
Introducing New Verification Methods into a Company’s Design Flow:
An Industrial User’s Point of View

Robert Lissel, Joachim Gerlach

Robert Bosch GmbH
Automotive Electronics

Tuebinger Strasse 123, 72762 Reutlingen, Germany
{robert.lissel , joachim.gerlach}@de.bosch.com

Abstract

Today the task of design verification has become one of
the key bottlenecks in hardware and system design. To ad-
dress this topic, several verification languages, methods
and tools, which address several issues of the verification
process, were developed by multiple EDA vendors over the
last years. This paper takes an industrial user’s point of
view and explores the difficulties introducing new verifica-
tion methods into a company’s “naturally grown” and well
established design flow – taking into account application
domain specific requirements, constraints given by the
existing design environment and economical aspects. The
presented approach extends the capabilities of an existing
verification strategy by powerful new features while keeping
in mind integration, reuse and applicability aspects. Based
on an industrial design example the effectiveness and poten-
tial of the developed approach is shown.

1 Introduction

In the area of hardware and system design, the task of
design verification is taking over more and more a leading
part. Today, it is expected that about 70% of the overall
design effort is used for verification activities. Therefore,
increasing the efficiency of the verification task will make a
significant contribution to reduce time-to-market.

Against that background, a broad range of verification
languages, methods and tools, which address several aspects
of verification using different techniques, was developed by
multiple EDA vendors over the last years. They include
hardware verification languages like SystemC [1][2], Sys-
temVerilog [3] or e [4] that are able to support verification
issues much better than traditional hardware description
languages like VHDL or Verilog. New verification strate-
gies using object-oriented mechanisms as well as assertion-
based techniques built on top of simulation-based and for-

mal verification enable to implement a verification envi-
ronment much more compact and reusable.

While advanced verification methods include high poten-
tial for increasing the level of verification efficiency and
quality, their introduction into an existing and well estab-
lished industrial development process often holds several
difficulties. Taking an industrial user’s point of view, sev-
eral aspects have to be considered carefully. They include
specific requirements that come up with the specific appli-
cation area. Furthermore, the reusability of available verifi-
cation components and commercial aspects like costs for
new tool licenses and training of the design teams have to
be considered. All those aspects potentially hinder that new
and advanced verification approaches enter a “naturally
grown” and well established company’s design flow.

The paper at hand addresses the gap outlined above and
critically discusses the difficulties introducing new verifica-
tion methods into an existing company’s design flow. In
regard of the specific requirements of the automotive elec-
tronics design domain, the paper identifies verification tasks
that include high potential and open challenges to be solved.
For the example of a verification strategy built up at Bosch,
the paper works out the specific requirements and environ-
mental constraints that need to be considered. Finally the
integration into our industrial design flow is shown taking
into account practicability and applicability aspects.

The paper is organized as follows: Chapter 2 describes

the landscape of verification methods and identifies chal-
lenges that are highly relevant. Chapter 3 works out our
strategy for providing new and advanced verification
mechanisms. Chapter 4 illustrates our approach in terms of
an industrial design example, and discusses extended fea-
tures resulting from our strategy.

2 Verification challenges

Over the last years, a large number of verification tools
and methods were developed, which address several aspects

978-3-9810801-2-4/DATE07 © 2007 EDAA

of verification using different techniques. In the area of
digital hardware verification, metrics for an assessment of
the verification status as well as simulation-based and for-
mal verification approaches are taking central positions.
Figure 1 gives an overview of the approaches and the de-
rived methods. Different design and verification languages
and EDA solutions of different vendors are covering this
“verification landscape” to different degrees and in different
parts.

