
CATS: Cycle Accurate Transaction-driven Simulation with Multiple Processor 

Simulators 
 

Dohyung Kim
†
            Soonhoi Ha

§
            Rajesh Gupta

†
 

 

†
Department of Computer Science and Engineering       

§
School of Computer Science and Engineering 

University of California, San Diego, USA                Seoul Nation University, Korea 

{dhkim, rgupta}@ucsd.edu                                                     sha@iris.snu.ac.kr 
 

 

Abstract  

    

   This paper focuses on enhancing performance of cycle 

accurate simulation with multiple processor simulators. 

Simulation performance is determined by how often simu-

lators exchange events with one another and how accu-

rately simulators model their behavior. Previous tech-

niques have limited their applicability or sacrificed accu-

racy for performance. In this paper, we notice that inaccu-

racy comes from events which arrive between event ex-

change boundaries. To solve the problem, we propose 

cycle accurate transaction-driven simulation which main-

tains event exchange boundaries at bus transactions but 

compensates for accuracy. The proposed technique is im-

plemented in a publicly available CATS framework and 

our experiment with 64 processors achieves 1.2M proces-

sor cycles/s (200K instructions/s) which is faster than 

other cycle accurate frameworks by an order of magnitude. 

  

1  Introduction 
 

    Multiple processors with simple architecture possibly 

provide demanding computation power in energy efficient 

way. In addition, deep submicron technology makes it 

easier to integrate more processors into a single chip. 

However, software development for multiple processors 

becomes more difficult than the case for a single proces-

sor. The design space for multiple processors and an inter-

connection network becomes incredibly large. To handle 

those situations, we need methods to evaluate architectural 

design accurately and efficiently.  

   Moreover, simulation in embedded systems also has to 

verify worst case scenarios where a system may not meet 

its constraints such as deadlines and response times. 

Methods that sacrifice timing accuracy for speed can not 

guarantee meeting constraints. Thus this paper focuses on 

techniques to enhance simulation performance with multi-

ple processor simulators while maintaining accuracy. 

   To identify performance problems, we analyzed major 

factors of simulation time in multiprocessor simulation. 

First, a multiprocessor simulator usually has a single code 

to model processor behavior and switches different proc-

essor instances. Thus, when we invoke a processor, the 

instance switch generates additional overheads compared 

to a single processor simulator. Second, we have to exe-

cute behavior of processor simulators and an inter-

connection network simulator by advancing their clocks. 

However, a simple processor simulator can adopt a static 

delay model for an inter-connection network. 

   When we optimize those two factors of multiprocessor 

simulation, granularity and abstraction of simulators have 

major effects to simulation performance. Granularity indi-

cates how often simulators exchange event with one an-

other. Abstraction determines how accurately simulators 

model behavior of processors or an inter-connection net-

work. If we can have larger granularity, the number of 

instances switches is reduced. If we can apply higher ab-

straction, it reduces time to advance clocks of simulators.   

   Previous approaches have utilized granularity and ab-

straction to overcome performance problems of multi-

processor simulation. Software analysis predicts [7] arri-

val times of events by statically analyzing instructions of 

other simulators. If we know when the next event arrives 

at a simulator, we can safely advance the clock of the 

simulator until that time. This technique increases granu-

larity of simulators, which reduces the number of instance 

switches. Virtual synchronization [8] suspends to process 

events to a simulator by analyzing behavior of the simula-

tor as long as events do not affect behavior of the simula-

tor. If a simulator waits for certain events, the simulator 

can skip clock cycles until the simulator receives any of 

those events. Thus the technique reduces simulation time 

related to instance switches and behavior model. Transac-

tion level model (TLM) [9][10] abstracts behavior of a 

simulator by simplifying transitions through multiple 

states between abstraction boundaries. TLM reduces all 

components of simulation time but may sacrifice accuracy 

when a simulator receives any event which affects behav-

ior of the simulator between abstraction boundaries. 
   All three approaches try to enlarge granularity between 

boundaries. However, the first and the second approaches 

have limited their applicability because a static analysis 

does not predict dynamic behaviors of caches or operating 

systems. The third approach may sacrifice accuracy for 

performance. 

