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Abstract 

Today the task of design verification has become one of 
the key bottlenecks in hardware and system design. To ad-
dress this topic, several verification languages, methods 
and tools, which address several issues of the verification 
process, were developed by multiple EDA vendors over the 
last years. This paper takes an industrial user’s point of 
view and explores the difficulties introducing new verifica-
tion methods into a company’s “naturally grown” and well 
established design flow – taking into account application 
domain specific requirements, constraints given by the 
existing design environment and economical aspects. The 
presented approach extends the capabilities of an existing 
verification strategy by powerful new features while keeping 
in mind integration, reuse and applicability aspects. Based 
on an industrial design example the effectiveness and poten-
tial of the developed approach is shown. 

1 Introduction 

In the area of hardware and system design, the task of 
design verification is taking over more and more a leading 
part. Today, it is expected that about 70% of the overall 
design effort is used for verification activities. Therefore, 
increasing the efficiency of the verification task will make a 
significant contribution to reduce time-to-market.  

Against that background, a broad range of verification 
languages, methods and tools, which address several aspects 
of verification using different techniques, was developed by 
multiple EDA vendors over the last years. They include 
hardware verification languages like SystemC [1][2], Sys-
temVerilog [3] or e [4] that are able to support verification 
issues much better than traditional hardware description 
languages like VHDL or Verilog. New verification strate-
gies using object-oriented mechanisms as well as assertion-
based techniques built on top of simulation-based and for-

mal verification enable to implement a verification envi-
ronment much more compact and reusable.  

While advanced verification methods include high poten-
tial for increasing the level of verification efficiency and 
quality, their introduction into an existing and well estab-
lished industrial development process often holds several 
difficulties. Taking an industrial user’s point of view, sev-
eral aspects have to be considered carefully. They include 
specific requirements that come up with the specific appli-
cation area. Furthermore, the reusability of available verifi-
cation components and commercial aspects like costs for 
new tool licenses and training of the design teams have to 
be considered. All those aspects potentially hinder that new 
and advanced verification approaches enter a “naturally 
grown” and well established company’s design flow. 

The paper at hand addresses the gap outlined above and 
critically discusses the difficulties introducing new verifica-
tion methods into an existing company’s design flow. In 
regard of the specific requirements of the automotive elec-
tronics design domain, the paper identifies verification tasks 
that include high potential and open challenges to be solved. 
For the example of a verification strategy built up at Bosch, 
the paper works out the specific requirements and environ-
mental constraints that need to be considered. Finally the 
integration into our industrial design flow is shown taking 
into account practicability and applicability aspects.  

 
The paper is organized as follows: Chapter 2 describes 

the landscape of verification methods and identifies chal-
lenges that are highly relevant. Chapter 3 works out our 
strategy for providing new and advanced verification 
mechanisms. Chapter 4 illustrates our approach in terms of 
an industrial design example, and discusses extended fea-
tures resulting from our strategy. 

2 Verification challenges 

Over the last years, a large number of verification tools 
and methods were developed, which address several aspects 
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of verification using different techniques. In the area of 
digital hardware verification, metrics for an assessment of 
the verification status as well as simulation-based and for-
mal verification approaches are taking central positions. 
Figure 1 gives an overview of the approaches and the de-
rived methods. Different design and verification languages 
and EDA solutions of different vendors are covering this 
“verification landscape” to different degrees and in different 
parts. 
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Figure 1 Verification landscape 

Introducing new verification languages and methods into 
a well established design and verification flow requires not 
only pure technical discussions. Also the acceptance among 
the developers as well as the risk of touching a well work-
ing process has to be considered. Therefore, a smooth tran-
sition and the ability to reuse legacy verification code are 
essential. Especially, existing testcases contain a lot of in-
formation on former design issues. Since the majority of 
automotive designs are classified as safety critical, even a 
marginal probability of missing a bug due to a new verifica-
tion method is not acceptable. On the other hand the reuse 
of legacy code should not result in multiple testbench ap-
proaches within one project. So the use of legacy testcases 
should ideally be part of a new approach. Thus it would be 
possible to enhance existing testcases instead of writing new 
ones. Besides, reuse often requires slight changes in existing 
testcases due to new features that have been implemented.  
Hence, if a new verification method does not support an 
adaptation of legacy testcases, they have to be re-
implemented. 