Metrics

Completeness

Code Coverage

Functional
Coverage

Simulative
Methods

Formal
Methods

Equivalence
Checking

Property
Checking

Intent
Checking

Dynamic
Formal

Assertion Based
Verification

Clock Domain
CheckingDirected

Testing

Constraint
Random

Coverage Driven
Verification

Testbench
Automation

HW-SW
Co-Sim

DRC /
Linting

VerificationPlan

Reference
Models

AMS
Simulation

Figure 1 Verification landscape

Introducing new verification languages and methods into
a well established design and verification flow requires not
only pure technical discussions. Also the acceptance among
the developers as well as the risk of touching a well work-
ing process has to be considered. Therefore, a smooth tran-
sition and the ability to reuse legacy verification code are
essential. Especially, existing testcases contain a lot of in-
formation on former design issues. Since the majority of
automotive designs are classified as safety critical, even a
marginal probability of missing a bug due to a new verifica-
tion method is not acceptable. On the other hand the reuse
of legacy code should not result in multiple testbench ap-
proaches within one project. So the use of legacy testcases
should ideally be part of a new approach. Thus it would be
possible to enhance existing testcases instead of writing new
ones. Besides, reuse often requires slight changes in existing
testcases due to new features that have been implemented.
Hence, if a new verification method does not support an
adaptation of legacy testcases, they have to be re-
implemented.

The second important challenge is to convince the de-
signer to apply new methods and languages. Designers are
experienced and work efficiently with their established
strategy. Loosing this efficiency is a serious risk. In many
cases there is no strict separation between design and verifi-
cation engineers. Hence, a large number of developers are
affected when changing the verification method. Further-

more, new methods require training activities and cause a
considerable overhead during their first applications. But
most of the projects have a tough time schedule and do not
allow trying out and possibly rejecting a new method. To
overcome those difficulties, it is important to carefully col-
lect all the requirements and to evaluate new approaches
outside critical projects. A possible way is to introduce new
methods as add-on to the existing approach. Thus a new
method or tool may improve the quality but would never
make it worse. As a consequence, the evolution of verifica-
tion methods might be more desirable than a completely
new solution.

Considering the technical aspects of verification, auto-
motive designs show some interesting special requirements:
The variety of digital designs reaches from a few thousand
gates to multi-million gates System-on-Chip designs. Typi-
cal automotive ICs implement analog, digital and power
semiconductors on the same chip. The main focus for those
mixed signal designs is the overall verification of analog
and digital behavior rather than a completely separated
digital verification. But also pure digital IC’s e.g. in the area
of car multimedia have to be covered.

In practical use, the functional characteristics of the de-
sign to be checked determine the most appropriate verifica-
tion method: If the calculation of the expected behavior is
“expensive”, directed tests may be the best solution. If there
is an executable reference model available or if the expected
test responses are easy to calculate, a random simulation
may be the first choice. Instead of defining hundreds of
directed testcases, a better approach could be to randomize
the input parameters with a set of constraints allowing only
legal behavior to be generated. In addition, special directed
testcases could be implemented by appropriately constrain-
ing the randomization. The design behavior is observed by a
set of checkers. Functional coverage points are necessary to
achieve a visibility of what functionality has been checked.
Observing functional coverage and manually adapting the
constraints to meet all coverage goals leads to Coverage-
Driven Verification (CDV) techniques. Automated ap-
proaches built on top of different verification languages
[1][2][3][4][5] result in Testbench Automation (TBA)
strategies.

A directed testbench approach might be most suitable for
low complexity digital designs, in case that reference data is
not available for randomizing all parameters or the given
schedule does not allow implementing a complex constraint
random testbench. Furthermore, mixed-signal designs may
require directed stimulation. Often the function is distrib-
uted over both analog and digital parts, e.g. an analog feed-
back loop to the digital part. Verifying the digital part sepa-
rately makes no sense in this case. In fact, the interaction
between analog and digital parts is error-prone. Thus, the
integration of analog behavioral models is necessary in
order to verify the whole function. One technique to deal
with this requirement is mapping the analog function to a
VHDL behavioral description and simulating the whole
design in a directed fashion. In other cases, the customer

delivers reference data originating from a system simulation
(e.g. done in Matlab [6]). Integrating that reference data
within a directed testcase is mandatory. Since each directed
testcase may be assigned to a set of features within the veri-
fication plan, the verification progress is visible without
implementing functional coverage points. Hence, the im-
plementation effort is much lower compared to a constraint
random and CDV approach up to a certain design complex-
ity. Anyway, for some parameters not affecting the expected
behavior (e.g. protocol latencies) it makes sense to intro-
duce randomization.

