
Engineering Trust with Semantic Guardians
Ilya Wagner Valeria Bertacco

iwagner@umich.edu valeria@umich.edu

Advanced Computer Architecture Lab
University of Michigan, Ann Arbor, MI 48109

ABSTRACT
The ability to guarantee the functional correctness of digital
integrated circuits and, in particular, complex microproces-
sors, is a key task in the production of secure and trusted
systems. Unfortunately, this goal remains today an unful-
filled challenge, as even the most straightforward practical
designs are released with latent bugs. Patching techniques
can repair some of these escaped bugs, however, they often
incur a performance overhead, and most importantly, they
can only be deployed after an escaped bug has been exposed
at the customer site. In this paper we present a novel ap-
proach to guaranteeing correct system operation by deploy-
ing a semantic guardian component. The semantic guardian
is an additional control logic block which is included in the
design, and can switch the microprocessor’s mode of op-
eration from its normal, high-performance but error-prone
mode, to a a secure, formally verified safe mode, guaranteing
that the execution will be functionally correct. We explore
several frameworks where a selective use of the safe mode
can enhance the overall functional correctness of a processor.
Additionally, we observe through experimentation that se-
mantic guardians facilitate the trade-off between the design
validation effort and the performance and area cost of the fi-
nal secure product. The experimental results show that the
area cost and performance overheads of a semantic guardian
can be as small as 3.5% and 5%, respectively.

1. INTRODUCTION
System security and robustness has become a key con-

cern in many electronic computing systems. This concern
is most pronounced in military and medical systems, where
lives depend on a system operating correctly all of the time,
free of inadvertent or malicious faults. Today, nearly all of
the research into system security is focused on software cor-
rectness, since a system is most likely to be compromised
through an exploitation of a software bug. However, it is
also possible for a system to become compromised because
of hardware bugs. For example, the Intel Pentium F00F bug
[3] consisted of an invalid instruction sequence that would
lock up a processor. A hardware bug such as this could be
exploited remotely to implement denial-of-service attacks on
systems based on this processor. This attack could be per-
petrated even on systems running completely correct soft-
ware, since it relies exclusively on an underlying hardware
flaw. Unfortunately, as of today, even the simpler commer-
cial designs are released with latent bugs, which are often
exposed after the product has reached the customer, with
consequences that range from simple inclusion to an errata
document [4, 1, 2] to the unfortunate extreme of a product
recall [13]. While the past few decades have witnessed signif-
icant efforts to improve the hardware verification method-
ology, these efforts have been far outstripped by the mas-
sive complexity increase in modern digital designs, so that
today only a vanishingly small fraction of a design’s state

space can be validated before the device is manufactured. To
limit the exposure to a potential recall, hardware designers
have recently explored a few solutions, including microcode
patching [11, 10] and field-repairable control logic [12]. Un-
fortunately, these mechanisms often have limited scope in
terms of the design errors that they can overcome and can
incur high performance overhead. Most importantly, they
can be deployed only after an escaped bug has manifested
itself and has been identified, which is often too late for any
safety-critical application.

1.1 Contributions
The main contribution of this paper is a novel approach

that makes a step towards achieving complete functional
correctness in hardware designs such as microprocessors. In
this framework a hardware component called a semantic
guardian is automatically synthesized, based on validation
coverage data, and it is included together with the target
system’s hardware. At run time, the guardian monitors
a subset of the design’s internal nodes, and when a non-
validated configuration is encountered it switches the device
into a safe mode. The safe mode is an extremely stripped
down and lower performance mode of operation of the de-
sign, simple enough to be formally verified. By means of the
semantic guardian and the safe mode we can make sure that
the device is always operating in a verified configuration, at
least with respect to the observability nodes of the seman-
tic guardian. In addition, it is possible to derive a trade-off
between the effort spent in design-time validation and the
runtime performance cost due to the fraction of time spent
in the safe mode. We show that our approach is orthogo-
nal to traditional hardware patching and present examples
on how it can be combined with previous solutions. Our
experiments on an in-order and an out-of-order processor
pipelines show that this approach can introduce as little as
3.5% area overhead and protect a complex microprocessor
from control bugs with just 5% performance overhead.