   We notice that three approaches are complementary and 

propose a novel cycle accurate transaction-driven simula-
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tion (CATS) technique. In the proposed technique, like the 

first and second approaches, we predict incoming events 

to a shared bus and advance clocks of simulators based on 

the prediction, which prevents accuracy sacrifices of the 

third approach. Moreover, an extension to the third ap-

proach is applied to provide accurate timings of outgoing 

events to processors. The extension preserves cycle accu-

racy with little overhead. Therefore, CATS enhances 

simulation performance by increasing granularity and ab-

straction. However, it maintains cycle accuracy and does 

not limit applicability unlike previous approaches.  

   In addition, OS sensitive scheduling technique further 

reduces simulation time of processors by skipping idle 

cycles due to interactions between application tasks simi-

lar to the second approach. 

   The proposed techniques are implemented in a CATS 

framework [1]. The CATS framework extends SimpleSca-

lar [2] to support multiple processor simulators. It also 

supports a scriptable architecture description and program 

interfaces for a multithreaded programming model. In the 

absences of benchmarks for embedded systems supporting 

multiple processors, we port Splash-2 benchmark [3] to 

evaluate the CATS framework. Our experiments show that 

the CATS framework achieves 200K instructions/s with 

64 processors in a RADIX application of Splash-2 bench-

mark.  

   The main contribution of this paper is to provide a very 

fast but accurate multi-processor simulation framework 

which is available as an open source to other researchers. 

In this paper, we limit our focus on an optimization tech-

nique for a shared bus connected to processors with dedi-

cated caches. We are extending the framework to support 

architectures including multiple buses and network on a 

chip.  

   In section 2, we explain related work to enhance simula-

tion performance. Section 3 and section 4 show cycle ac-

curate transaction-driven simulation and OS sensitive 

scheduling respectively. We introduce the CATS frame-

work in section 5 and demonstrate utility of the proposed 

technique in section 6. Finally we conclude this paper 

with future work. 

 

2  Related Work 
 

   Many cycle accurate simulation frameworks for multiple 

processor simulators adopt event-driven simulation [4][5]. 

Event-driven simulation shows good performance when a 

simulation has sparse events. However, in the framework 

for multiple processors, simulators are triggered by every 

clock cycle. Therefore, overheads to schedule events and 

executions of simulators are relatively large. 

   When simulators have static periods, cycle-driven simu-

lation [6][7] builds a static scheduler to minimize the 

overhead from event-driven simulation. Moreover, using a 

function call to change instances between processors, 

overhead related to instance switches also is reduced to a 

minimal level.  

   However, approaches which maintain cycle accuracy 

have had limitations to enhance simulation performance 

around 100K~300K processor cycles/s because the maxi-

mum granularity is a granule of a clock cycle. 

   Software analysis [8] predicts event arrival times to a 

shared bus by analyzing application behavior with com-

piler techniques. Based on the predictions, the technique 

advances clocks of processor simulators until the next 

smallest prediction time. The technique reduces instance 

switches for processors but can not handle dynamic be-

havior from cache and an operating system. 

   Virtual synchronization [9] enlarges granularity of simu-

lators to data exchange boundary of application tasks. The 

technique utilizes application behavior by overriding func-

tion calls which transfer data between tasks. Assuming 

that delays from resource conflicts always stall pipeline 

stages of a processor, the technique advances the clock of 

a processor until a task exchanges data with other tasks 

while capturing resource access traces. At each boundary 

of event exchanges, trace-driven simulation using resource 

access traces calculates delays from resource conflicts. 

Then the delays are inserted into processors as pipeline 

stalls. Virtual synchronization increases granularity of 

simulators to data transfer functions and reduces simula-

tion time of processors by skipping cycles when a proces-

sor waits for a data transfer. However, due to its assump-

tion, it does not handle events from cache coherence pro-

tocol and complex processor models with multiple issued 

out-of-order instructions. 