Formal verification techniques like property checking
provide the opportunity to prove the correctness of a design
characteristic in a mathematically correct manner. In con-
trast to simulation-based techniques, which only consider
specific paths of execution, formal techniques allow for an
exhaustive exploration of the state space. On the other hand,
formal techniques are usually strongly limited in circuit size
and temporal depth. Therefore, formal and simulation-based
techniques need to be combined carefully to optimize the
overall verification result while minimizing the verification
effort to be spent. This contribution concentrates on the
simulation part of the problem.

In summary, the challenge is to apply the different veri-
fication techniques where they fit best. In order to achieve
visibility of the verification progress and the contribution
each technique provides, we need powerful metrics. The
question is how to achieve the best result regarding the
available time, money and manpower budget rather than
finding the theoretically best solution. The requirements on
verification methods reach from mixed-signal simulation,
simple directed testing to complex constraint random and
formal verification as well as hardware/software integration
tests. Nevertheless, a uniform verification method is de-
sired, providing the flexibility to satisfy all the needs of
verification within an automotive environment.

3 Verification strategies

For an illustration of the aspects discussed before, this
chapter demonstrates how SystemC has been applied to
enhance a company-internal VHDL-based directed test-
bench approach while meeting the challenges defined
within the previous chapter. This SystemC-based approach
allows the introduction of constraint random verification
techniques but also the reuse of existing testbench modules
and testcases. Thus a smooth transition towards a new
method is possible.

3.1 VHDL-based testbench approach

As figure 2 shows, the main concept of our testbench ap-
proach is to associate one testbench module (TM) or bus
functional model with each design-under-test (DUT) inter-
face. All those testbench modules are controlled by a single
command file. Each testbench module provides interface-

specific commands to its DUT interface. Furthermore, it
implements a command loop process requesting the next
command from the command file using a global testbench
package. Thus a so called virtual interconnect layer is estab-
lished. Structural interconnect is required only between
testbench modules and DUT.

Virtual Interconnect

Testbench
Package

Structural
Interconnect

Command
File

Command
File

TM3

TM4

TM2

TM1 DUT

Testbench

Figure 2 VHDL testbench approach

The command file is an ASCII file containing command
lines for the particular testbench modules as well as control
flow and synchronization statements. Due to its unified
structure, this testbench approach allows to easily reuse
existing testbench modules.

Figure 3 Command file example

Figure 3 gives an example of the command file syntax.
Each line starts with either a testbench module identifier
(e.g. CLK, CFG), the ALL identifier for addressing global
commands (e.g. SYNC) or control flow statements. Com-
mand lines addressing testbench modules are followed by a
module-specific command and optional parameters. Thus
line 1 addresses the clock generation module CLK. The
command PERIOD is implemented within this clock gen-
eration module for setting the clock period and requires two
parameters: value and time unit. Line 3 contains a synchro-
nization command to the testbench package. The parameter
list of the synchronization command specifies the modules
to be synchronized (all for line 3; A2M and CFG for line 7).
Since in general all testbench modules are operating in
parallel and thus requesting and executing commands inde-
pendently, it is important to synchronize them at dedicated
points within the command file. When receiving a synchro-
nization command, the specified testbench modules will

1 : CLK PERIOD 10 ns
2 : CLK RESET 0 12
3 : ALL SYNC ALL
4 : -- configure filter 1
5 : CFG WRITE h#F004 b#10011000
6 : CFG READ dec1_cfg_addr1 h#98
7 : ALL SYNC A2M CFG
8 : -- configure audio channel 1
9 : A2M FREQ_CHANNEL 1 48 KHz
10: A2M START_CHANNEL 1
11: -- run filter for 1 ms
12: ALL WAIT deltime 1 ms
13: ALL QUIT

stop requesting new commands until all of them have
reached this synchronization point.

3.2 Introducing a SystemC-based approach

Motivation for applying SystemC is to enhance the exist-
ing VHDL-based testbench approach. The idea behind the
initial VHDL testbench approach was to define a sequence
of commands, which are executed by several testbench
modules and thus to describe a testcase within a simple text
file. This works fine with the implemented VHDL-based
approach. But the application of this concept showed that it
is also desirable to get more flexibility within the command
file. Besides, VHDL itself lacks advanced verification fea-
tures provided by Hardware Verification Languages (HVL)
like e, SystemVerilog HVL and SystemC together with the
SystemC Verification Library (SCV).