The remainder of the paper is organized as follows: In
Section 2 we review previous approaches to trusted hard-
ware design and hardware patching. In Section 3 we present
the development and execution framework for our solution.
Section 4 illustrates how semantic guardians can be used in
synergy with hardware patching and Section 5 provides a
case study of a bus master device. The last three sections
discuss limitations, experimental results and conclusions.

2. PRIOR WORK
Traditional verification of hardware designs relies mostly

on simulation and constrained-random testbenches, which
exercise a design with streams of stimuli resembling real-
life applications. These approaches, however, cannot pro-
vide the strong guarantees of design correctness which are
often required for safety-critical devices. Alternatively, for-
mal methods, such as symbolic simulators, model checkers
and theorem provers, attempt to prove mathematically that

978-3-9810801-2-4/DATE07 © 2007 EDAA

a device behaves correctly under any operating condition.
Unfortunately, so far these methods had only partial success
in microprocessor verification. For example, even a simple
safety critical processor such as the VIPER [8] had to be
validated with ”intelligent exhaustive simulation”, since it
was too complex for formal tools. In 1995 Ho et al. [9]
attempted to verify a processor by generating all possible
control logic transactions. Although this proved effective
for a simple RISC processor, this approach doesn’t seem to
scale to handle today’s commercial designs, which include
complex features such as wide issue, out-of-order execution,
simultaneous multi-threading, and complex memory hier-
archies. As an example, the formal verification effort on
a mainstream processor such as the Intel Pentium 4 was
only limited to floating point units and decoder logic [6].
Thus, due to the limited scalability of formal techniques,
simulation-based approaches still remain the workhorse of
the verification effort in industry.

An alternative approach to guaranteeing microprocessor
correctness at run-time was proposed by Austin in [5]. This
work proposes a solution where a simple trusted processor
checks the results computed by a high-performance core,
which has been validated, but could not be formally verified.
If the results of the high-end core are erroneous, the simple
pipeline corrects them on-the-fly. In contrast, in our solution
we keep track of control states validated at design-time, and
only use our safety mechanism for the not-yet-validated con-
figurations. In addition, we can correct the execution using
the same hardware of the original system, by simply strip-
ping it down to its barebone functionality. The barebone
version is sufficiently simplified that we can formally verify
its correctness at design-time. In addition,microprocessor
design houses have recently started to employ techniques to
correct design flaws in the field. The most common of these
approaches is microcode patching [11, 10], which modifies
the semantics of execution of individual instructions by pro-
viding an alternative translation of the instructions to micro-
operations. This allows to bypass faulty situations in a way
that is transparent to the software applications running on
the processor. In our earlier work, we proposed an approach
called field-repairable control logic, which allows to patch
hardware at the control level [12]. This framework relies
on the manufacturer issuing a patch after an escaped bug is
identified and reported. The patch encodes all the configura-
tions in which the bug manifests, and it is loaded into a spe-
cialized memory in the processor as start-up. When any of
the ”buggy” configurations are observed at runtime, a recov-
ery mechanism is triggered. Although, these approaches can
correct escaped bugs in relatively cheaply and incur moder-
ate overheads, they still can tackle bugs only after they have
manifested themselves and have been reported. Hence, they
provide no guarantees that escaped, but undiscovered, bugs
cannot compromise device’s robustness.

3. TRUSTED HARDWARE DESIGN
The design flow we envision for our solution is shown in

Figure 1 and is similar to traditional design and verification
flows. We require that the design team formally verifies the
units that provide the key functionality of the device, i.e.
the safe mode operation. For example, core units required
for a processor’s safe mode include the datapath blocks,
while forwarding logic, pipelining, branch prediction, etc.
are performance enhancement units needed only in normal

