bus request

2. bus grant

3. address

4. have a modified line

5. data

6. bus request

7. address

8. data

9. address

10. data

1 2 3

4

5

6

7 8 910

Figure 1. An example of a bus transaction

predicted event suspended event

shared bus processor 1 processor 2 processor 3

simulated

clock

Figure 2. An execution sequence of simulators

applying CATS

 CATS enlarges granularity of simulators to bus transac-

tion and abstract behavior of a shared bus at bus transac-

tion level similar to TLM. However, events which arrive

between granularity boundaries may cause inaccuracy.

 Figure 1 shows an example of such a bus transaction. In

the transaction, the processor 1 reads data in the modified

cache line of the processor 2 and the processor 3 requests

a shared bus. When the processor 1 sends the first address

of the cache line, the processor 2 interrupts behavior of

the shared bus and provides data to the processor 1 in-

stead of a memory. Moreover, the shared bus has to han-

dle the bus request event from the processor 3.

 Figure 2 shows an execution sequence of simulators

applying CATS, which processes the bus transaction in

Figure 1. Upper figures show what events each simulator

has during the bus transaction. Bottom figures illustrate

how each execution of a simulator incrementally appends

events to the bus transaction.

 Before CATS advances clocks of simulators, it exam-

ines behavior of processors to predict events to the shared

bus during the bus transaction. Unlike previous ap-

proaches, CATS not only predict arrival times of events

but also values of them. Thus the shared bus simulator can

advance its clock without interactions with other proces-

sors. In addition, behavior of the shared bus enables

CATS to suspend a certain type of events to the shared

bus. In the example, CATS can predict event 3, 4, 7 and 9,

and suspend the event 6.

 With predicted events, first, CATS advances the clock

of the shared bus until the shared bus finishes processing

the bus transaction. During the execution, CATS captures

timings of events. Then when CATS advances the clocks

of processors, the timings enable processors to emulate

incoming events from the shared bus.

 Compared to Figure 1, Figure 2 shows an identical

simulated result except that CATS does not notify the

arrival of the event 6 to the shared bus. However, because

we know that the shared bus can suspend the event 6, the

difference does not hurt cycle accuracy.

 In following sections, we explain the proposed tech-

nique in detail. Section 3.1 shows how CATS predicts and

suspends events. Section 3.2 introduces how to capture

timings of events and handle those timings at processors.

3.1 Handling Events to a Shared Bus

 A shared bus receives bus request events, address events

(or address events with data) and cache coherence events

from processors.

 First, a bus arbiter in a shared bus accepts bus request

events and grants the bus to one of requesting processors.

If a bus transaction locks the bus, the bus arbiter performs

arbitration at the end of the bus transaction. Otherwise, the

bus arbiter performs arbitration at the end of every mem-

ory transaction of the bus transaction.

 CATS utilizes such behavior of the bus arbiter and

watches a locked flag from a bus transaction. If the locked

flag is set, CATS suspends bus request events until the

shared bus finishes processing the bus transaction. Other-

wise, it suspends requests until a memory transaction ends.

 Second, when a processor receives a bus grant, it sends

the first address of a bus transaction at the next bus cycle.

If the processor receives a data and burst accesses of the

bus transaction are not finished, it sends the next address

at the next bus cycle. With this property of processors,

CATS predicts arrival times and values of address events.

 Third, when a processor watches an address which the

processor has in its cache line, it sends a cache coherence

event to a shared bus and then the shared bus changes its

behavior to handle the event. For example, when the

shared bus meets a read access to a modified cache line

(or a shared cache line), the shared bus makes a requesting

processor read data from a processor with that cache line

instead of a memory. For a write access to a modified

cache line, the shared bus makes a requesting processor

first read data from the processor with the cache line and

then send a write invalidate event (or update data) to all

processors with the cache line.

 CATS examines all caches of processors for the cache

line in request before a shared bus processes a bus trans-

action. If CATS finds that a processor has that cache line,

it predicts that the processor with the cache line will send

a cache coherence event after it watches the first address

to access. Therefore, CATS transforms the bus transaction

to notify the arrival of the cache coherence event.