However, the basic concepts of applying a simple text
file for defining testcases as well as the parallel command
execution and synchronization of testbench modules have
proved to be efficient. Therefore we decided to extend the
existing approach. But a hardware description language like
VHDL is not really suitable to implement a testbench con-
troller which has to parse and execute an external command
file. Hence, we decided to apply SystemC which provides a
maximum flexibility, due to its C++ nature and the large
variety of available libraries, especially the SCV. Using
SystemC requires a mixed-language simulation approach.
The DUT may still be implemented in VHDL, whereas the
testbench moves towards SystemC. Available commercial
simulators support mixed-language simulation.

The implemented SystemC testbench controller covers
the full functionality of the VHDL testbench package and
additionally supports several extensions of the command
file syntax. This makes the usage of existing command files
fully compliant to the new approach. The new SystemC
controller enables to apply variables, arithmetic expressions,
nested loops, control statements and especially random
expressions to be defined within the command file. How-
ever, those features are intended to implement testcases
more efficiently and flexibly. In general, the major test-
bench behavior should be implemented in VHDL or Sys-
temC within the testbench modules. Thus the strategy is to
implement more complex module commands rather than too
complicated command files. But the SystemC approach
does not only extend command syntax. It provides static
script checks, more meaningful error messages and debug-
ging features.

Implementing the testbench controller in C++ following
an object-oriented structure allows improving the usability
of the concept. A SystemC testbench module is inherited
from a testbench module base class. Hence, only the mod-
ule-specific features have to be implemented. For example,
the VHDL-based approach required to implement a com-
mand loop process for each testbench module in order to
fetch the next command. This is not required when applying
the SystemC approach because the command thread is in-

herited from the base class. Only the command functions
have to be implemented. For the implementation of new
features like expression evaluation, the use of C++, with
lots of libraries available, shows its strength in particular.
Thus, we take advantage of using the Spirit Library [7] for
resolving arithmetic expressions within the command file.

Another important requirement from a practical point of
view is that existing VHDL-based testbench modules may
be used unchanged within the new approach. Therefore,
SystemC co-simulation wrappers need to be implemented.
Generation of co-simulation wrappers is provided using a
fully automated transformation approach which is described
in [8]. Hence, a legacy VHDL-based testbench environment
may be transferred to our new SystemC-based approach. All
VHDL testbench modules are wrapped in SystemC and a
new SystemC testbench top-level is built automatically.
This allows taking advantage of the new command file
syntax without re-implementing any testbench module in
SystemC. Especially, the introduction of randomization
within the command file gives the chance to enhance exist-
ing testcases with minimum effort.

SystemC
VHDL
SystemC
VHDL

Virtual Interconnect

Testbench
Controller

Structural
Interconnect

Command
File

Command
File

TM3

TM1

TM2

TM4DUT

SystemC
Wrapper

SW - C/C++
functions

Testbench

Figure 4 SystemC testbench approach

Figure 4 visualizes a testbench environment including a
mixture of VHDL and SystemC testbench modules. As a
first step, legacy testbench modules may be kept, like it’s
shown for TM1, TM2 and TM4. Some of the testbench
modules, like TM3, may be replaced by more powerful
SystemC modules later. Besides, SystemC modules allow
the easy integration of C/C++ functions. Moreover, the
testbench module provides the interface handling and cor-
rect timing for connecting a piece of software.

4 Design example

In the following, some extended and new verification
features resulting out of our SystemC-based testbench ap-
proach will be shown and discussed in terms of an industrial
design example, a configurable decimation filter, taken
from a Bosch car infotainment application. The decimation
filter is used for reducing the sampling frequency of audio
data streams. Actually, the decimation filter consists of two
independent filter cores. The first one may reduce the input

sample frequency of one stereo channel by a factor of three,
while the second one may either work on two stereo chan-
nels with a decimation factor of two or on one stereo chan-
nel with a decimation factor of four. The decimation filter
module possesses two interfaces with handshake protocols.
One is applied for audio data transmission and the other one
for accessing the configuration registers.