����

�����	��
�	��

��	�

���������	�

��
��	����� ����
�������������������������
���������������� ����!����"#

���$���%�����������
����&������'���(#

)����������
���������&(�(

�&��!�(�(�*�
����$�+�����

,�(����%���������

�������� ������	
�

'���'(����
(����(

�
�

�
�
	�

�
�

�
�
	

�

��������
����������

���������(�����-��(�
$���������

Figure 1: Trusted hardware design flow. The safe mode
is verified thoroughly with formal tools, while the normal mode
is validated with focus on the most common functionality. A
semantic guardian is then automatically generated and manufac-
tured with the design. The guardian, together with a recovery
controller switches the design into the safe mode when any non-
validated scenario is observed at runtime.

mode. Note that, in safe mode the device can perform all
its necessary functions, but only at a baseline performance.
Moreover, since the safe mode provides only barebone func-
tionalities, it is simple enough to be tackled by modern for-
mal verification tools. The normal mode of operation, in-
cluding all the performance enhancements, is also validated
extensively (as it is common practice today) through a mix
of semi-formal and simulation tools. The main purpose of
this effort is to verify that the most typical, and frequently
occurring, operation scenarios are designed correctly.

��

�
�
�
�
�

��

������ ���

���

�	��

	����	��	� ���

���

����

��

���������.	�
����

����
/�

����
�00�

�����������

Figure 2: Trusted execution model with a semantic
guardian. When an un-trusted state in the pipeline’s operation
is observed by the guardian, the recovery controller switches the
processor into a safe single-cycle, single-instruction mode (safe
mode). Once the un-validated configuration is bypassed, the de-
vice transitions back to normal mode.

An important step in this process is the identification of
the signals which represent the critical internal state of the
design. The values observed on these signals during valida-
tion are monitored by the guardian generator. The guardian
generator tracks which configurations of the design have
been explored during the validation, and considers those to
be trusted states, since it assumes that the verification team
has validated the behavior of the device for those states.
All the configurations that were not validated are consid-
ered un-trusted. Afterwards, the guardian generator creates
a semantic guardian, as a combinational logic block, which
flags all the un-trusted states. In Section 3.2 we elaborate
on the details of the operation of the guardian generator
and present a specialized guardian synthesis and optimiza-
tion flow. The generator also creates a recovery controller,
which is connected to the output of the semantic guardian.
The controller has the responsibility of switching the design
into the safe mode whenever the guardian flags an un-trusted

state. It does so by disabling all design’s blocks except for
the core functionality units. For example, for the pipelined
processor shown in Figure 2, the guardian monitors the crit-
ical state set, and, when an un-trusted state is encountered,
it signals the recovery controller. The controller squashes
all unfinished instructions and restarts execution from the
first un-committed operation, forcing the safe mode. When
the un-trusted state is bypassed in safe mode, the recovery
controller restores normal mode operation.

3.1 Critical signal selection
As mentioned in the introduction, today’s designs feature

highly complex control blocks and multiple communication
interfaces, which are prone to design errors. The resulting
system is often so complex that modern formal verification
techniques cannot fully guarantee its proper operation in all
cases. Therefore, the selection of critical signals to be moni-
tored by the semantic guardian should focus on the key con-
trol signals within these complex performance-enhancement
blocks. For example, a module controlling data forwarding
in a microprocessor pipeline might take IDs of a source and
destination registers of instructions from different pipeline
stages and output forwarding bus control signals. Select-
ing these critical nodes to be monitored by the guardian
allows to prevent potential escaped errors in the forward-
ing mechanism. Similarly, control inputs to critical blocks
such as computational units, bus interfaces, and memory el-
ements in the design’s control FSMs are priority candidates
for guardian monitoring.

3.2 The guardian generator
The guardian generator monitors all the configurations

of a device explored during validation, with respect to the
selected critical signals. For each distinct configuration ob-
served, a confidence metric is calculated. This allows a de-
signer to distinguish the configurations that can be trusted
to operate correctly from the ones that have not been cov-
ered, or have been covered insufficiently. The un-trusted
configurations are then mapped into a combinational logic
block, which is synthesized and optimized to generate a se-
mantic guardian, whose output indicates the observation of
an un-trusted state.