   Transaction level model (TLM) [10][11] abstracts be-

havior of an inter-connection network at bus transaction 

level and exchanges events at bus transaction boundaries. 

With abstracted behavior of simulators, it assumes that 

simulators do not have events which affect behavior of the 

simulator between bus transaction boundaries. TLM 

achieves good performance but suspends to process events 

between bus transaction boundaries. Thus TLM with 

higher abstraction may suffer from events from interrupts 

and cache coherence protocol. 

   Approaches which enlarge granularity more than a clock 

cycle shows competitive performance but do not handle 

some of following events which affect behavior of proces-

sors or an inter-connection network; interrupts, unlocked 

bus transaction, early resuming of pipeline stages and 

cache coherence protocol. In this paper, we are to solve 

how to enlarge granularity and abstract behavior by han-

dling those events. 

 

3  Cycle Accurate Transaction-driven Simu-

lation  
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Figure 1.  An example of a bus transaction 
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Figure 2. An execution sequence of simulators 

applying CATS 
 

   CATS enlarges granularity of simulators to bus transac-

tion and abstract behavior of a shared bus at bus transac-

tion level similar to TLM. However, events which arrive 

between granularity boundaries may cause inaccuracy. 

   Figure 1 shows an example of such a bus transaction. In 

the transaction, the processor 1 reads data in the modified 

cache line of the processor 2 and the processor 3 requests 

a shared bus. When the processor 1 sends the first address 

of the cache line, the processor 2 interrupts behavior of 

the shared bus and provides data to the processor 1 in-

stead of a memory. Moreover, the shared bus has to han-

dle the bus request event from the processor 3.  

   Figure 2 shows an execution sequence of simulators 

applying CATS, which processes the bus transaction in 

Figure 1. Upper figures show what events each simulator 

has during the bus transaction. Bottom figures illustrate 

how each execution of a simulator incrementally appends 

events to the bus transaction.  

   Before CATS advances clocks of simulators, it exam-

ines behavior of processors to predict events to the shared 

bus during the bus transaction. Unlike previous ap-

proaches, CATS not only predict arrival times of events 

but also values of them. Thus the shared bus simulator can 

advance its clock without interactions with other proces-

sors. In addition, behavior of the shared bus enables 

CATS to suspend a certain type of events to the shared 

bus. In the example, CATS can predict event 3, 4, 7 and 9, 

and suspend the event 6.  

   With predicted events, first, CATS advances the clock 

of the shared bus until the shared bus finishes processing 

the bus transaction. During the execution, CATS captures 

timings of events. Then when CATS advances the clocks 

of processors, the timings enable processors to emulate 

incoming events from the shared bus. 

    Compared to Figure 1, Figure 2 shows an identical 

simulated result except that CATS does not notify the 

arrival of the event 6 to the shared bus. However, because 

we know that the shared bus can suspend the event 6, the 

difference does not hurt cycle accuracy. 

   In following sections, we explain the proposed tech-

nique in detail. Section 3.1 shows how CATS predicts and 

suspends events. Section 3.2 introduces how to capture 

timings of events and handle those timings at processors. 

 

3.1  Handling Events to a Shared Bus 
 

   A shared bus receives bus request events, address events 

(or address events with data) and cache coherence events 

from processors.  

   First, a bus arbiter in a shared bus accepts bus request 

events and grants the bus to one of requesting processors. 

If a bus transaction locks the bus, the bus arbiter performs 

arbitration at the end of the bus transaction. Otherwise, the 

bus arbiter performs arbitration at the end of every mem-

ory transaction of the bus transaction.  

   CATS utilizes such behavior of the bus arbiter and 

watches a locked flag from a bus transaction. If the locked 

flag is set, CATS suspends bus request events until the 

shared bus finishes processing the bus transaction. Other-

wise, it suspends requests until a memory transaction ends.  

  Second, when a processor receives a bus grant, it sends 

the first address of a bus transaction at the next bus cycle. 