1 : next_arbitration = bus_clock_period
2 : while (true) {
3 : advance clocks of processors until next_arbitration
4 : transaction = perform a bus arbitration
5 : if (transaction is null) {
6 : next_arbitration += bus_clock_period
7 : continue;
8 : }
9 : cache_line = find a cache line for all other processors
10: if (cache_line is not null) transform a transaction
11: if (transaction unlocks the bus) set the unlocked flag
12: else clear the unlocked flag
13: process a bus transaction with the locked flag
14: next_arbitration = acquire bus’s next arbitration time
15: }

Figure 3. A pseudo code for a simulation kernel

 Figure 3 shows a pseudo code for a simulation kernel

which implements the proposed technique. The simulation

kernel first predicts events at line 9~12 and advances the

clock of the shared bus at line 13. After acquiring the next

arbitration time at line 14, the kernel advances clocks of

processors until the next arbitration time at line 3 and find

the next transaction at line 4. In this way, the transaction

in the shared bus drives executions of processors. That’s

why we call this technique as CATS.

 To handle bus request events, the kernel checks a con-

trol signal of a bus transaction in line 12 and determines

granularity of the shared bus. For cache coherence proto-

col, line 9 checks if any processor has a cache line which

the current transaction accesses. If the cache line is

founded, the kernel transforms the transaction at line 10.

3.2 Handling Events to Processors

 We can model behavior of the shared bus cycle accu-

rately due to techniques in section 3.1, which also means

that we can have accurate timings of outgoing events.

Based on this property, we revise a behavior model of the

shared bus to store timings of occurred events and pack

them into a reply to a bus transaction. In other word, the

model only abstracts behavior, not timings of events. Be-

cause the simulation kernel shown in Figure 3 advances

the clock of the shared bus prior than those of processors,

processors acquire exact arrival times of incoming events

with the captured timings.

1: slave = find_slave(transaction’s address)
2: if (unlocked flag is set) access_num = 1;
3: else access_num=transaction’s bytes to access / bus width
4: while (access_num>0) {
5: bus’s next arbitration+=acquire an access delay of the slave
6: store bus’s next arbitration into a reply to the transaction
7: access_num--;
8: }

Figure 4. A simplified pseudo code for abstracted
behavior model of the shared bus

 Figure 4 shows a pseudo code for abstracted behavior

model of the shared bus. Details of a bus protocol are

omitted to simplify the explanation. First, the behavior

model selects a slave for the bus transaction at line 1. If

the transaction is related to cache coherence and trans-

formed at line 10 in Figure 3, the processor with the cache

line becomes a slave. In normal cases, a memory becomes

a slave. Second, the model determines the number of ac-

cesses for the shared bus. If the transaction performs an

unlocked transaction which is flagged at line 11 in Figure

3, the behavior model is set to process one memory trans-

action at line 2. Otherwise, the behavior model is set to

advance its clock until it finish the bus transaction at line

3. For each memory access, the behavior model acquires

an access delay from the slave and updates the next arbi-

tration time of the bus at line 5. Moreover, it stores the

time into a reply at line 6, which are utilized for proces-

sors to know arrival times of incoming events.

 When a processor receives the reply from the shared bus,

the processor utilizes the timings in different ways based

on event types. The events can be interrupt events from

other processors, events related to cache coherence and

data events from the shared bus.

 First, interrupt events from other processors are deliv-

ered through a shared bus. The bus can be a dedicated bus

or shared by instruction and data accesses. For simplicity,

in this paper, we assume that interrupt events share a bus

with other accesses. Thus, when a processor sends an in-

terrupt event to other processor, the event is delivered

through the shared bus to an interrupt handler. Then the

interrupt handler sends an interrupt signal to a destination

processor.

 Therefore, if a processor watches transactions to inter-

rupt handlers on the shared bus, the processor knows

when an interrupt event arrives or it does not. If the proc-

essor does not receive an interrupt signal, the processor

advances its clock until the current transaction ends. Oth-

erwise, the processor receives the interrupt signal when a

static delay is passed after a data is written to the handler.

 Second, when a processor writes data to a shared cache

line, processors with the cache line invalidate or update

the cache line as soon as the processors watch the first

address at the shared bus.

 Finally, if a processor supports an early resuming of

pipeline stages, the processor does not need to suspend its

pipeline stages at the end of the bus transaction. Instead,

the processor resumes its pipeline stages with the first data

of the cache line.

4 OS Sensitive Scheduling

 In section 3, we showed that CATS reduces the number

of instance switches with larger granularity, simulation

time for a shared bus with abstraction and event schedul-

ing overhead with static scheduling. However, we have to

perform cycle accurate simulation for processor simula-

tors to maintain cycle accuracy. Thus processor simulators

have become a bottleneck of simulation performance.