To optimize area and propagation delay of the semantic
guardian block, we introduced a range of heuristic optimiza-
tions. First, we synthesize both our un-trusted set and its
complement, and then we select the smaller circuit. Then,
if any of the un-trusted configurations has been proven un-
reachable at design time, we use it as don’t care in opti-
mizing the guardian design. Additionally, designers might
choose to trade off the specificity, or accuracy, of the seman-
tic guardian for better physical parameters of the matching
circuit. In this scenario, some of the trusted states might
be re-labeled as un-trusted and included in the set, which
the guardian will flag. This operation has the potential to
increase the effectiveness of the optimization algorithm, and
therefore generate a smaller and faster semantic guardian.
On the other hand may cause false positives in the guardian
detection mechanism, hence, it is important to take the fre-
quency of occurrence of a state into consideration when per-
forming this type of optimization. Section 7 investigates the
trade-off between guardian accuracy and area/performance.

In the experiments described in this work we assume that
errors can only arise due to the device entering a state lead-
ing to erroneous computation. However, our approach can

also be used in a framework where errors are modeled as er-
roneous transitions between design states. In this case, tran-
sitions represented as pairs of states (source and sink) must
be tracked during validation and encoded in the guardian.
Although this approach allows to pinpoint bugs more pre-
cisely, the number of transitions, even with respect to our
critical signal abstraction, could be extremely large and,
therefore, the majority of them would be classified as un-
trusted even after significant validation effort.

4. SEMANTIC GUARDIAN AND PATCHING
One important aspect of the approach presented here is

that it is orthogonal to traditional hardware patching meth-
ods. Since the semantic guardian only observes the internal
state of a microprocessor, the microcode or software instruc-
tions that are executed on it are irrelevant to the robustness
of the system. This enables the design team to implement
a guardian for a patching mechanism itself, for example, to
check if a microcode patch is addressed correctly.

Additionally, it is possible to envision a design where both
a guardian and a hardware patching mechanism work in syn-
ergy. For instance, the patching mechanism could be used
to tune the processor to perform trusted activities more fre-
quently. In the case of a patching mechanism such as the
one of [12], where a specialized memory flags specific crit-
ical states, the patching memory can be used to overrule
the semantic guardian’s decision for selected configurations.
The configurations of choice would be those that have been
proven correct after the design’s release, resulting in an over-
all performance boost for the processor.

�����������	
��	�

�1

�
�

�
�

�

��

������ 	�	

��

���

��2�1��2�� �12

	�	

	�	2

34

�����������	
���

	�����	��

����	����	

�	���
�����

�	���
�����

�	���
�����

�	���
�����

�
�
�
�
�

Figure 3: Semantic guardian and patching hardware
working in synergy. A patch extending the set of trusted
configurations is uploaded to the system deployed in the field. A
match in the guardian can be overwritten by the patching hard-
ware as a trusted state, avoiding the transition to safe mode.

This scenario is illustrated in Figure 3: the hardware de-
signer continues the device validation after the release. If
and when an un-trusted configuration becomes sufficiently
validated, it is encoded and uploaded onto the specialized
processor memory at runtime. At this point, if the config-
uration is ever flagged by the guardian, the patching mech-
anism overwrites the decision, preventing the transition to
safe mode. Therefore, this approach allows the design team
to expand the set of trusted configurations even after the
device has been manufactured and shipped.

5. CASE STUDY
In this section we present a case study that illustrates the

proposed approach. The target device for our case study
is a bus master which accepts requests from several devices

with different priorities and allows transactions on the bus
to be pipelined. For instance, one device can be receiving a
grant and preparing for a transaction, while another can be
transmitting the address, while a third one can be sending
data. Note that pipelining improves the bus master per-
formance but introduces a fair amount of complexity. We
can simplify the system by allowing only one transaction
in flight at a time: this can be our safe mode. The sim-
ple safe mode can be verified with formal methods, while
the high-throughput, pipelined mode, may be too complex
and has to be validated through simulation. A possible ex-
ecution scenario involves a transaction being deferred while
receiving high-priority request. If such situation could not
be generated and validated at design-time, we would label it
as un-trusted, and the corresponding critical signals values
would be included in the semantic guardian.

���������

���� !