The original verification environment has been imple-
mented in VHDL, based on the legacy testbench concept as
described within chapter 3. Beside a clock generation mod-
ule, two testbench modules for accessing both the data
transmission and the configuration interface were required.
For fulfilling the verification plan, a set of directed testcases
(command files) has been created.

Configuration
TM

Testbench
Controller

Command
File

Command
File C/SystemC

VHDL
C/SystemC
VHDL

Testbench

Audio
Data TM

Clock
TM

Decimation
Core 2

Scheduler

Configuration

RAM
1

Decimation
Core 1

DUT

Register
Definitions

C Test
Program

Application
Software

RAM
2

CDV
TM

Figure 5 Decimation filter

Figure 5 shows the top-level architecture of the decima-
tion filter embedded within a SystemC-based testbench. The
example demonstrates the smooth transition towards our
SystemC-based testbench approach as well as the applica-
tion of constraint random and coverage-driven verification
techniques. Furthermore, the presented approach proves its
flexibility by providing an efficient hardware software co-
verification method.

4.1 Constraint Random Verification

For the decimation filter example, the randomization
mechanisms of our SystemC-based testbench approach have
been extensively used. Thus, randomized regression tests
have discovered some interesting corner cases. As a first
step, the existing VHDL testbench modules have been im-
plemented in SystemC. Thereby SystemC showed no sig-
nificant difficulties nor did require more implementation
time. In order to check the compliance with the legacy
VHDL approach, all existing testcases have been re-
simulated.

Since reference audio data is available for all filter con-
figurations, a random simulation could be implemented
quickly. Thereby randomization techniques have been ap-

plied to both the testbench modules and the command file.
The command file has been split into a main file containing
the general function and an include file holding randomized
variable assignments. The main command file consists of a
loop which applies all randomized variables from the in-
clude file in order to reconfigure and run the filter for a
dedicated time.

Figure 6 Constraint include file

Figure 6 illustrates an excerpt from the include file. For
example line 24 describes the load scenario at the audio data
interface. The variable #rand_load will be applied as pa-
rameter to a command of module A2M later within the main
command file. A directed test will be enforced by assigning
constant values instead of randomized items. Hence, the
required tests, claimed by the verification plan, could be
implemented more efficiently as constraint include files.
After the verification plan has been fulfilled all parameters
may be randomized for running overnight regressions and
finding corner cases.

4.2 Coverage-Driven Verification

To get an idea of the verification progress, especially
when applying random verification, coverage metrics are
required. Analyzing the code coverage is necessary but not
sufficient. For the given example, we implemented a set of
functional coverage points using PSL [5]. Since PSL does
not support cover groups and cross coverage, we developed
a Perl [9] script generating those cross coverage points.
Nevertheless, implementing coverage points has been a
considerable effort, but as a result we recognized some
verification holes within our VHDL directed testbench.
Considering the fully randomized testcase, all coverage
points will be eventually covered. In order to meet the cov-
erage goals faster and thus reducing the required simulation
time, a much more efficient approach is defining multiple
randomized testcases using stronger constraints.

Automating this procedure of manually adapting con-
straints leads to another understanding of TBA which is the
automatic adaptation of constraints due to the measured
coverage results. Therefore it is necessary to manually de-
fine dependencies between constraints and coverage items.
Such a testbench would hit all desired coverage points
automatically. The disadvantage of this approach is the high
implementation effort for the definition of constraints, cov-

10: -- number of reconfiguration iterations
11: A2M ASSIGN reconf_cnt = 20
12: -- randomized parameter (for each iteration)
13: -- define filter operation
15: A2M ASSIGN rand_filter_op_dec2 = ${ keep 20% , stop 20% ,
 fact_2 , fact_4 }
19: -- frequency in KHz
20: A2M ASSIGN rand_in_freq_dec1 = ${ 144 60% , 72 30% , 36}
22: -- run time for each iteration
23: A2M ASSIGN rand_run_time = ${ 50000:60000 }
24: A2M ASSIGN rand_load = ${ none , rand ,
 low_const, low_rand ,
 mid_const, mid_rand ,
 high_const, high_rand}

erage items and their dependencies. Nevertheless, we dis-
covered a method based on our SystemC testbench and
PSL: First we need access to our coverage points. Therefore
we assign coverage points to VHDL signals which may be
observed from SystemC. Thereafter we define dependencies
between those coverage results and constraints within either
the command file or a SystemC testbench module. For
automating this method we improved the above mentioned
Perl script. Thus, we generate a CDV testbench module,
which either passes coverage information to the command
file or may be extended for adopting the constraints in Sys-
temC.