The second important challenge is to convince the de-
signer to apply new methods and languages. Designers are 
experienced and work efficiently with their established 
strategy. Loosing this efficiency is a serious risk. In many 
cases there is no strict separation between design and verifi-
cation engineers. Hence, a large number of developers are 
affected when changing the verification method. Further-

more, new methods require training activities and cause a 
considerable overhead during their first applications. But 
most of the projects have a tough time schedule and do not 
allow trying out and possibly rejecting a new method. To 
overcome those difficulties, it is important to carefully col-
lect all the requirements and to evaluate new approaches 
outside critical projects. A possible way is to introduce new 
methods as add-on to the existing approach. Thus a new 
method or tool may improve the quality but would never 
make it worse. As a consequence, the evolution of verifica-
tion methods might be more desirable than a completely 
new solution. 

Considering the technical aspects of verification, auto-
motive designs show some interesting special requirements: 
The variety of digital designs reaches from a few thousand 
gates to multi-million gates System-on-Chip designs. Typi-
cal automotive ICs implement analog, digital and power 
semiconductors on the same chip. The main focus for those 
mixed signal designs is the overall verification of analog 
and digital behavior rather than a completely separated 
digital verification. But also pure digital IC’s e.g. in the area 
of car multimedia have to be covered.  

In practical use, the functional characteristics of the de-
sign to be checked determine the most appropriate verifica-
tion method: If the calculation of the expected behavior is 
“expensive”, directed tests may be the best solution. If there 
is an executable reference model available or if the expected 
test responses are easy to calculate, a random simulation 
may be the first choice. Instead of defining hundreds of 
directed testcases, a better approach could be to randomize 
the input parameters with a set of constraints allowing only 
legal behavior to be generated. In addition, special directed 
testcases could be implemented by appropriately constrain-
ing the randomization. The design behavior is observed by a 
set of checkers. Functional coverage points are necessary to 
achieve a visibility of what functionality has been checked. 
Observing functional coverage and manually adapting the 
constraints to meet all coverage goals leads to Coverage-
Driven Verification (CDV) techniques. Automated ap-
proaches built on top of different verification languages 
[1][2][3][4][5] result in Testbench Automation (TBA) 
strategies. 

A directed testbench approach might be most suitable for 
low complexity digital designs, in case that reference data is 
not available for randomizing all parameters or the given 
schedule does not allow implementing a complex constraint 
random testbench. Furthermore, mixed-signal designs may 
require directed stimulation. Often the function is distrib-
uted over both analog and digital parts, e.g. an analog feed-
back loop to the digital part. Verifying the digital part sepa-
rately makes no sense in this case. In fact, the interaction 
between analog and digital parts is error-prone. Thus, the 
integration of analog behavioral models is necessary in 
order to verify the whole function. One technique to deal 
with this requirement is mapping the analog function to a 
VHDL behavioral description and simulating the whole 
design in a directed fashion. In other cases, the customer 



delivers reference data originating from a system simulation 
(e.g. done in Matlab [6]). Integrating that reference data 
within a directed testcase is mandatory. Since each directed 
testcase may be assigned to a set of features within the veri-
fication plan, the verification progress is visible without 
implementing functional coverage points. Hence, the im-
plementation effort is much lower compared to a constraint 
random and CDV approach up to a certain design complex-
ity. Anyway, for some parameters not affecting the expected 
behavior (e.g. protocol latencies) it makes sense to intro-
duce randomization. 