�"#$�%�"&�"�'�

��()� �

����� �

*)

�����*)

���� !�+�

�����

���� !�+�

����

��,��) ���� ���� ��-"�*-��.&���&� ��-"�*-��.&���&��

�&�%"%�-"�"�#

��"&�"�'�

�����

��"&�"�'�

����

���� !�/�

�����

���� !�/�

����

���� !�0�

�����

Figure 4: Trusted hardware paradigm. A pipelined
bus master design enters an un-trusted state when a high-priority
access is requested during a deferred transaction. The transaction
is terminated and the bus is granted to the high-priority device
in non-pipelined safe mode. After the high-priority transaction is
complete, the high-performance mode of operation is resumed.

When the master operates, the unverified scenario de-
scribed above would produce a match forcing the bus into
the non-pipelined safe mode, which allows the high-priority
transaction to go through as soon as possible. This event se-
quence is illustrated in Figure 4. Although the master might
work correctly in this situation even in high-throughput
mode, it is also likely that the control logic for this complex
guarantee contains a bug, especially since this functionality
was not validated. By introducing a semantic guardian we
make sure that no bugs, with respect to the abstract states
observed by the guardian, can manifest themselves, even in
rare and unverified cases.

6. LIMITATIONS AND EXTENSIONS
It should be noted that there are a few factors which may

limit the usefulness of the proposed approach. First, the
critical signals’ selection may impact the ability to detect
potential errors. In fact, these signals represents a design’s
abstraction and if an error is triggered by signals which are
not being monitored, then it would not be detected by our
approach. Hence, in general a poor selection of the criti-
cal signals can obliterate the protection that our approach
offers. A possible technique to make the solution to over-
come this type of problems is to create a series of semantic
guardians, each observing different portions of the activity,
and all connected to the recovery controller.

A second limitation of the method derives from the fact
that some states in the complete system may be labeled as
trusted, although they are not fully validated. The deci-
sion for the labeling is made by the verification team, based
on coverage and thoroughness of the validation, and it is
not guaranteed to be always correct. Thus, a configura-
tion might be mistakenly labeled as trusted, and safe mode

would not be triggered when it occurs. The alternative ap-
proach mentioned in Section 3.2, where transitions between
states are monitored and labeled as trusted, can provide a
somewhat finer control in this case.

7. EXPERIMENTAL RESULTS
The following section presents the details of our experi-

mental testbed, as well as the results of the analytical experi-
ments with semantic guardian generation flow, compression
and optimization, performance/area tradeoff, and, finally,
bug resilience of our approach.

7.1 Evaluation Platform
For our experiments we used two processor cores running a

subset of the Alpha instruction-set. The first core contained
an in-order five-stage single-issue pipeline, while the second
design, that we used in the last experiment only, has a two-
way superscalar out-of-order pipeline with renaming to the
re-order buffer. Both designs included small direct-mapped
instruction and data caches, and a global branch predictor
unit. The safe mode of operation for both designs was a
non-pipelined single-issue mode of operation where caches,
branch prediction, and speculative execution were disabled.
Since forwarding, stalling and speculative execution logic
were unused in this mode, both designs were simple enough
to be formally verified with Synopsys Magellan for all in-
struction types. Using the techniques described in [12] we
selected 26 control signals in the in-order pipeline and 16
signals in the out-of-order core to be observed during vali-
dation by the guardian generator. For semantic guardian’s
synthesis and optimization we used a combinations of several
techniques, including different configuration of Espresso [7]
computing the ON- or OFF-set of the combinational func-
tion. We also developed a proprietary heuristic which pro-
gressively collapses pairs of states with Hamming distance
of 1. Also, as mentioned in Section 3.2, if the un-trusted
set encompassed more than 50% of the total state space,
the trusted set was used instead to generate the guardian.
Finally, we developed a script which considers the output
of Espresso or of our synthesis heuristic and produces an
register-transfer level description of the guardian circuit,
which is then synthesized with Synopsys’ Design Compiler
and mapped to TSMC 0.18 and 0.13 µm libraries.

500

1000

1500

2000

2500

3000

3500

4000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 1000

Simulation length (cycles)

o

f
tr

u
st

ed
 s

ta
te

s

Open-loop constrained random

Closed-loop constrained random

0 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Figure 5: Trusted states vs. simulation effort. With
increasing number of simulation cycles more states can be checked
and labeled as trusted. Moreover, a more complex closed-loop
verification technique performs better then simple constrained
random approach.