If the processor receives a data and burst accesses of the 

bus transaction are not finished, it sends the next address 

at the next bus cycle. With this property of processors, 

CATS predicts arrival times and values of address events. 

   Third, when a processor watches an address which the 

processor has in its cache line, it sends a cache coherence 

event to a shared bus and then the shared bus changes its 

behavior to handle the event. For example, when the 

shared bus meets a read access to a modified cache line 

(or a shared cache line), the shared bus makes a requesting 

processor read data from a processor with that cache line 

instead of a memory. For a write access to a modified 

cache line, the shared bus makes a requesting processor 

first read data from the processor with the cache line and 

then send a write invalidate event (or update data) to all 

processors with the cache line. 

   CATS examines all caches of processors for the cache 

line in request before a shared bus processes a bus trans-

action. If CATS finds that a processor has that cache line, 

it predicts that the processor with the cache line will send 

a cache coherence event after it watches the first address 

to access. Therefore, CATS transforms the bus transaction 

to notify the arrival of the cache coherence event. 
 



1  : next_arbitration = bus_clock_period 
2  : while (true) { 
3  :    advance clocks of processors until next_arbitration 
4  :    transaction = perform a bus arbitration  
5  :    if (transaction is null) { 
6  :       next_arbitration += bus_clock_period 
7  :       continue; 
8  :    }  
9  :    cache_line = find a cache line for all other processors 
10:    if (cache_line is not null) transform a transaction 
11:    if (transaction unlocks the bus) set the unlocked flag 
12:    else clear the unlocked flag 
13:    process a bus transaction with the locked flag 
14:    next_arbitration = acquire bus’s next arbitration time 
15: } 

Figure 3. A pseudo code for a simulation kernel 
 

   Figure 3 shows a pseudo code for a simulation kernel 

which implements the proposed technique. The simulation 

kernel first predicts events at line 9~12 and advances the 

clock of the shared bus at line 13. After acquiring the next 

arbitration time at line 14, the kernel advances clocks of 

processors until the next arbitration time at line 3 and find 

the next transaction at line 4. In this way, the transaction 

in the shared bus drives executions of processors. That’s 

why we call this technique as CATS. 

   To handle bus request events, the kernel checks a con-

trol signal of a bus transaction in line 12 and determines 

granularity of the shared bus. For cache coherence proto-

col, line 9 checks if any processor has a cache line which 

the current transaction accesses. If the cache line is 

founded, the kernel transforms the transaction at line 10. 

 

3.2  Handling Events to Processors 
 

   We can model behavior of the shared bus cycle accu-

rately due to techniques in section 3.1, which also means 

that we can have accurate timings of outgoing events. 

Based on this property, we revise a behavior model of the 

shared bus to store timings of occurred events and pack 

them into a reply to a bus transaction. In other word, the 

model only abstracts behavior, not timings of events. Be-

cause the simulation kernel shown in Figure 3 advances 

the clock of the shared bus prior than those of processors, 

processors acquire exact arrival times of incoming events 

with the captured timings. 
 

1: slave = find_slave(transaction’s address) 
2: if (unlocked flag is set) access_num = 1; 
3: else access_num=transaction’s bytes to access / bus width 
4: while (access_num>0) { 
5:    bus’s next arbitration+=acquire an access delay of the slave 
6:    store bus’s next arbitration into a reply to the transaction 
7:    access_num--; 
8: } 

Figure 4. A simplified pseudo code for abstracted 
behavior model of the shared bus 

 

 

   Figure 4 shows a pseudo code for abstracted behavior 

model of the shared bus. Details of a bus protocol are 

omitted to simplify the explanation. First, the behavior 

model selects a slave for the bus transaction at line 1. If 

the transaction is related to cache coherence and trans-

formed at line 10 in Figure 3, the processor with the cache 

line becomes a slave. In normal cases, a memory becomes 

a slave. Second, the model determines the number of ac-

cesses for the shared bus. If the transaction performs an 

unlocked transaction which is flagged at line 11 in Figure 

3, the behavior model is set to process one memory trans-

action at line 2. Otherwise, the behavior model is set to 

advance its clock until it finish the bus transaction at line 

3. For each memory access, the behavior model acquires 

an access delay from the slave and updates the next arbi-

tration time of the bus at line 5. Moreover, it stores the 

time into a reply at line 6, which are utilized for proces-

sors to know arrival times of incoming events.  