Formal verification techniques like property checking 
provide the opportunity to prove the correctness of a design 
characteristic in a mathematically correct manner. In con-
trast to simulation-based techniques, which only consider 
specific paths of execution, formal techniques allow for an 
exhaustive exploration of the state space. On the other hand, 
formal techniques are usually strongly limited in circuit size 
and temporal depth. Therefore, formal and simulation-based 
techniques need to be combined carefully to optimize the 
overall verification result while minimizing the verification 
effort to be spent. This contribution concentrates on the 
simulation part of the problem.  

In summary, the challenge is to apply the different veri-
fication techniques where they fit best. In order to achieve 
visibility of the verification progress and the contribution 
each technique provides, we need powerful metrics. The 
question is how to achieve the best result regarding the 
available time, money and manpower budget rather than 
finding the theoretically best solution. The requirements on 
verification methods reach from mixed-signal simulation, 
simple directed testing to complex constraint random and 
formal verification as well as hardware/software integration 
tests. Nevertheless, a uniform verification method is de-
sired, providing the flexibility to satisfy all the needs of 
verification within an automotive environment.  

3 Verification strategies 

For an illustration of the aspects discussed before, this 
chapter demonstrates how SystemC has been applied to 
enhance a company-internal VHDL-based directed test-
bench approach while meeting the challenges defined 
within the previous chapter. This SystemC-based approach 
allows the introduction of constraint random verification 
techniques but also the reuse of existing testbench modules 
and testcases. Thus a smooth transition towards a new 
method is possible.  

3.1 VHDL-based testbench approach 

As figure 2 shows, the main concept of our testbench ap-
proach is to associate one testbench module (TM) or bus 
functional model with each design-under-test (DUT) inter-
face. All those testbench modules are controlled by a single 
command file. Each testbench module provides interface-

specific commands to its DUT interface. Furthermore, it 
implements a command loop process requesting the next 
command from the command file using a global testbench 
package. Thus a so called virtual interconnect layer is estab-
lished. Structural interconnect is required only between 
testbench modules and DUT. 

Virtual Interconnect

Testbench
Package

Structural 
Interconnect

Command
File

Command
File

TM3

TM4

TM2

TM1 DUT

Testbench

 
Figure 2 VHDL testbench approach 

The command file is an ASCII file containing command 
lines for the particular testbench modules as well as control 
flow and synchronization statements. Due to its unified 
structure, this testbench approach allows to easily reuse 
existing testbench modules. 

 
Figure 3 Command file example 

Figure 3 gives an example of the command file syntax. 
Each line starts with either a testbench module identifier 
(e.g. CLK, CFG), the ALL identifier for addressing global 
commands (e.g. SYNC) or control flow statements. Com-
mand lines addressing testbench modules are followed by a 
module-specific command and optional parameters. Thus 
line 1 addresses the clock generation module CLK. The 
command PERIOD is implemented within this clock gen-
eration module for setting the clock period and requires two 
parameters: value and time unit. Line 3 contains a synchro-
nization command to the testbench package. The parameter 
list of the synchronization command specifies the modules 
to be synchronized (all for line 3; A2M and CFG for line 7). 
Since in general all testbench modules are operating in 
parallel and thus requesting and executing commands inde-
pendently, it is important to synchronize them at dedicated 
points within the command file. When receiving a synchro-
nization command, the specified testbench modules will 

1 : CLK PERIOD 10 ns
2 : CLK RESET  0  12 
3 : ALL SYNC ALL 
4 : -- configure filter 1 
5 : CFG WRITE h#F004         b#10011000 
6 : CFG READ  dec1_cfg_addr1 h#98 
7 : ALL SYNC A2M CFG 
8 : -- configure audio channel 1  
9 : A2M FREQ_CHANNEL  1 48 KHz 
10: A2M START_CHANNEL 1 
11: -- run filter for 1 ms 
12: ALL WAIT deltime 1 ms 
13: ALL QUIT 



stop requesting new commands until all of them have 
reached this synchronization point.  