 When we analyze applications using multiple proces-

sors, we notice that interactions between tasks produce

idle cycles of processors. Those idle cycles take larger

portion of simulation time as the number of processors is

increased. If we can catch when idle cycles of a processor

happen and when a processor moves from idle cycles to

active cycles, we can reduce simulation time consumed

for processors by skipping idle cycles of processors.

 Idle cycles of a processor occur when there is no active

task available in the processor. In that case, an operating

system switches its program context to an idle task which

does nothing and has the lowest priority. To wake up from

the idle task, an interrupt from other processor or a timer

interrupt has to notify the processor. Therefore, we can

ignore all events to the processor which executes the idle

task until any interrupt event arrives.

 In OS sensitive scheduling, we annotate a special code

in the idle task. The code notifies the processor simulator

to change its state to an idle state. When we advance the

clock of the simulator, we do not execute behavior of the

processor simulator in the idle state but update the local

clock of the simulator. If we watch that any interrupt is

delivered to the processor in the idle state, we change the

state of the processor simulator to an active state and re-

start to advance the clock of the processor. However, even

in the idle state, we update cache coherence of the proces-

sor to maintain cycle accuracy.

5 CATS Framework

 We have implemented the proposed technique in a

CATS framework which is based on SimpleScalar. The

CATS framework configures different architecture plat-

forms by using an architecture description script and pro-

vides programming interfaces for a multithreaded program

model.

 In an architecture description script, we specify configu-

rations for processor models, an inter-connection network

and an operating system. Currently we support ARM

processors and an AMBA AHB bus [12] as an inter-

connection network. Each processor defines a clock pe-

riod and memory map entries which translate virtual

memory in the processor to physical memory in a mem-

ory. If we define the same memory map entries for all

processors, processors share the same program image.

Otherwise, each processor will execute different images.

A definition for an AMBA AHB bus includes a clock pe-

riod, a bus width, connected memories and connected

processors. In addition, we are working to support more

processor models like PISA, Alpha and PowerPC and

different inter-connections like multiple buses with

bridges and network on a chip.

 We implement an operating system as simulation li-

brary. Each simulator catches system calls to an operating

system and emulates behavior of the operating system. An

operating system can be easily configured by using a

scheduling policy, a maximum number of tasks, an inter-

rupt tick period, a flag to choose a single program image

or multiple program images and involved processors.

6 Experiments

 In experiments, we use Fedora Linux core 3 with Pen-

tium-M 1.7Ghz CPU. The simulation framework is com-

piled by gcc 2.94.5 with –O3 option and applications are

by arm-linux-gcc 2.95.2 with –O3 option. For simulations,

we assume that processors and a memory are connected to

a shared bus. Each processor has separated L1 caches with

8 KB each and a unified L2 cache with 64KB.

 First we evaluate efficiency and accuracy of CATS com-

pared to an original SimpleScalar ARM. We execute four

applications of Splash-2 benchmark with a single proces-

sor on the CATS framework and the original SimpleScalar

ARM. Four applications are fast Fourier transform (FFT),

Cholesky factorization (CHOLESKY), radix sorting

(RADIX) and volume rendering (VOLREND). In the ex-

periments, memory delays are set to 18 processor cycles

in non-sequential accesses and 2 processor cycles in se-

quential accesses.

 Figure 5 first shows simulation efficiencies. We divide

simulation times of CATS by those of SimpleScalar ARM

which achieves 540K~700K instructions/s. Simulation

performances of CATS are close to 80% of the SimpleS-

calar ARM, which means that CATS effectively reduces

all components of simulation time except behavior model

of processors. Second, errors in simulated cycles are un-

der 0.003% except 0.13% of FFT when we extend a static

delay model to an inter-connection network simulator

applying CATS.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RADIX VOLREND FFT CHOLESKY

CATS/SimpleScalar ARM

error in simulated cycles (%)

Figure 5. Simulation efficiency and accuracy of

CATS compared to an original SimpleScalar ARM

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 processor 2

processors

4

processors

8

processors

16

processors

32

processors

64

processors

in
s

tr
u

c
ti

o
n

s
/s

e
c
o

n
d

CHOLESKY

FFT

RADIX

VOLEND

Figure 6. Simulation performances of four appli-

cations from Splash-2 benchmark

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

1 processor 2

processors

4

processors

8

processors

16

processors

32

processors

64

processors

s
im

u
la

te
d

 c
y
c
le

s
*n

u
m

b
e
r

o
f

p
ro

c
e
s
s
o

rs
/s

e
c
o

n
d

CHOLESKY

FFT

RADIX

VOLEND

Figure 7. Simulation performances with simu-

lated cycles*number of processors/second

 Second, we change the number of processors from one

to sixty four, and assume that a shared bus and processors

have the same clock period and all memory delays are one

processor cycle.