4.3 HW/SW co-simulation

In the target application, the decimation filter is embed-
ded within an SoC and thus controlled by a processor. In
order to setup a system level simulation, a vendor-specific
processor model is given in C and Verilog. Hence, the com-
piled and assembled target application software, imple-
mented in C, may be executed as binary code on the given
processor model. But due to this co-simulation approach,
the simulation performance decreases notably, although the
actual behavior of the processor model is not relevant in this
case.

The application C code consists of a main function and
several interrupt service routines. Controlling the audio
processing module like the decimation filter is done by
accessing memory-mapped registers. Thus the processor
performs read and write accesses via its hardware interface.

To overcome the performance limitation, the idea is to
omit the processor model and connect the C code directly to
a testbench module, like illustrated by figure 5. Due to its
C++ nature, our SystemC-based testbench approach offers a
smart solution. The intention is to map our testbench mod-
ules read and write functions to register accesses within the
application C code. Therefore, we re-implemented the exist-
ing register definitions, applying an object-oriented style.
This allows overloading the assignment and implicit cast
operators for those registers. Hence, reading a register and
thus applying the implicit cast results in a read command
being executed by the testbench module. Similarly, assign-
ing a value to a register results in a write command being
executed by the testbench module. Finally, we need a
mechanism to initiate the execution of the main and inter-
rupt functions from the application C-code. Therefore, we
implemented module commands starting those C-functions.
Hence, we were able to control and synchronize the execu-
tion of those functions within our command file. This is
essential in order to control the audio testbench module,
which is required to transmit and receive audio data with
respect to the current configuration. In order to execute the
interrupt functions we applied the interrupt mechanism of
our testbench concept.

5 Conclusions

In this paper, difficulties introducing new verification
methods into an existing company’s design flow were
worked out and critically discussed.

Taking a company-internal VHDL-based testbench ap-
proach as an example, we demonstrated a smooth transition
towards advanced verification techniques based on Sys-
temC. The presented approach allows us to reuse existing
verification components and testcases. Therefore, we guar-
antee that running projects benefit from new techniques
without the risk of losing design efficiency or quality. This
results in a maximum of acceptance among the developers,
which is essential for successfully introducing new meth-
ods. The effectiveness and potential of the developed ap-
proach was shown in terms of an industrial design example
given by a configurable decimation filter.

6 Acknowledgements

This work was partially funded by the German BMBF
(Bundesministerium für Bildung und Forschung) under
grant 01M3078.

7 References

[1] Open SystemC Initiative (OSCI), SystemC 2.1 Library,
www.systemc.org

[2] Open SystemC Initiative (OSCI), SystemC Verification
Library 1.0, www.systemc.org

[3] IEEE Std 1800-2005, IEEE Standard for SystemVer-
ilog- Unified Hardware Design, Specification, and
Verification Language

[4] IEEE Std 1647-2006, IEEE Standard for the Func-
tional Verification Language 'e'

[5] IEEE Std 1850-2005, IEEE Standard for Property
Specification Language (PSL)

[6] The MathWorks Homepage, www.mathworks.com
[7] Spirit Library, http://spirit.sourceforge.net
[8] J.H. Oetjens, J. Gerlach, W. Rosenstiel, An XML Based

Approach for Flexible Representation and Transforma-
tion of System Descriptions, Forum on Specification &
Design Languages (FDL) 2004, Lille, France.

[9] Wall, Larry, et.al., Programming Perl (Second Edi-
tion), O’Reilly & Associates, Sebastopol, CA., 1996.

[10] IEEE Std 1076.3-1997, IEEE standard VHDL synthesis
packages

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