7.2 Semantic Guardian Generation Results
In our first experiment we calculated the number of dis-

tinct critical signal values combinations (trusted states) ob-
served during the validation of the normal mode of opera-

Table 1: Area and propagation delay of the semantic
guardian generated with different optimizations.

TSMC 0.18µm TSMC 0.13µm
Optimization #ON- #DC- area delay area delay

method set set mm2 ns mm2 ns

Without Design Compiler optimization
No optimization 52104 0 0.0186 4.07 0.0099 3.78
Espresso+ 2455 11091 0.0194 2.79 0.0101 2.42
Espresso- 10586 1556 0.026 4.13 0.0144 3.24
Compaction 18137 843 0.0121 2.76 0.0062 2.47
Comp & Espr+ 2449 11097 0.0196 2.78 0.0101 2.46
Comp & Espr- 10586 1556 0.0252 4.44 0.0143 3.23

With Design Compiler optimization
No optimization 52104 0 0.0268 1.55 0.0168 1.28
Espresso+ 2455 11091 0.0212 1.14 0.0171 0.93
Espresso- 10586 1556 0.0324 1.59 0.0264 1.27
Compaction 18137 843 0.0173 1.19 0.0143 1.01
Comp & Espr+ 2449 11097 0.0246 1.08 0.0160 0.96
Comp & Espr- 10586 1556 0.0316 1.56 0.0269 1.3

tion. To produce stimuli we used both an open-loop and
closed-loop constrained random generators. In our frame-
work, a state was considered trusted if it is observed at least
once during the simulation, since the signals we selected
thoroughly describe the behavior of the processor control
FSM. The results of this experiment are shown in Figure 5.
It can be observed that, with increasing simulation length,
i.e. increasing validation effort, the number of states labeled
as trusted increases, leveling off at the far right of the graph.
Note that we could not perform a formal verification of this
design and, therefore, cannot estimate the fraction of the
overall reachable state-space covered during simulation.

In the second experiment we analyzed various compres-
sion techniques for best area-delay parameters of the se-
mantic guardian matching logic. The results of this study
are presented in Table 1. The columns list the compres-
sion technique, number of set bits and don’t care bits in the
in the Boolean function for the guardian and area in mm2

and propagation delay through the semantic guardian in ns.
Espresso+ and Espresso- indicate the circuit was obtained
optimizing the ON-set or the OFF-set with Espresso. Com-
paction is our heuristic optimization technique described
above, and the last are combination solutions. The top half
of the table shows results with no additional optimizations
by Design Compiler, while the bottom half shows the best
possible circuit that Design Compiler was able to produce
with the most narrow timing and area constraints.

In general, we found that with the more stringent area
and timing constraints, Design Compiler gives higher prior-
ity to delay optimization and produces a significantly faster
guardian. We also noted that Espresso generating the ON
set (Espresso+) or Espresso in combination with our com-
paction approach (Comp & Espr+) generated the circuits
with the smallest delay, at a tolerable area penalty. For
comparison, the area of the in-order core design, excluding
caches, in 0.18 µm technology was 0.5 mm2. Thus, with
Design Compiler optimization the best guardian can incur
as little as 3.5% are overhead in the design.

In the third experiment we investigated the possibility of
generating a smaller and faster circuit by re-labeling some
of the trusted states as un-trusted. Note that in this ex-
periment, the semantic guardian was generated from the
trusted set, therefore, when trusted, but rare, states are re-
moved from the set, the guardian becomes smaller. This ef-
fect is amplified due to better compressibility of the set with
rare states removed. In other words, Espresso and our com-
paction heuristic were capable to achieve a more effective

2

2.5

3

3.5

4

4.5

5

5.5

10
0%

-0
.25

-0
.50

-0
.75

-1
.00

-1
.25

-1
.50

-1
.75

-2
.00

-2
.25

-2
.50

-2
.75

-3
.00

-3
.25

-3
.50

-3
.75

-4
.00

-4
.25

-4
.50

-4
.75

-5
.00

% of trusted states re-labeled

0.18um

0.13um

g
u

ar
d

ia
n

 d
el

ay
 (

n
s)