   When a processor receives the reply from the shared bus, 

the processor utilizes the timings in different ways based 

on event types. The events can be interrupt events from 

other processors, events related to cache coherence and 

data events from the shared bus. 

   First, interrupt events from other processors are deliv-

ered through a shared bus. The bus can be a dedicated bus 

or shared by instruction and data accesses. For simplicity, 

in this paper, we assume that interrupt events share a bus 

with other accesses. Thus, when a processor sends an in-

terrupt event to other processor, the event is delivered 

through the shared bus to an interrupt handler. Then the 

interrupt handler sends an interrupt signal to a destination 

processor.  

   Therefore, if a processor watches transactions to inter-

rupt handlers on the shared bus, the processor knows 

when an interrupt event arrives or it does not. If the proc-

essor does not receive an interrupt signal, the processor 

advances its clock until the current transaction ends. Oth-

erwise, the processor receives the interrupt signal when a 

static delay is passed after a data is written to the handler. 

   Second, when a processor writes data to a shared cache 

line, processors with the cache line invalidate or update 

the cache line as soon as the processors watch the first 

address at the shared bus.  

   Finally, if a processor supports an early resuming of 

pipeline stages, the processor does not need to suspend its 

pipeline stages at the end of the bus transaction. Instead, 

the processor resumes its pipeline stages with the first data 

of the cache line. 

 

4  OS Sensitive Scheduling 
 

   In section 3, we showed that CATS reduces the number 

of instance switches with larger granularity, simulation 

time for a shared bus with abstraction and event schedul-



ing overhead with static scheduling. However, we have to 

perform cycle accurate simulation for processor simula-

tors to maintain cycle accuracy. Thus processor simulators 

have become a bottleneck of simulation performance.  

   When we analyze applications using multiple proces-

sors, we notice that interactions between tasks produce 

idle cycles of processors. Those idle cycles take larger 

portion of simulation time as the number of processors is 

increased. If we can catch when idle cycles of a processor 

happen and when a processor moves from idle cycles to 

active cycles, we can reduce simulation time consumed 

for processors by skipping idle cycles of processors. 

   Idle cycles of a processor occur when there is no active 

task available in the processor. In that case, an operating 

system switches its program context to an idle task which 

does nothing and has the lowest priority. To wake up from 

the idle task, an interrupt from other processor or a timer 

interrupt has to notify the processor. Therefore, we can 

ignore all events to the processor which executes the idle 

task until any interrupt event arrives. 

   In OS sensitive scheduling, we annotate a special code 

in the idle task. The code notifies the processor simulator 

to change its state to an idle state. When we advance the 

clock of the simulator, we do not execute behavior of the 

processor simulator in the idle state but update the local 

clock of the simulator. If we watch that any interrupt is 

delivered to the processor in the idle state, we change the 

state of the processor simulator to an active state and re-

start to advance the clock of the processor. However, even 

in the idle state, we update cache coherence of the proces-

sor to maintain cycle accuracy. 

 

5  CATS Framework 
 

   We have implemented the proposed technique in a 

CATS framework which is based on SimpleScalar. The 

CATS framework configures different architecture plat-

forms by using an architecture description script and pro-

vides programming interfaces for a multithreaded program 

model. 

   In an architecture description script, we specify configu-

rations for processor models, an inter-connection network 

and an operating system. Currently we support ARM 

processors and an AMBA AHB bus [12] as an inter-

connection network. Each processor defines a clock pe-

riod and memory map entries which translate virtual 

memory in the processor to physical memory in a mem-

ory. If we define the same memory map entries for all 

processors, processors share the same program image. 