 In Figure 6, we notice that changing number of proces-

sors does not affect simulation performances of CATS.

However, delays from memory conflicts decrease cycles

to process one instruction (IPC) and make processor simu-

lators inefficient when we have more than 16 processors.

 However, Figure 6 does not count instructions in idle

cycles which are skipped by OS sensitive scheduling.

Thus, in Figure 7, we calculate simulation performances

by multiplying the number of processors to simulated cy-

cles per second, i.e., processor cycles/s. Except RADIX

which has idle cycles under 9% with 64 processors, all

other applications have minimum 31% at 2 processors and

88% at 64 processors. Therefore, skipping idle cycles

enables processor simulators to process more cycles per

second.

7 Conclusion

 We have shown that event predictions to a shared bus

can enable us to advance the clock of the shared bus with-

out interactions with processors. This is possible based on

analysis of the processor simulators. The behavior model

of the shared bus stores timings of events and provides

cycle accuracy to processor simulators. Moreover, appli-

cation behavior from an operating system makes it possi-

ble to skip idle cycles of processor simulators. All the

proposed techniques are implemented in the CATS frame-

work. The framework provides simulation performances

comparable to TLM with cycle accuracy. As future work,

we are working to provide additional processor and inter-

connection network models. We will examine accuracy

with multiple processors by comparisons with a real mul-

tiprocessor system.

Acknowledgement

Our work was supported by a gift from Intel Corpora-

tion, a grant from UC Discovery program and IT scholar-

ship program which is supervised by Institute for Informa-

tion Technology Advancement & Ministry of Information

and Communication, Republic of Korea. We are grateful

to the anonymous reviewers for their insightful comments.

References

[1] CATS Framework, http://mesl.ucsd.edu/dhkim/CATS

[2] Doug Burger and Todd M. Austin, “The SimpleScalar Tool-

set, Version 2.0,” University of Wisconsin-Madison Computer

Sciences Department Technical Report #1342, June 1997.

[3] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,

Jaswinder Pal Singh, and Anoop Gupta. “The SPLASH-2 Pro-

grams: Characterization and Methodological Considerations”. In

Proceedings of the 22nd International Symposium on Computer

Architecture, pp. 24-36, Italy, June 1995

[4] Benini L, Bertozzi D, Bogliolo A, Menichelli F, Olivieri M,

“MPARM: Exploring the Multi-Processor SoC Design Space

with SystemC”, The Journal of VLSI Signal Processing, Vol.

41, No. 2., Sep. 2005, pp. 169-182.

[5] Nathan L. Binkert, Erik G. Hallnor, and Steven K.

Reinhardt, “Network-Oriented Full-System Simulation using

M5”, Proceedings of the Sixth Workshop on Computer Archi-

tecture Evaluation using Commercial Workloads, Feb 2003.

[6] P. Schaumont, I. Verbauwhede, "Interactive Cosimulation

with Partial Evaluation”, DATE 2004, Feb. 2004

[7] Chris Lennard, Davorin Mista, “Taking Design to the Sys-

tem Level”, the white paper for SoC Designer, a ARM Inc.

[8] Jin Yong Jung ; Sung Joo Yoo ; Kiyoung Choi, "Perform-

ance improvement of multi-processor systems cosimulation

based on SW analysis ", DATE 2001, pp.749-753, Mar. 2001

[9] Dohyung Kim, Youngmin Yi and Soonhoi Ha, "Trace-

Driven HW/SW Cosimulation Using Virtual Synchronization

Technique", DAC 2005, Anaheim, June 13-17 2005

[10] L. Cai and D. Gajski, "Transaction level modeling: an over-

view", Proceedings of 1st international conference on Hard-

ware/software codesign and system synthesis, Oct. 2003

[11] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Extending

the Transaction Level Modeling Approach for Fast Communica-

tion Architecture Exploration”, in Proc. Intl. Conf. on Design

Automation, pp. 113-118, USA, Jun. 2004.

[12] “AMBA Specification Rev 2.0”, ARM Inc.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