3.2 Introducing a SystemC-based approach 

Motivation for applying SystemC is to enhance the exist-
ing VHDL-based testbench approach. The idea behind the 
initial VHDL testbench approach was to define a sequence 
of commands, which are executed by several testbench 
modules and thus to describe a testcase within a simple text 
file. This works fine with the implemented VHDL-based 
approach. But the application of this concept showed that it 
is also desirable to get more flexibility within the command 
file. Besides, VHDL itself lacks advanced verification fea-
tures provided by Hardware Verification Languages (HVL) 
like e, SystemVerilog HVL and SystemC together with the 
SystemC Verification Library (SCV). 

However, the basic concepts of applying a simple text 
file for defining testcases as well as the parallel command 
execution and synchronization of testbench modules have 
proved to be efficient. Therefore we decided to extend the 
existing approach. But a hardware description language like 
VHDL is not really suitable to implement a testbench con-
troller which has to parse and execute an external command 
file. Hence, we decided to apply SystemC which provides a 
maximum flexibility, due to its C++ nature and the large 
variety of available libraries, especially the SCV. Using 
SystemC requires a mixed-language simulation approach. 
The DUT may still be implemented in VHDL, whereas the 
testbench moves towards SystemC. Available commercial 
simulators support mixed-language simulation. 

The implemented SystemC testbench controller covers 
the full functionality of the VHDL testbench package and 
additionally supports several extensions of the command 
file syntax. This makes the usage of existing command files 
fully compliant to the new approach. The new SystemC 
controller enables to apply variables, arithmetic expressions, 
nested loops, control statements and especially random 
expressions to be defined within the command file. How-
ever, those features are intended to implement testcases 
more efficiently and flexibly. In general, the major test-
bench behavior should be implemented in VHDL or Sys-
temC within the testbench modules. Thus the strategy is to 
implement more complex module commands rather than too 
complicated command files. But the SystemC approach 
does not only extend command syntax. It provides static 
script checks, more meaningful error messages and debug-
ging features.  

Implementing the testbench controller in C++ following 
an object-oriented structure allows improving the usability 
of the concept. A SystemC testbench module is inherited 
from a testbench module base class. Hence, only the mod-
ule-specific features have to be implemented. For example, 
the VHDL-based approach required to implement a com-
mand loop process for each testbench module in order to 
fetch the next command. This is not required when applying 
the SystemC approach because the command thread is in-

herited from the base class. Only the command functions 
have to be implemented. For the implementation of new 
features like expression evaluation, the use of C++, with 
lots of libraries available, shows its strength in particular. 
Thus, we take advantage of using the Spirit Library [7] for 
resolving arithmetic expressions within the command file. 

Another important requirement from a practical point of 
view is that existing VHDL-based testbench modules may 
be used unchanged within the new approach. Therefore, 
SystemC co-simulation wrappers need to be implemented. 
Generation of co-simulation wrappers is provided using a 
fully automated transformation approach which is described 
in [8]. Hence, a legacy VHDL-based testbench environment 
may be transferred to our new SystemC-based approach. All 
VHDL testbench modules are wrapped in SystemC and a 
new SystemC testbench top-level is built automatically. 
This allows taking advantage of the new command file 
syntax without re-implementing any testbench module in 
SystemC. Especially, the introduction of randomization 
within the command file gives the chance to enhance exist-
ing testcases with minimum effort. 
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Figure 4 SystemC testbench approach 

Figure 4 visualizes a testbench environment including a 
mixture of VHDL and SystemC testbench modules. As a 
first step, legacy testbench modules may be kept, like it’s 
shown for TM1, TM2 and TM4. Some of the testbench 
modules, like TM3, may be replaced by more powerful 
SystemC modules later. Besides, SystemC modules allow 
the easy integration of C/C++ functions. Moreover, the 
testbench module provides the interface handling and cor-
rect timing for connecting a piece of software. 