Otherwise, each processor will execute different images. 

A definition for an AMBA AHB bus includes a clock pe-

riod, a bus width, connected memories and connected 

processors. In addition, we are working to support more 

processor models like PISA, Alpha and PowerPC and 

different inter-connections like multiple buses with 

bridges and network on a chip. 

   We implement an operating system as simulation li-

brary. Each simulator catches system calls to an operating 

system and emulates behavior of the operating system. An 

operating system can be easily configured by using a 

scheduling policy, a maximum number of tasks, an inter-

rupt tick period, a flag to choose a single program image 

or multiple program images and involved processors.  

       

6  Experiments  
 

   In experiments, we use Fedora Linux core 3 with Pen-

tium-M 1.7Ghz CPU. The simulation framework is com-

piled by gcc 2.94.5 with –O3 option and applications are 

by arm-linux-gcc 2.95.2 with –O3 option. For simulations, 

we assume that processors and a memory are connected to 

a shared bus. Each processor has separated L1 caches with 

8 KB each and a unified L2 cache with 64KB. 

   First we evaluate efficiency and accuracy of CATS com-

pared to an original SimpleScalar ARM. We execute four 

applications of Splash-2 benchmark with a single proces-

sor on the CATS framework and the original SimpleScalar 

ARM. Four applications are fast Fourier transform (FFT), 

Cholesky factorization (CHOLESKY), radix sorting 

(RADIX) and volume rendering (VOLREND). In the ex-

periments, memory delays are set to 18 processor cycles 

in non-sequential accesses and 2 processor cycles in se-

quential accesses.  

    Figure 5 first shows simulation efficiencies. We divide 

simulation times of CATS by those of SimpleScalar ARM 

which achieves 540K~700K instructions/s. Simulation 

performances of CATS are close to 80% of the SimpleS-

calar ARM, which means that CATS effectively reduces 

all components of simulation time except behavior model 

of processors. Second, errors in simulated cycles are un-

der 0.003% except 0.13% of FFT when we extend a static 

delay model to an inter-connection network simulator 

applying CATS. 
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Figure 5. Simulation efficiency and accuracy of 

CATS compared to an original SimpleScalar ARM  
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Figure 6. Simulation performances of four appli-

cations from Splash-2 benchmark  
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Figure 7. Simulation performances with simu-

lated cycles*number of processors/second 
 

   Second, we change the number of processors from one 

to sixty four, and assume that a shared bus and processors 

have the same clock period and all memory delays are one 

processor cycle. 

   In Figure 6, we notice that changing number of proces-

sors does not affect simulation performances of CATS. 

However, delays from memory conflicts decrease cycles 

to process one instruction (IPC) and make processor simu-

lators inefficient when we have more than 16 processors.  

   However, Figure 6 does not count instructions in idle 

cycles which are skipped by OS sensitive scheduling. 

Thus, in Figure 7, we calculate simulation performances 

by multiplying the number of processors to simulated cy-

cles per second, i.e., processor cycles/s. Except RADIX 

which has idle cycles under 9% with 64 processors, all 

other applications have minimum 31% at 2 processors and 

88% at 64 processors. Therefore, skipping idle cycles 

enables processor simulators to process more cycles per 

second. 

 

7  Conclusion 
 

   We have shown that event predictions to a shared bus 

can enable us to advance the clock of the shared bus with-

out interactions with processors. This is possible based on 

analysis of the processor simulators. The behavior model 

of the shared bus stores timings of events and provides 

cycle accuracy to processor simulators. Moreover, appli-

cation behavior from an operating system makes it possi-

ble to skip idle cycles of processor simulators. All the 

proposed techniques are implemented in the CATS frame-

work. The framework provides simulation performances 

comparable to TLM with cycle accuracy. As future work, 

we are working to provide additional processor and inter-

connection network models. We will examine accuracy 

with multiple processors by comparisons with a real mul-

tiprocessor system. 
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