Figure 6: Delay impact of trust re-labeling.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

10
0%

-0
.2

5
-0

.5
0

-0
.7

5
-1

.0
0

-1
.2

5
-1

.5
0

-1
.7

5
-2

.0
0

-2
.2

5
-2

.5
0

-2
.7

5
-3

.0
0

-3
.2

5
-3

.5
0

-3
.7

5
-4

.0
0

-4
.2

5
-4

.5
0

-4
.7

5
-5

.0
0

% of trusted states re-labeled

0.18um

0.13um

g
u

ar
d

ia
n

 a
re

a
(m

m
2)

Figure 7: Area impact of trust re-labeling.

simplification without these states. In addition, it is possi-
ble that when these states were removed, more DC combi-
nations became available, further simplifying the guardian
design.

For this experiment, each state observed in validation is
labeled with its observation frequency, that is, the number of
times the state has been seen, divided by the total number of
simulation cycles. The baseline matcher included all trusted
states and hence its cumulative observation frequency was
equal to 100%. Then we grouped the states in clusters whose
cumulative observation frequency was 0.25%, starting from
the lowest frequency states. Each of these clusters was then
progressively removed, one at a time, from the pool used
to generate the semantic guardian, and we created a new
guardian each time without timing or area constraints. The
results of this experiment are presented in Figures 6 and
7, where the X-axis shows the trusted-set size reduction in
percent of observation frequency. It can be observed from
the diagrams that there is a definite reduction in area for
smaller trusted sets, enabling up to a 4x area reduction for
just a 5% penalty in observation frequency. This trend can
also be observed in the matching delay. The trust re-labeling
algorithm allows for the designer to trade off the precision
of the matcher to achieve improved area and delay for the
guardian circuit.

7.3 Performance Evaluation
To evaluate the performance drop due to safe mode opera-

tion we augmented the in-order processor core described ear-
lier with semantic guardians created from closed-loop con-
strained random simulations of different lengths, and, thus,
having trusted sets with different sizes. We evaluated the
processor on a set of benchmarks stressing different aspects
of the pipeline operation, and we measured the average CPI
in each case. As shown in Figure 8, guardians created with
less verification effort incur a significant slowdown, however,
the curve levels off after a while at a 5% CPI overhead.
Therefore, the optimal semantic guardian in this case is not
the most complete circuit, but rather a smaller guardian that
provides tolerable CPI penalty. In this experiment the base-
line CPI for the in-order design running these benchmarks
was 1.48, and the safe mode was invoked roughly once for
every 200 instructions.

0

20

40

60

80

100

120

140

500 1000 1500 2000 2500 3000 3500 4000 4500

of trusted states

C
P

I i
n

cr
ea

se
 (

%
)

Figure 8: Impact of the validation thoroughness.
With increasing number of trusted states the semantic guardian
imposes smaller CPI overhead.

Table 2: CPI overhead for different design errors

Bug name Exposing sequence CPI

In-order pipeline
Ideal/Worst 1.48/5.0
br+br 2 consecutive branches caught
ubr+cbr Cond. branch after uncond. branch caught
mem+mem 2 memory accesses back-to-back 1.92
forwarding1 Forwarding source A from WB 1.74
forwarding2 Forwarding source A from MEM/WB 2.10
store+mem Store followed by another memory access 1.67
load+branch Load followed by a dependent branch 1.67
Average 1.82

Out-of-order pipeline
Ideal/Worst 2.25/7.0
2retire+2issue Double issue and double retire caught
rob+store Store at the head of full ROB 2.99
rob+memory Memory access at the head of full ROB 3.09
non br issue 2 non-branch instr. issued when 2 retire caught
2mispred 2 simultaneous branch mispredictions 3.27
mispredict+rs branch misprediction if RS’s are full 2.99
Average 3.09