4 Design example 

In the following, some extended and new verification 
features resulting out of our SystemC-based testbench ap-
proach will be shown and discussed in terms of an industrial 
design example, a configurable decimation filter, taken 
from a Bosch car infotainment application. The decimation 
filter is used for reducing the sampling frequency of audio 
data streams. Actually, the decimation filter consists of two 
independent filter cores. The first one may reduce the input 



sample frequency of one stereo channel by a factor of three, 
while the second one may either work on two stereo chan-
nels with a decimation factor of two or on one stereo chan-
nel with a decimation factor of four. The decimation filter 
module possesses two interfaces with handshake protocols. 
One is applied for audio data transmission and the other one 
for accessing the configuration registers.  

The original verification environment has been imple-
mented in VHDL, based on the legacy testbench concept as 
described within chapter 3. Beside a clock generation mod-
ule, two testbench modules for accessing both the data 
transmission and the configuration interface were required. 
For fulfilling the verification plan, a set of directed testcases 
(command files) has been created. 
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Figure 5 Decimation filter 

Figure 5 shows the top-level architecture of the decima-
tion filter embedded within a SystemC-based testbench. The 
example demonstrates the smooth transition towards our 
SystemC-based testbench approach as well as the applica-
tion of constraint random and coverage-driven verification 
techniques. Furthermore, the presented approach proves its 
flexibility by providing an efficient hardware software co-
verification method. 

4.1 Constraint Random Verification 

For the decimation filter example, the randomization 
mechanisms of our SystemC-based testbench approach have 
been extensively used. Thus, randomized regression tests 
have discovered some interesting corner cases. As a first 
step, the existing VHDL testbench modules have been im-
plemented in SystemC. Thereby SystemC showed no sig-
nificant difficulties nor did require more implementation 
time. In order to check the compliance with the legacy 
VHDL approach, all existing testcases have been re-
simulated.  

Since reference audio data is available for all filter con-
figurations, a random simulation could be implemented 
quickly. Thereby randomization techniques have been ap-

plied to both the testbench modules and the command file.  
The command file has been split into a main file containing 
the general function and an include file holding randomized 
variable assignments.  The main command file consists of a 
loop which applies all randomized variables from the in-
clude file in order to reconfigure and run the filter for a 
dedicated time.  

 
Figure 6 Constraint include file 

Figure 6 illustrates an excerpt from the include file. For 
example line 24 describes the load scenario at the audio data 
interface. The variable #rand_load will be applied as pa-
rameter to a command of module A2M later within the main 
command file. A directed test will be enforced by assigning 
constant values instead of randomized items. Hence, the 
required tests, claimed by the verification plan, could be 
implemented more efficiently as constraint include files. 
After the verification plan has been fulfilled all parameters 
may be randomized for running overnight regressions and 
finding corner cases. 

4.2 Coverage-Driven Verification 

To get an idea of the verification progress, especially 
when applying random verification, coverage metrics are 
required. Analyzing the code coverage is necessary but not 
sufficient. For the given example, we implemented a set of 
functional coverage points using PSL [5]. Since PSL does 
not support cover groups and cross coverage, we developed 
a Perl [9] script generating those cross coverage points. 
Nevertheless, implementing coverage points has been a 
considerable effort, but as a result we recognized some 
verification holes within our VHDL directed testbench. 
Considering the fully randomized testcase, all coverage 
points will be eventually covered. In order to meet the cov-
erage goals faster and thus reducing the required simulation 
time, a much more efficient approach is defining multiple 
randomized testcases using stronger constraints. 

Automating this procedure of manually adapting con-
straints leads to another understanding of TBA which is the 
automatic adaptation of constraints due to the measured 
coverage results. Therefore it is necessary to manually de-
fine dependencies between constraints and coverage items. 
Such a testbench would hit all desired coverage points 
automatically. The disadvantage of this approach is the high 
implementation effort for the definition of constraints, cov-

10: -- number of reconfiguration iterations 
11: A2M ASSIGN reconf_cnt = 20 
12: -- randomized parameter (for each iteration) 
13: -- define filter operation  
15: A2M ASSIGN rand_filter_op_dec2 = ${ keep 20% , stop 20% , 
                                        fact_2 , fact_4 } 
19: -- frequency in KHz 
20: A2M ASSIGN rand_in_freq_dec1 = ${ 144 60% , 72 30% , 36} 
22: -- run time for each iteration 
23: A2M ASSIGN rand_run_time      = ${ 50000:60000 } 
24: A2M ASSIGN rand_load          = ${ none , rand ,  
                                       low_const, low_rand , 
                                       mid_const, mid_rand , 
                                       high_const, high_rand} 



erage items and their dependencies. Nevertheless, we dis-
covered a method based on our SystemC testbench and 
PSL: First we need access to our coverage points. Therefore 
we assign coverage points to VHDL signals which may be 
observed from SystemC. Thereafter we define dependencies 
between those coverage results and constraints within either 
the command file or a SystemC testbench module. For 
automating this method we improved the above mentioned 
Perl script. Thus, we generate a CDV testbench module, 
which either passes coverage information to the command 
file or may be extended for adopting the constraints in Sys-
temC.  

4.3 HW/SW co-simulation 

In the target application, the decimation filter is embed-
ded within an SoC and thus controlled by a processor. In 
order to setup a system level simulation, a vendor-specific 
processor model is given in C and Verilog. Hence, the com-
piled and assembled target application software, imple-
mented in C, may be executed as binary code on the given 
processor model. But due to this co-simulation approach, 
the simulation performance decreases notably, although the 
actual behavior of the processor model is not relevant in this 
case. 

The application C code consists of a main function and 
several interrupt service routines. Controlling the audio 
processing module like the decimation filter is done by 
accessing memory-mapped registers. Thus the processor 
performs read and write accesses via its hardware interface.  

To overcome the performance limitation, the idea is to 
omit the processor model and connect the C code directly to 
a testbench module, like illustrated by figure 5. Due to its 
C++ nature, our SystemC-based testbench approach offers a 
smart solution. The intention is to map our testbench mod-
ules read and write functions to register accesses within the 
application C code. Therefore, we re-implemented the exist-
ing register definitions, applying an object-oriented style. 
This allows overloading the assignment and implicit cast 
operators for those registers. Hence, reading a register and 
thus applying the implicit cast results in a read command 
being executed by the testbench module. Similarly, assign-
ing a value to a register results in a write command being 
executed by the testbench module. Finally, we need a 
mechanism to initiate the execution of the main and inter-
rupt functions from the application C-code. Therefore, we 
implemented module commands starting those C-functions. 
Hence, we were able to control and synchronize the execu-
tion of those functions within our command file. This is 
essential in order to control the audio testbench module, 
which is required to transmit and receive audio data with 
respect to the current configuration. In order to execute the 
interrupt functions we applied the interrupt mechanism of 
our testbench concept. 

5 Conclusions 

In this paper, difficulties introducing new verification 
methods into an existing company’s design flow were 
worked out and critically discussed.  

Taking a company-internal VHDL-based testbench ap-
proach as an example, we demonstrated a smooth transition 
towards advanced verification techniques based on Sys-
temC. The presented approach allows us to reuse existing 
verification components and testcases. Therefore, we guar-
antee that running projects benefit from new techniques 
without the risk of losing design efficiency or quality. This 
results in a maximum of acceptance among the developers, 
which is essential for successfully introducing new meth-
ods. The effectiveness and potential of the developed ap-
proach was shown in terms of an industrial design example 
given by a configurable decimation filter. 
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