In our final experiment we tested the actual robustness
of our approach, by inserting seven distinct errors, one at
a time, into the control logic of the in-order pipeline. The
errors were based on the publicly available errata of modern
microprocessors adapted for our design. All of the bugs in-
volved complex interactions of multiple instructions in the
pipeline; note that these scenarios did not exist in the for-
mally verified safe mode, when only one instruction was al-
lowed in the pipeline at any time. Two of the errors were
caught during the validation process of the complete system
(we used a closed-loop constrained-random simulator). Five
of the errors, on the other hand, escaped into the design,
because the simulator could not expose them. Nevertheless,
the semantic guardians produced during the validation could
completely protected the system from these errors, and all
28 benchmarks terminated correctly when running on buggy
processors with semantic guardians. We conducted a sim-
ilar experiment with the out-of-order pipeline: out of six
inserted bugs, two are caught in validation, while other es-
caped. Nevertheless, all tests terminated correctly. Details
of this experiment are presented in Table 2. The first col-
umn of the table lists the bug name, the second gives a
short description of the flaw, and the last column shows if
the bug was caught during validation or escaped and caused
any overhead because of the semantic guardians.

8. CONCLUSIONS
In this paper we presented a novel approach to trusted

hardware design that is orthogonal to traditional hardware
patching techniques. Our approach makes use of a semantic
guardian circuit that is generated automatically based on an
analysis of the validation effort. The guardian ensures that
at runtime the system always stays in a verified state, which

is either a trusted state of the normal operation mode or
a formally verified safe mode configuration. The safe mode
is invoked by the guardian every time an un-trusted state
is encountered. Our approach allows to directly trade off
verification effort, area, and performance of the system and
successfully combat escaped design errors as shown by our
experimental results. We also investigated several optimiza-
tion techniques that allow for a significant reduction of area
and propagation delay of the semantic guardian circuit. In
addition, we investigated the tradeoffs between verification
effort, area and performance that our methodology offers.
The results of this study show that a semantic guardian
protecting from a variety of highly complex bugs can in-
cur as little as 3.5% area overhead and have a performance
penalty of approximately 5%. Finally, we discussed several
approaches of how semantic guardians can be used jointly
with traditional hardware patching techniques to increase
the level of system robustness or to enable validation to
continue even after the system is released.

9. REFERENCES
[1] Intel(R) StrongARM(R) SA-1100 Microprocessor

Specification Update, Feb. 2000.

[2] Intel(R) 8xC251Sx Specification Update, Nov. 2001.

[3] Intel(R) Pentium(R) Processor Invalid Instruction
Erratum Overview, July 2004. www.intel.com/
support/processors/pentium/sb/cs-013151.htm.

[4] IBM PowerPC 750GX and 750GL RISC
Microprocessor Errata Notice, July 2005.

[5] T. Austin. DIVA: A Dynamic Approach to
Microprocessor Verification, May 2000.

[6] B. Bentley and R. Gray. Validating the Intel Pentium
4 Microprocessor. Intel Technology Journal, pages 1–8,
Feb. 2001.

[7] R. Brayton, G. Hachtel, C. McMullen, and
A. Sangiovanni-Vincentelli. Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, 1984.

[8] B. Brock and W. A. Hunt. Report on the Formal
Specification and Partial Verification of the VIPER
Microprocessor. In Compass ’91: 6th Annual
Conference on Computer Assurance, pages 91–98,
Gaithersburg, Maryland, 1991. National Institute of
Standards and Technology.

[9] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill.
Architecture validation for processors. In ISCA ’95:
Proceedings of the 22nd annual international
symposium on Computer architecture, pages 404–413.
ACM Press, 1995.

[10] J. K. P. Kevin J. McGrath. U.S. Patent no. 6438664:
Microcode patch device and method for patching
microcode using match registers and patch routines,
Oct. 1999.

[11] D. S. C. Michael D. Goddard. U.S. Patent no.
5796974: Microcode patching apparatus and method,
Nov. 1995.

[12] I. Wagner, V. Bertacco, and T. Austin. Shielding
Against Design Flaws with Field Repairable Control
Logic. In DAC, Proceedings of Design Automation
Conference, 2006.

[13] A. Wolfe. Intel ”bug disaster”. EE Times, July 97.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

